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Abstract. The problems and results in constructing the sta­
tistical models of multimodal functions are reviewed .. The ratio­
nality of the search for global minimum is formulated axiomati­
cally and the features of the corresponding algorithm are discussed. 
The results of some applications of the proposed algorithm are pre­
sented. 
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Introduction. To justify and to construct the optimiza­
tion algorithm, a model of the objective function is neces­
sary. In the local optimization theory the. quadratic mod­
els have been proved to be very useful. In the multimodal 
case a model must be adequate to the considerably more un­
certain behaviour of a function than in the local case (see 
e.g. Torn, Zilinskas, 1989). The stochastic functions are used 
for the models of complicated functions with the elements of 
uncertainty in hydrodynamics, theory of automatic control, 
radar theory, etc. Some algorithms of global optimization 
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are based also on the stochastic functions in the papers by 
Kushner (1964), Saltenis (1971), Mockus (1972), Neimark and 
Strongin (1966), Strongin (1978). However, the justification of 
the use of such models in global optimization was only heUl·is­
tic. The proof of the stability of frequencies, as it is supposed 
in classical statistics, seems not realistic for the characteris­
tics of the class of real objective functions. Therefore, a jus­
tification of statistical models in global optimization needed 
the development of a general theory of statistical models of 
multimodal objective functions~ In this paper the review is 
presented on the main problems of axiomatic development of 
such a theory. 

The assumptions on information on the objective func­
tions are formulated axiomatically. The basic assumption is 
the possibility to compare the likelihood of the intervals of 
values of the objective function. It is shown, that the family 
of random variables is a model, corresponding to the system 
of rather simple axioms, formalizing available information on 
the class of objective functions. A further characterization 
of statistical model is similar to the problem of extrapolation 
under uncertainty. It is shown, that in the class of axiomatic 
models there exist such ones which are simpler from the com­
putational point of view than Gaussiall stochastic functions. 
Some additional axiOlns to specify the latter case in the class 
of axiomatic models are discussed. 

The model helps to interpret the results of the previous 
optimization steps and to plan the current ones, however, the 
definition of a rational algorithm remains not trivial. The 
algorithms, which are optimal with respect to the obviously 
rational criteria, are too complicated for the computer realiza­
tion. If an optimal algorithm is simplified or approximated by 
a computer algorithm, the approximation errors remain un­
clear, e.g., in case of substituting the optimal algorithm by 
the one-step optimal algorithm. The latter, although obvi-
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ously simpler than the original one, is not well justified: it 
seems reasonable to perform the general investigation on the 
features of the function at the initial optimization steps col­
lecting information useful to organize an efficient search at 
the subsequent steps. Asymptotic features of the global al­
gorithms, e.g., asymptotic. rate of convergence, are not fully 
adequate to the real efficiency of the algorithms, since the fi­
nal refinement of the global and main local minima normally is 
performed by the well known local techniques. Because of the 
difficulties mentioned above, it is reasonable to construct the 
algorithm axiomatically, formalizing simple and intuitively ob­
vious requirements to the algorithm at current minimization 
step. A slightly different approach to the use of statistical 
models is considered in a book by Mockus (1989). , 

The results of the minimization of test and practical prob­
lems have shown, that the field of rational application of the 
constructed algorithms is the minimization of expensive func­
tions, i.e., whose computation is time consuming and whose 
dimensionality does not exceed 10. 

Construction of the statistical model. Let the uni­
que objective information on the function f(x), x E A c Rnbe 
the values of f(· ) at the points Xi EA: Yi = f(.ri), i = 1, k. 
Besides, we have the subjective' information (e.g., the ex­
perience of solving similar problems in the past) on multi­
modality and complexity of f(x). The weakest, but still rea­
sonable assumption: on available information is the compa­
rability of likelihood of the intervals of the possible values 
f(x), ;1: =1= Xi, i = 1, k. Let the comparability relation (eR.) be 
given and denoted by ::::x, where (a, a') :::x (b, b') does mean 
that the event f( l:) E (a, a')is at least as like as the event 
f(x) E (b, b'). The index x may be omitted if it is apparent 
from the context. The impossible event 0 is introduced for­
mally and considered in a similar way with the other events. 
The event (a,a') :::x (b,b') and (b,b') :::x (a,a') is denoted 
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as (a, a/) rv x (b, b'). The expression (a, a/) >-x (b, b') used for 
shortening of (a,a/):::x (b,b') but (a,a/) rv x (b,b')is not true. 
Let the point ;1: i- Xi, i = 1, ,,~ be fixed. The information on 
f(· ) normally does not contradict the following assumptions 
on rationality of eR: 

Al. For arbitrary intervals (a, a/), (b, b') there holds ei­
ther (a,a/)::: (b,b') or (b,b')::;: (a,a/). 

A2. If (a,a/)::: (b,b') and (b,b')::: (c,c/),then (a,a/) ~ 
(c,c/). 

A3. The statement (a, a/) >- 0 is true if and only if 
p[a, a'l > 0, where p(.) denotes a Lebesque measure; (a, a/) rv 

[a,a/) rv (a,a/] rv [a,a']. . 
A4. Let there hold the relations B = [a, a'l n [b, b'] i-

0, C = [a, a'l n rc, c/] i- 0, p(B U C) = 0, The relation [b, b'] ::: 
rc, c/] is true if and only if [a, all U [b, b'] ::: [a, a'l U rc, c/] . 

A5. If there hold (a, a/) >- (b, b') >- O,then exist al,a2, a < 
ai < a', i = 1,2 such that (a, a1) rv (a2' a/) rv (b,b'). 

Since in the axiom Al only simple sets (intervals) are 
involved in the comparison, Al is weaker as it is customary 
assumed. The transitivity axiom A2 is discussed by many au­
thors and it is one of the fundamental assumptions regarding 
the eR rationality. The intuitive acceptability of the axioms 
Al and A2 in solving complicated optimization problems is 
shown by the results of psychological experiment by Zilinskas 
(1986). The axiom A4 expresses the additivity of eR and is 
a normal rationality assumption for eR. The axioms A3 and 
A5 are specific for this approach. The axiom A3 expresses the 
complexity of the function and states that the exad prediction 
of f(:f) is impossible, as well as the choice of an int.erval (a, a') 
such that p(a, a') > ° and the event f(x) et. (a, a') is equiva­
lent to O. The continuity of eR wit.h respect to int.ervals seems 
quite natural, the axiom A5 expresses this continuity in the 
most obvious way. The eR, defined by AI-A5 for intervals, 
may be extended to the algebra of finite unions of intervals 
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in a rather natural way, implying the existence of a unique 
probability density px(.) compatible with eR. The density 
p(. ) is called compatible. with::: in case Xl ::: X2 holds if 
and only if J p(t)dt ~ J p(t)dt, where Xi, i = 1,2 denote 

Xl X 2 \ 

the finite unions of disjoined intervals. This result implies the 
interpretation of unknown value f(x) as a random variable Yx 

with probability density Px(' ) and finally the acceptability of 
a family Yx , x E A, x =J. Xi, i = 1, k for the statistical 
model of f(x). The discussed axioms imply the existence and 
uniqueness of Px(' ), however, the constructive form of Px(' ) 
{i.e., of probability density and it's dependence on x) is neces­
sary to construct the optimization algorithms. The results of 
a psychological experiment show, that the eR for researchers 
and designers solving technical optimization problems in their 
daily work may be expressed by means of Gaussian probability 
densi ty (see Zilinskas 1986). 

A stochastic function may be considered as a family of 
random variables, therefore, the stochastic functions are spe­
cific case of the models defined above. The axiomatic defi­
nition of this case (very important for the theory) was con­
sidered by Zilinskas and Katkauskaite (1982). The additional 
axioms on eR of multidimensional intervals of the values of 
f(·) at several points have similar sense as the AI-A5 and 
imply the existence and uniqueness of a st~chastic function 
compatible with eR. However, the formulation of the axioms 
is more complicated and not so obvious intuitively. 

The main practical conclusion from the axiomatic theory 
is the possibility to construct well defined statistical models 
of multimodal functions, which are simpler from the computa­
tional point of view than the stochastic Gaussian functions. 

Definition of the characteristics of a statistical 
model. 

The natural enough assumptions, regarding the informa-
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tion about f(· ), imply that the family of Gaussian random 
variables y~, x E A, x =F Xi, i = 1, I.: is an acceptable 
model of f( x). For a further characterization of this statis­
tical model, it is necessary to define the expected value of 
f(x), which is denoted by mk(x, (Xi, Yi), i = 1, k). Informally, 
mk(;Y,' ) may be termed as the average value or the most likely 
value or the representative value of the function at the point x. 
If Yx corresponds to a random function, then the conditional 
mean of it corresponds to this wording. Let us note that such 
a definition of mk(' ) is of interest also, when extrapolating 
under uncertainty independently of the underlying statistical 
model as shown by Zilinskas (1979). The rationality of the 
extrapolation can be understood as the invariance of the ex­
pected value of f( x) with respect to some transformations of 
the available information: 

a) invariance in the scale of measuring of Yi, b) invariance 
in the choice of zero point of measuring of Yi, c) invariance in 
the numeration of (Xi, Yi), d) a restriction of complexity of 
an extrapolation is formulated as the admissibility of data 
aggregation. 

The strict formulation of the axioms may be found in the 
paper of Zilinskas (1979). The unique extrapolator compatible 
with the axioms is 

k 

mk(x, (;Yi, Yi),·i = l,k) = LYiWi(X, Xj, j = l,k), (1) 
i=l 

where the weights have some natural properties. 
The second characteristic of the models k (;1:, (;ri, yd, i = 

1, k), the variance of Yx may be characterized by the similar 
a:cioms, implying the following expression 

k 

Sk(X, (Xi, Yi), i=l,k)="YkLIIX-;Yillwi(X,Xj, j=l,k), 
i=l 

(2) 
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where 'Yk may depend on (Xi, Yi), i = 1, h~. 
The investigation of the expression (1) with the weights 

given below h,as shown that such an extrapolator is rather 
precise and that it can be efficiently implemented. The weights 
are: 

w7(x,xj,j = l,k) = 0, if/. [(;r), 

{J)f(x,;7:j,j = l,k) = d(X,Xi)/ L d(:r,xj), i E 1(;7:), 
iEI( x) 

where lex) is the set of indices to the r nearest neighbours 
of x, 

d(x, ;7:i) = exp( -c 11 X - Xi 112)/ 11 X - Xi 11, c > 0, 

11· 11 is the Euclidean norm in Rn, r = 5 and the value c = 3.3 
is appropriate if Rn is scaled by normalizing the components 
of X by the mean-square-root deviations of the corresponding 
components of the vectors Xi, i = 1, k. 

The expression of the conditional mean of a Gaussian 
random field is a special case of (1), where the weights are de­
fined by the inversion of correlation matrix. It is interesting to 
specify this case axiomatically. Two specific axioms proposed 
in the paper of Zilinska.s (1979) imply the expression (1) co­
inciding with the expression of conditional mean of Gaussian 
random field. The latter results show the relations between 
the proposed statistical models and classical ones and express 
the features, which imply the difficulties of numerical realiza­
tion of the extrapolation. 

Construction of the optimization algorithm. As­
sume that the function f (:7: ), X E A c Rn, is to be minimized. 
Let k evaluations of f(· ) be given by Yi = f(:rd, i = 1, 1..~. The 
proceeding discussion implies that the family of Gaussian ran­
dom variables 1':z,,;7: E A with the probability density P.r(·) de­
pending on :7: i, Yi, i = 1, k is an acceptable statistical model of 
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f(· ). The choice of the next point Xk+l E A where to evaluate 
f(· ) may be interpreted as a choice of a particular probability 
density PXk+l (. ). If preference when choosing between the two 
densities PXl and PX2 satisfy some rationality requirements, 
it may be possible to construct a utility function compatible 
with the preference of choice, i.e., 

+00 +00 

PXl ~ P'V2 iff J U(t)PXl (t)dt > J u(t)Px2(t)dt. 

-00 -00 

Since the probability densities are Gaussian, i.e., 

these preferences are equivalent to preferences between the 
vectors (rn, s), where rn denotes the mean value and 8 2 the 
variance of }'~. The construction of a utility function u(· ) 
obviously implies the construction of a utility function U( rn, 8) 
for vectors (rn, 8), i.e., 

+00 

U(rn,8) = J u(t)n(tlrn,s)dt. 

-00 

The axiomatic definition of the preference relation and 
the corresponding interpretation are given by Zilinskas (1985). 
Here only the ideas of the axioms are presented: a) a current 
observation may be rational at the point x with a large mean 
value rn only in the case of sufficiently large uncertainty mea­
sure s, b) it is not rational to choose the point for current 
observation with guarantee the f(· ) value be larger than the 
best value found at the previous iterations, c) the preference 
relation is continuous in respect with 'In,d) the utility func­
tion is continuous from the left. The unique utility function 
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compatible with the assumptions is u(t) I( ZOk - t), where' 
ZOk < m~n Yi; where 1(·) is a unit-step function. There-

l~l~k 

fore, the current observation of minimization algorithm cor-
responding to all the assumptions is defined by the relation 
;rHl = arg max P(y:z, < ZOk). In one-dimensional case the 

xEA 
maximum point of probability p(.) may be expressed by a sim-
ple formula. In multidimensional case the problem is not so 
easy and usually it is attacked by the combination of Monte­
Carlo and local techniques. The choice of statistical model and 
some parameters of the original algorithm are rather arbitrary. 
Therefore, high accuracy in solving the auxiliary maximization 
problem is not reasonable. Since the global optimization al­
gorithm is used to obtain the points in a region of attraction 
of the global minimum and the refinement of the solution is 
performed by the local algorithm, the variation of coordinates 
of global trial point is negligible. 

The efficiency of the algorithm crucially depends on a 
transition from the global search to the local one. In the con­
sidered algorithms the transition will effect if the local inade­
quacy of statistical model and the obtained data is detected. 
In one-dimensional algorithm the condition of transition is 
tested as a statistical hypothesis. In multi-dimensional case it 
is based on ht'uristic and empiric rules. 

The convergence of the axiomatically defined algorithms 
is considered by Zilinskas '( 1985), Zilinskas and Katkauskaite 
(1987),inclucling the noisy case. Only the continuity ofthe ob­
jective function is supposed. Therefore, the convergence may 
be guaranteed only if the trial points are dense everywhere in 
A. It is not always easy to prove this fact for the sophisticated 
algorithms ,because they place the trial point in the "promis­
ing" subregions of A more often than in "not promising" ones 
aiming at efficient search. However, it seems reasonable to 
perform observations (although seldom) in the "not promis-
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ing" sub regions to be sure not to lose a sharp deep hole (global 
minimum for the "worst case" objective function ). 

4.Applications to optimal design. The results of 
testing of the constructed algorithms are presented in a book 
of Zilinskas (1986), where different algorithms are compared. 
The results may be summarized as follows: the constructed 
algorithms are very efficient in respect with the number of the 
objective function values, necessary to find the global min­
imum. It is interesting to mention, that even for the one­
dimensional functions with analytical estimates of Lipshitz 
constant (or the bound of the second derivative) such an al­
gorithm is more efficient than ·that based on the Lipshtzian 
model. However, the computer realization of these algorithms 
in mutidimensional case is impossible without time consum­
ing auxiliary computations. Therefore., the region of rational 
applications of the algorithms is optimization of the expensive 
multimodal (time consuming) functions whose dimensionality 
does not exceed 10. 

Such problems are quite common in optimal design. An 
example is the optimal design of magnetic deflection system 
(MDS) for a coloured TV. An imp~rtant criterion of MDS 
quality is the aberration of the electron beam, i.e., the disper­
sion of electrons while deflecting them by MDS. The aberra­
tion depends on configuration of a magnetic field. The latter 
may: be defined by a choice of the currents in the sections 
of MDS. Therefore, the minimization of the aberration with 
respect to the currents in sections of MDS is one of the im­
portant parts in the optimal MDS design. The algorithm of 
calculation of the objective function f(· ) (aberration) includes 
a numerical integration of the system of differential equations, 
describing a motion of electron in the magnetic field of MDS. 
The computing time of one value of f(· ) in the real problems 
often exceeds 20 sec. on BESM-6 computer. Analytical inves­
tigation of the features of f(· ), including the regions of attrac-
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tion of a local minima is impossible, because only the com­
puter algorithm for computing the values of f(· ) is available. 

The application of gradient type methods to solve the 
problem is difficult. First, the time of evaluating only one 
gradient is very large, e.g., ten dimensional problem takes 200 
sec. Second, the errors of numerical differentiation caused by 
the errors of computation of the values of f(· ) may be too large 
for a gradient. The experiment shows that the techniques 
of variable metric type, which are very effic,ent for the test 
functions (given by analytical formulae), can not reach the 
acceptable solution in reasonable time (1-2 hours). 

The application of simpler technique, more robust than 
the gradient type methods, also does not give the accept­
able result. Therefore, to solve the problem, global optimiza­
~ion algorithms should be vsed. The comparative analysis in 
Zilinskas (1986) shows, that the algorithm based on axiomatic 
approach is rather efficient. 

The second example of an efficient application of the con­
structed algorithm is the optimal synthesis of pigmental com­
positions (colours). The set of pigments (whose spectral char­
acteristics are known) should be used to produce the colour 
similar to a given standard colour. There are several criteria 
of similarity, e.g., spectral distance, colour distance, etc. In­
vestigations of real problems with 9 pigments show, that the 
solutions obtained by the local algorithms essentially depend 
on the chosen initial points. The process of the local descend 
takes a considerable extention of computing time. The ap­
plication of the constructed algorithm gives the acceptable 
solutions of different versions of the problem in 5-6 minutes 
(see Barauskas , Zilinskas, Piliavskij, Juskiene 1980). 

Several versions of the algorithm, based on statistical 
models, are coded in FORTRAN, e.g., included in libr:,ary OP­
TIMUM (1983). The one-dimensional algorithms (for mini­
mization without and with noise) are published by Zilinskas 
(1978a, 1980). 
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The perspectives. The axiomatic approach to the con­
struction of statistical models and optimization algorithms 
originated as an attempt to realize the rationality of global 
search "in average". It has grown from the Bayesian approach 
presented by Mockus (1989), but it is different from the latter 
in the methodology. From the computational point of view, 
simple expressions of rnk(· ), Sk(· ) in the axiomatic approach 
are defined as the characteristics of the extrapolator under 
uncertainty. The algorithm is defined axiomatically for statis­
tical models. 

In Bayesian approach the algorithm is justified for a sto­
chastic function. The further simplifications, necessary for 
the numeric realization, are described by Mockus (1989). The 
algorithms based on both approaches are similar in efficiency 
as well as in complexity of realization. Both are oriented to 
the minimization of expensive multimodal functions. 

One of the main problems in the axiomatic approach is 
the reducing of auxiliary computations necessary to realize the 
algorithm. To achieve the aim,it may be useful to include the 
gradients of the function f(· ) in the model. Therefore, it is 
supposed to extend the known system of axioms for 1nk(· ), 
8k(· ),postulating the features of differentiability in the frames 
of a statistical model. . 

The other direction of the development is the construc­
tion of statistical models and algorithms for the minimiza­
tion in the presence of noise. The one-dimensional case is 
investigated by Zilinskas (1980,1986). The initial results for 
the multidimensional algorithm are published by Zilinskas and 
Katkauskaite (1987). Since the one-dimensional algorithm in 
the presence of noise has been proved to be quite efficient, 
one may expect the similar efficiency of the multidimensional 
algorithm as well. 

The experts iD applied mathematics recently have started 
to be interested in parallel computing. Some general problems 
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of the parallel computing in global optimization a.re discussed 
by Torn and Zilinskas (1989). The parallelisation of general 
algorithms based on statistical models is difficult. However, 
some simple, but efficient specific algorithms may be useful 
in parallel schemes, e.g., the one-dimensional algorithm may 
be' applied for a multidimensional case, using random search 
directions, where different one-dimensional searches are per­
formed on different processors exchanging some information 
in progress. Seemingly, the way to combine mathematical and 
heuristic ideas is the most promising in this field. 
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