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Abstract. It is a complex non-linear problem to predict mechanical properties of concrete. As a
new approach, the artificial neural networks can extract rules from data, but have difficulties with
convergence by the traditional algorithms. The authors defined a new convex function of the grand
total error and deduced a global optimization back-propagation algorithm (GOBPA), which can
solve the local minimum problem. For weights’ adjustment and errors’ computation of the neurons
in various layers, a set of formulae are obtained by optimizing the grand total error function over a
simple output space instead of a complicated weight space. Concrete strength simulated by neural
networks accords with the data of the experiments on concrete, which demonstrates that this method
is applicable to concrete properties’ prediction meeting the required precision. Computation results
show that GOBPA performs better than a linear regression analysis.

Key words: data processing, neural networks, global optimization algorithm, properties of
concrete.

1. Introduction

Concrete is nowadays one of the most important man-made building materials used in
buildings, bridges, tunnel constructions and so on. It is created by proper mixing of coarse
and fine aggregates and cement with an adequate and controlled amount of water. One of
the most important properties of concrete is its compressive strength. One normally needs
a long cure period to measure the 28-day compressive strength of concrete specimens.
That makes it difficult to follow the steps of a current construction. To overcome this
problem, many experimental methods have been developed to predict concrete strength
(Wang and Chen, 1997; Wu and Lian, 1999).
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All of the experimental methods can be classified into two categories. The first is to
quicken the hardening process which functions by increasing the temperature and pres-
sure of the curing surroundings, and then by measuring the early compressive strength
values of concrete at the time of 1-hour, half-day or 3-day. Researchers have managed to
find the relationships between these early values and their correspondent 28-day strength.
A variety of equations have been established to size up this 28-day compressive strength.
Predicting with this kind of methods is more accurate. On the other hand, this still needs a
period to cure and to measure the specimens, and can’t provide the required experimental
data to manufacture and construction sites in time.

It is well known that the long-term properties of concrete can be improved by con-
trolling the grade of cement, water/cement ratio, amount of cement, amount of water,
slump, etc., of fresh concrete within specified limits. Since the data about fresh concrete
is routinely collected and has been used to provide quality control direction, it appears
reasonable that this data can also be used to predict the long-term strength of concrete.

Methods of the second category are carried out as follows: these analyze the com-
position of concrete and their respective characteristics, sort out some factors that affect
the compressive strength of concrete, and induce function equations between these fac-
tors and concrete strength by the regressive theory. These calculate concrete strength by
substitution of the tested values of some parameters of freshly mixed concrete in the equa-
tions. This type of methods is simple and inexpensive, but sometimes gives results with a
lower accuracy. The reason is that there are too many parameters related to compressive
strength for a regressive analysis, especially due to their stochastic and fuzzy properties.
Furthermore, with the development of concrete technology, many admixtures are being
invented to improve properties such as strength, workability, endurance, etc. Predicting
these properties is even more difficult, therefore it is beneficial to explore other new ap-
proaches.

In recent years, artificial intelligence has gradually developed as an information pro-
cessing means. The study of artificial neural networks (ANN) was inspired by advances
in biological neural network research and neural computing has emerged as a practical
alternative to computational algorithms for its strong parallel calculation and complex
nonlinear mapping abilities. The multi-layer feed-forward neural network model is one
of the most commonly used ANN models, its applications extend to almost every field
(Yeh, 1999).

Therefore, it is theoretically feasible to consider predicting concrete properties by
using the multi-layer feed-forward neural networks (MFNNs). In this paper, a nonlinear
mapping model of neural networks based upon a global optimization back-propagation
algorithm (GOBPA) has been constructed to deal with this concrete strength prediction
problem.

Nomenclature

L2 Euclidean norm;
ψ:X → Y mappingψ from X to Y;
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RN N -dimensional real Euclidean space;
[0, 1]N N -dimensional closed domain from 0 to 1;
Ni,Nh,No number of the neurons in input, hidden, and output layers respectively;
opj estimated output of nodej by a network under thepth pattern;
netpj total input of nodej under thepth pattern;
θpj threshold for neuronj in output layers under thepth pattern;
Np number of vectors in training set;
tpj target output of nodej under thepth pattern ;
λ variable parameter decreasing from 1 to 0;
∀X1, X2 ∈ D for all X1 ,X2 contained in setD;
∀β ∈ (0, 1) for all β contained in a range of 0 to 1;
Ep total feed-forward calculation error corresponding to thepth pattern;
τ matrix transpose;
whi weight from nodei in intput layer to nodeh in hidden layer ;
q number of iteration;
η learning rate, and0 < η < 1;
α momentum constant,0 < α < 1.

2. Architecture and Algorithm of the BP Neural Networks

Fig. 1 shows a typical multi-layer feed-forward neural network for prediction of con-
crete, which has three layers: an input layeri, a hidden layerh and an output layerj.
In the input layer, nodes 1 to 11 correspond to the grade of cement, water/cement ra-
tio, amount of water, amount of cement, maximum diameter of gravel, fine module of

Fig. 1. Neural network model for prediction of strength of concrete.
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sand, sand/aggregate ratio, aggregate/cement ratio, slump, action of admixtures, amount
of admixtures. In the output layer, nodes 12 and 13 relate to the 7-day strength and 28-
day strength respectively. Neurons in the neighboring layers are fully interconnected by
their respective specified weights. A multi-layer feed-forward neural network with the
error back-propagation algorithm is simply called a BP neural network. The BP neural
networks can accomplish complicated nonlinear mapping and many complex function
relationships. It does this by compounding simple nonlinear functions, such as sigmoid
functions, only several times (Eberhartet al., 1996).

Regarding a neural network as a mapping tool from inputs to outputs, the mapping
will be highly nonlinear. LetN be the number of the input neurons, andM be the number
of the output neurons,RN andRM beN -dimensional andM -dimensional real Euclidean
space. The expression[0, 1]N is a closed unit domain withN dimensions belonged toN -
dimensional real spaceRN . From the works of Kolmogorov and Hecht–Nielsen, etc. the
neural network can implement a mapping fromRN to RM , the mapping function is aL2

norm function denoted byψ. Hecht–Nielsen proved that any aL2 norm function like

ψ: [0, 1]N ⊂ RN → RM

can be approximated by a three-layer back-propagation neural network to any desired
degree of accuracy in the mean squared error sense, if each of theψ’s coordinate func-
tions is square-integrable (Hecht–Nielsen, 1991). That is to say, a three-layer BP neural
network could implement any function defined over a compact subset of Euclidean space
within any mean squared error accuracy.

The BP neural networks are capable of learning from example. Through learning
from example, the BP networks attain an alogical induction by adjusting their connecting
weights and thresholds. The implementation of the BP algorithm consists of two passes.
In the first pass, the calculation of data flows forward from the input layer to the output
layer. The second pass involves propagating error signals backward from the output layer
to the input layer. These two passes take place alternately. The steepest descent strategy
is employed to search for a set of weight vectors to minimize the error function in the
weight vector space to accomplish a process of information extracting and memorizing.

Suppose signNi is a number of the neurons in the input layer,Nh the hidden layer,
andNo the output layer. For the input layer, each output value equals its corresponding
input value. This means that the input layer simply fans out the input data. Corresponding
to thepth pattern of the samples (p = 1, 2, . . . , Np), denote the estimated output of node
h by oph, the total input bynetph, and the threshold byθph for the hidden layer. And the
relevant symbols for other layers can be denoted similarly to those of the hidden. Many
relationship equations between the inputs and outputs can be found in many references
on the BP neural networks.

Define the total net input of the node h of the hidden layer and the nodej of the output
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one by

netph =
Ni∑
i=1

whiopi − θph,

netpj =
Nh∑
h=1

wjhoph − θpj,

(1)

wherewhi is a connection weight from theith neuron in a front layer to thehth neuron in
the posterior neighboring layer, specifically from the input to the hidden layer. Similarly
wjh is a connective weight from the hidden layer to the output one.

Neural nodes either in the hidden or output layer can perform a transformation with a
mapping function from its total net inputnetph ornetpj to the relevant outputoph or opj .
If a sigmoid function is taken into account and denoted byf , their respective outputs of
the nodes in these two layers can be expressed by

oph = f(netph) =
1

1 + exp(−netph)
,

opj = f(netpj) =
1

1 + exp(−netpj)
.

(2)

Related to all the output nodes and all the training patterns, a sum-squared error func-
tion of the neural network can be defined by

E =
Np∑
p=1

Ep =
1
2

Np∑
p=1

No∑
j=1

(tpj − opj)2, (3)

whereNp is a number of the vectors in the training set,tpj is the target output (or actual
value of strength) of nodej in the output layer, andopj the computational output by the
network.

Define error signals of nodej in the output layer and nodeh in the hidden by

δpj = − ∂Ep

∂netpj
and δph = − ∂Ep

∂netph
. (4)

Substituting (3) into the above, and then finding the derivative ofEp to netpj and
netph on a consideration of (2) and (1), the error signal of the output node will be given
below:

δpj = (tpj − opj) · f(netpj), j = 1, 2, . . . ,No. (5)

As the errors in the output layer propagate backward, the error signal of the hidden
node will be expressed as

δph = f(netph)
No∑
j=1

δpjwjh h = 1, 2, . . . ,Nh. (6)
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Define adjustments of the connective weights between every two neighboring layers
as

∆wjh = −η ∂Ep

∂wjh
, ∆whi = −η ∂Ep

∂whi
. (7)

Finding the gradients of the error function related to thepth input pattern in (3), then
substituting (4), (1) and the derivative ofnetpj into it, we can get

∆wjh = −η ∂Ep

∂netpj
· ∂netpj

∂wjh
= δpjoph,

∆whi = −η ∂Ep

∂netph
· ∂netph

∂wjh
= δphopi.

(8)

Then updating processes of these weights can be performed by

wjh(q+1)=wjh(q)+∆wjh(q+1), ∆wjh(q+1)=−η ∂Ep
∂wjh

+α∆wjh(q), (9)

whi(q+1)=whi(q)+∆whi(q+1), ∆whi(q+1)=−η ∂Ep
∂whi

+α∆whi(q), (10)

whereq is an iteration number in the training pass,η is a learning rate, and0 < η < 1,
andα is a momentum constant, and0 < α < 1.

3. Global Optimization Back-Propagation Algorithm

It can be found that the sum-squared error function does not satisfy the conditions of
positive definite quadratic form over the weight space by a further study of the classical or
basic BP algorithm. This means that the function is not a convex quadratic form as defined
in the space. There are many local minima in the hypersurface of the error function. When
a learning process enters at a local minimum, the convergence of the BP algorithm is
rather slow, and the network cannot reduce the error to a required accuracy.

A novel grand total error function that satisfies the conditions of positive definite
quadratic form should be proposed in order to completely tackle the problem of local
minima (Karayiannis, 1992; Wang and Wang, 1996). Therefore, we introduce a global
optimization back-propagation algorithm, shortly called GOBPA in the output space in-
stead of the weight space. A novel grand total error function from the feed-forward com-
putation of neural network can be defined over the output space by

E =
Np∑
p=1

No∑
j=1

[
tpj (tpj − opj) +

1
2
λ
(
o2pj − t2pj

)
+

1
2

(
1− opj

tpj

)2
]
, (11)

whereλ is a variable parameter decreasing from 1 to 0 during the training period and the
other parameters are the same as before.
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DEFINITION 1. Supposing a convex setD ⊆ RN , under the assumption of∀X1, X2 ∈ D
and∀β ∈ (0, 1), if there exists

F (βX1 + (1− β)X2) < βF (X1) + (1− β)F (X2), (12)

then we state thatF (X) is a strict convex function defined overD.

DEFINITION 2. A nonlinear programming problem with inequality constraints may be
expressed in mathematical terms as

{
minimize F (X)
subject to gi(X) � 0, i = 1, 2, . . . ,m.

(13)

In the expression (13), minimum of the functionF (X) is required, subjecting to a set
of inequality constraints, which may differ from each other. HereX is anN -dimensional
column vector, in which each component is a decision variable, andgi(X) is theith in-
equality constraint. Assuming thatF (X) and−gi(X) (i = 1, 2, . . . ,m) are strict convex
functions, then we say the nonlinear constrained program (13) is a convex one.

Theorem 1. Assuming F (X) is a strict convex function, −gi(X) (i = 1, 2, . . . ,m) are
convex functions too, and assuming the optimum set Ropti �= Φ, where Φ means an
empty set, then there exists only one solution to the program in the expression (13)(Chen,
1985).

Theorem 2. The grand total error function E as represented by (11) is a strict convex
function defined over the output space.

Proof of Theorem 2. Without any specified qualification,Ep is a part of the grand total
errorE defined in (11), corresponding to thepth pattern (i.e., under thepth input vector),
and can be deduced as follows:

Ep =
NO∑
j=1

[
tpj(tpj − opj) +

λ

2
(
o2pj − t2pj

)
+

1
2

(
1− opj

tpj

)2
]

=
NO∑
j=1

[
1
2

(
λ+

1
t2pj

)
(tpj − opj)

2 + (1− λ) tpj (tpj − opj)

]
. (14)

Define some vector symbols below

Oτ = [op1, op2, . . . , opNo] , (15)

Tτ = [tp1, tp2, . . . , tpNo] , (16)

Xτ = (T − O)τ = [tp1 − op1, tp2 − op2, . . . , tpNo − opNo] , (17)
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A =




λ+ 1
t2p1

0 · · · 0

0 λ+ 1
t2p2

· · · 0

· · · ·
· · · ·
· · · ·
0 0 · · · λ+ 1

t2
pNO



, (18)

where the superscriptτ is a sign of matrix transpose. Substituting equations (15), (16),
(17) and (18) into (14), then (14) is simplified as

Ep(X) =
1
2
XτAX+ (1 − λ)TτX. (19)

Given the above, for anyNo-dimensional output spaceQ ⊆ RNo, if ∀X1, X2 ∈ Q
and∀β ∈ (0, 1) on substitution of (19), the following expression

Ep(βX1 + (1 − β)X2)− βEp(X1)− (1 − β)Ep(X2) (20)

can be deduced, without the detailed process, as an equation like

Ep(βX1 + (1− β)X2)− βEp(X1)− (1− β)Ep(X2)

=
1
2
β(β − 1)(X1 − X2)τ A(X1 − X2).

From the Definition 1, the above conditions, and the positive definiteness of the matrix
A, thus the value of the right side of the above equation is below zero. That is to say that

Ep(βX1 + (1 − β)X2) < βEp(X1) + (1− β)Ep(X2).

According to Definition 1,Ep(X) is a strict convex function in the output spaceQ, and
so isE(X); because the grand total error of the network can be written in a form below

E(X) =
Np∑
p=1

Ep(X) (21)

This completes the proof of the Theorem 2.

From Theorems 1 and 2, we draw a conclusion that the only optimum solution can be
obtained by optimizing the grand total error functionE over the output space.

There are several ways to maximally decrease the error in (11). One of them is to
minimize the error function directly. An applicable selection is by using an optimization
toolbox in MATLAB, a kind of powerful technical computational software produced by
the Mathworks Corporation. MATLAB has developed to versions 6.x and served a broad
range of technical tasks.
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In its companion optimization toolbox, many functions fit in with various optimal
problems. “Fminuc” is an interested one for multivariate nonlinear unconstrained opti-
mization, theoretically based on direct search methods and gradient methods, such as
quasi-Newton method and conjugate gradient method. The conjugate gradient method is
effective to speed convergence and can be expected to find the optimum solution in a
finite number of iterations. At each iteration step one evaluates the current negative gra-
dient vector and adds to it a linear combination of the previous direction vectors to obtain
a new search direction, along which to move. The search directions are determined se-
quentially at every step and all of them are mutually conjugate.

Functions “fminicon” and “lsqnolin” in MATLAB 6.3 is for solving a multivariate
nonlinear constrained problem. The second one, lsqnolin, based on Gauss–Newton and
Levenberg–Marquardt methods, is qualified for nonlinear least-squares problems subject
to simple bound constrains. In the optimization environment, one sets “options” with
“Levenberg–Marquardt” on, then theL−M search method runs. TheL−M search di-
rection is evaluated between these following two directions educed from steepest-descent
method and Gauss–Newton method respectively, controlled by assigning value of a non-
negative scalarλ (“lambda” in MATLAB parameters), so called a damping factor.

Artificial neural network is another choice to map a nonlinear relationship of divergent
data from input to output. Concrete is composed of a lot of raw materials. Taking qualities
and quantities of these raw materials as input data, and concrete strength as output data,
decreasing the grand total error defined in (11) is a requirement for neural network’s
convergence during training phase. In regard to the concerned specified case in this paper,
processing the equation (11) is a middle step in order to deduce a set of formulae for
forward and backward computations of neural networks. The formulae include weights’
adjustment and errors’ computation of the neurons in the various layers, shown in the
following Eqs. (25) – ( 28). Convergence of the neural network is an iterative process
along gradient descent direction of the error function in a simple output space.

Simple formulation of GOBPA is deduced as follows. Partially differentiate the error
in (14) with respect to connective weights of a neuron, define an error signalδpj of neuron
j in the output layer by

δpj =
− ∂Ep

∂opj

Nh∑
h=1

( ∂opj

∂wjh
)2 +

Ni∑
i=1

( ∂opj
∂whi

)2
, j = 1, 2, . . . , No, (22)

wherewjh is the weight between the output nodej and the hidden nodeh andwhi

between the hidden nodeh and the input nodei under thepth input pattern. Finding the
partial derivative ofEp with respect toopj , from (14), the numerator of the right side of
(22) will be

− ∂Ep

∂opj
=
[(
λ+ 1/t2pj

)
(tpj − opj) + (1− λ) tpj

]
, (23)

and the denominator of (22) is a sum of squared derivations of the output of nodej in
the output layer with respect to the weight either from the hidden layer or from the input
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layer. Finding derivations ofopj to wjh and towhi successively from (2) and (1), the
following equation can be deduced as

Nh∑
h=1

(
∂opj

∂wjh

)2

+
Ni∑
i=1

(
∂opj

∂whi

)2

= [opj(1−opj)]
2

[
1+

Nh∑
h=1

[
(oph)

2+(wjhoph (1−oph))
2
[
1+

Ni∑
i=1

(opi)2
]]]

. (24)

Substituting (23) and (24) into (22), instead of (5) in the basic BP algorithm, the error of
the output node j in GOBPA will be

δpj =
[(
λ+ 1/t2pj

)
(tpj − opj) + (1− λ) tpj

]
/ [opj (1−opj)]

2

[
1+

Nh∑
h=1

[
(oph)

2+(wjhoph (1−oph))
2
[
1+

Ni∑
i=1

(opi)
2
]]]

. (25)

Rather than the (6) in the basic BP algorithm, define the error signals in the hidden
layer by

δph =
No∑
j=1

δpjopj(1 − opj)wjh, h = 1, 2, . . . , Nh. (26)

Substituting the (27) – (28) for the (8) – (10), adjustments of the weights between the
neurons in the hidden layer and the output layer in the GOBPA are performed by

∆wjh(q + 1) = η

Np∑
p=1

(δpjopj (1− opj) oph) + α∆wjh(q),

wjh(q+1) = wjh(q)+∆wjh(q+1), j=1, 2, . . . , No, h=1, 2, . . . , Nh, (27)

whereq is the iteration number in the training period. Adjust weights between the input
layer and the hidden layer by

∆whi(q + 1) = η
Np∑
p=1

(δphoph (1− oph) opi) + α∆whi(q),

whi(q + 1) = whi(q) + ∆whi(q + 1), h = 1, 2, . . . , Nh, i = 1, 2, . . . , Ni.

(28)

Since convergence of the neural network during training phase is achieved in the
output space, in which the error function (11) has a convex property, GOBPA can make
a stochastic initial point converge to the global optimum solution by iterations. All of the
algorithms concerning the basic BP algorithms and the GOBPA have been programmed
in the C++ language by the authors. Further, these C++ source code programs have been
used on computers to implement the multi-layer feed-forward neural network with these
various algorithms.
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4. Prediction of Concrete Strength and Comparison of the Algorithms

The prediction method suggested here belongs to the second category mentioned in the in-
troduction of this paper. Engineers in our laboratory made a great deal of experiments on
concrete. They prepared a variety of concrete specimens, cured them under various con-
ditions at different periods and then tested their respective cubic compressive strengths
(Ni and Wang, 2000). The experimental data amounts to 65 sets in all, and is divided into
two parts: a large part (55 sets) is used in training neural networks called the training set,
and a small part (ten sets) which is used in testing performance or accuracy of the net-
works’ prediction called test set. Each set consists of numerous vectors of the influencing
factors and the corresponding concrete strength.

Pick out fourteen test parameters as the factors (variables) that either decide or in-
fluence concrete strength (Wanget al., 1999). These factors are the grade of cement,
water/cement ratio, amount of water and cement, the maximum diameter of the gravel,
fine module of sand, sand/aggregate ratio, aggregate/cement ratio, slump, the action of
admixtures, amount of admixtures, forming conditions, curing conditions and test condi-
tions. Of all the above factors that are obtained during a certain period of time, the fol-
lowing three, forming conditions, curing conditions and testing conditions, can be seen
as constant factors. Therefore, the remaining eleven factors are decisive in developing the
strength of concrete.

Given the above, the neural network has a structure of 11–7–2. There are eleven nodes
in the input layer, and seven in the hidden layer, and two (corresponding to the 7-day
and 28-day concrete strength respectively) in the output layer. The initial weights are
generated at random from 0 to 1. The activation function we used is a sigmoid function
defined in (2).

First the basic BP algorithm was applied. Further, the whole training process on the
training set was implemented on computers. The sum-squared error was 0.05315, which
is obviously a local minimum because the error value did not decrease much from the
starting value of 0.1. Tests of the learning effect were carried out on the test set to see
if their recall and generalization abilities were powerful enough. From the test phase,
results estimated by the neural network were not adequate. The maximum absolute val-
ues of the test errors were 6.86MPa and the maximum absolute values of relative errors
were 13.2%. Some improvements on the basic BP algorithm were also employed by the
authors, such as the variation of learning rate, the variation of activation functions and
simulated annealing. Of those, the strategy of varying learning rates produced a relatively
good learning result with a sum-squared error of 0.04097. That showed that the improved
BP algorithms still did not throw off the local minimum. In the end, the authors employed
the GOBPA and then obtained a satisfactory learning result: taking only 1,000 iterations,
sum-squared error being 0.00046. Tests of the learning effect were carried out on the test
set. The maximum absolute value of test errors is 2.80Mpa, and the maximum absolute
value of relative errors is 5.52%, which is much smaller than the error given by the basic
BP algorithm. This showed the learning phase by the application of the GOBPA has been
successfully completed. Table 1 gives the simulation results by five different algorithms,
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Table 1

Comparison of computer simulated results

Training phase Testing phase
No. Algorithms

Number of Training Maximal|error| Maximal
iteration error (Mpa) |relative error| (%)

1 Basic BP algorithm 50000 0.05315 6.86 13.2

2 Varying learning rate 40000 0.04097 5.43 11.6

3 Varying activation
function 40000 0.05091 5.81 12.3

4 Simulated annealing 30000 0.04413 5.29 12.7

5 GOBPA 1000 0.00046 2.80 5.52

including their iteration numbers and grand total errors at convergence during the train-
ing phase, and the maximum absolute and relative errors during the testing phase. Among
them the GOBPA produced the best results with the least errors, avoiding local minima.

Variation of the errors and their convergences of the above mentioned algorithms
with the number of iterations during the training are shown in Fig. 2. The vertical axis
is the grand total training error, and the horizontal axis is the iteration numbers during
the training sweep. Curve 1 is for the basic BP algorithm, curve 2 for variation of the
activation function, curve 3 for simulated annealing, curve 4 for variation of the learning
rate, and the fifth for the GOBPA. It can be found that the GOBPA algorithm made the
grand total error to converge very quickly during the training sweep, the others were
slower by contrast. In a word, the GOBPA showed an excellent ability to escape from
local minima.

It is rather difficult to construct a nonlinear regressive equation to induce such a set
of the data with multi-variable and strong nonlinear characteristics in concrete engineer-
ing. Computation with a linear regression is less complex, and it is better to compare the
above neural models with a linear regression analysis. In order to simplify calculations,
let us select less influence parameters and add another new factor, the 1-day strength

Fig. 2. Error variation curves during training.
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of concrete, as independent variables of the regressive equation. It can be assumed that
there exists a linear relationship between four independent variables:X1 (the grade of ce-
ment),X2 (the amount of water),X3 (the cement/water ratio), andX4 (the 1-day quick
cured concrete strength) and the dependent variableŷ (the 28-day strength of concrete).
Performing linear regressive analysis to induce this part of the data from the same exper-
iments as mentioned above, a linear regression equation can be obtained as follows:

ŷ = −78.732+ 1.451X1 + 0.096X2 − 3.680X3 + 0.414X4. (29)

This equation was used to predict the concrete strength on the test set, giving a max-
imum absolute value of forecast error of 7.8MPa, and a maximum absolute value of rel-
ative error of 19.2%. If the regressive equation did not include the independent variable
X4 for the 1-day strength, the accuracy of the prediction results was even lower from the
authors’ experience.

Figs. 3–5 are the histograms of test error distribution given by the BP algorithm vary-
ing the learning rate, the GOBPA and the regression analysis respectively. By comparison,
the results by the BP algorithm varying the learning rate and the GOBPA are basically
normally distributed in accordance with some practical experience, whereas the results
by the regression form a negative skew histogram.

Fig. 3. Relative test errors by the variation of the
learning rate.

Fig. 4. Relative test errors by the GOBPA.

Fig. 5. Relative test errors by the regression analysis.
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Fig. 6. Comparison of the actual values to the fore-
cast values from the linear regression.

Fig. 7. Comparison of the actual values to the fore-
cast ones from the GOBPA.

Figs. 6 and 7 are contrasts between the forecast values and the actual values of the
concrete strength (selecting ten points). The horizontal axis shows the actual strength
values of the experimental data and the vertical axis shows the forecast strength values
from the calculation results. The Fig. 6 represents the linear regression result, and Fig. 7
is for the GOBPA neural network. The closer the points are to the diagonal, the better the
results. If the actual and forecast values of a pair of data are equal, the point will fall onto
the diagonal. It can be seen that the points in Fig. 7 distribute more intensely about the
diagonal than those in Fig. 6, the GOBPA giving better test results.

5. Conclusions

The computation results and the comparisons of all these methods above show that the BP
algorithm based on global optimization can reduce the training time of neural networks
and the grand total error and much increase prediction reliability. Therefore it is an im-
provement on the basic BP algorithm. Application of this approach can not only simplify
the concrete strength experiments in laboratories, manufactures and construction sites,
but can also supply more correct and prompt data for structural design and construction
control. We believe a further study of ANN will simplify concrete test work, and provide
more accurate strength data for structural designs, and furthermore bring considerable
economic benefits.
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Neurotinkl ↪u algoritmas ir jo taikymas betono konstrukcij ↪u inžinerijos
duomen ↪u apdorojime

Ji-Zong WANG, Xi-Juan WANG, Hong-Guang NI

Prognozuoti betono mechanines savybes yra sudėtinga netiesiṅe problema. Dirbtiniai neurotin-
klai buvo panaudoti siekiant išvengti tradicini↪u algoritm↪u trūkum ↪u išskiriant domen↪u apdorojimo
taisykles. Autoriai sīulo nauj↪a iškili ↪a bendros paklaidos funkcij↪a, pritaikom↪a globalios optimizaci-
jos atbulo sklidimo algoritmui. Skaičiavimo rezultatai, modeliuojant betono stiprum↪a pasīulytu al-
goritmu, buvo geresni negu taikant tiesinės regresijos analiz↪e.


