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Abstract. The Markowitz model for single period portfolio optimization quantifies the problem
by means of only two criteria: the mean, representing the expected outcome, and the risk, a scalar
measure of the variability of outcomes. The classical Markowitz model uses the variance as the risk
measure, thus resulting in a quadratic optimization problem. Following Sharpe’s work on linear ap-
proximation to the mean-variance model, many attempts have been made to linearize the portfolio
optimization problem. There were introduced several alternative risk measures which are compu-
tationally attractive as (for discrete random variables) they result in solving Linear Programming
(LP) problems. The LP solvability is very important for applications to real-life financial decisions
where the constructed portfolios have to meet numerous side constraints and take into account
transaction costs. This paper provides a systematic overview of the LP solvable models with a wide
discussion of their properties.
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1. Introduction

The portfolio optimization problem considered in this paper follows the original
Markowitz’ formulation and is based on a single period model of investment. At the
beginning of a period, an investor allocates the capital among various securities, thus as-
signing a nonnegative weight (share of the capital) to each security. During the investment
period, a security generates a random rate of return. This results in a change of the capital
invested (observed at the end of the period) which is measured by the weighted average
of the individual rates of return.
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Let J = {1, 2, . . . , n} denote a set of securities considered for an investment. For
each securityj ∈ J , its rate of return is represented by a random variableRj with a given
meanµj = E{Rj}. Further, letx = (xj)j=1,2,...,n denote a vector of decision variables
xj expressing the weights defining a portfolio. To represent a portfolio, the weights must
satisfy a set of constraints that form a feasible setP . The simplest way of defining a
feasible set is by a requirement that the weights must sum to one and short sales are not
allowed, i.e.,

P =
{
x:

n∑
j=1

xj = 1, xj � 0 for j = 1, . . . , n
}
. (1)

Hereafter, it is assumed thatP is a general LP feasible set given in a canonical form as a
system of linear equations with nonnegative variables: This allows one to include upper
bounds on single shares as well as several more complex portfolio structure restrictions
which may be faced by a real-life investor.

Each portfoliox defines a corresponding random variableRx =
∑n

j=1 Rjxj that
represents the portfolio rate of return. The mean rate of return for portfoliox is given as:

µ(x) = E{Rx} =
n∑

j=1

µjxj .

Following the seminal work by Markowitz (1952), the portfolio optimization prob-
lem is modeled as a mean-risk bicriteria optimization problem whereµ(x) is max-
imized and some risk measure	(x) is minimized. In the original Markowitz model
(Markowitz, 1952) the risk is measured by the standard deviation or variance:σ2(x) =
E{(µ(x) − Rx)2}. Several other risk measures have been later considered thus creating
the entire family of mean-risk (Markowitz-type) models. While the original Markowitz
model forms a quadratic programming problem, following Sharpe (1971), many attempts
have been made to linearize the portfolio optimization procedure (c.f., Speranza (1993)
and references therein). The LP solvability is very important for applications to real-life
financial decisions where the constructed portfolios have to meet numerous side con-
straints (including the minimum transaction lots (Mansini and Speranza, 1999) and the
transaction costs (Kellereret al., 2000; Konno and Wijayanayake, 2001)). All these lead
to the mixed integer LP structure of the portfolio feasible setP . Some papers also ap-
peared in the literature which consider restrictions on the number of securities in the
portfolio and other side constraints in the Markowitz model (see for instance (Changet
al., 2000) and (Jobstet al., 2001)). Certainly, in order to guarantee that the portfolio takes
advantage of diversification, no risk measure can be a linear function ofx. Nevertheless,
a risk measure can be LP computable in the case of discrete random variables, i.e., in
the case of returns defined by their realizations under the specified scenarios. We will
considerT scenarios with probabilitiespt (wheret = 1, . . . , T ). We will assume that
for each random variableRj its realizationrjt under the scenariot is known. Typically,
the realizations are derived from historical data treatingT historical periods as equally
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probable scenarios (pt = 1/T ). The realizations of the portfolio returnRx are given as
yt =

∑n
j=1 rjtxj and the expected valueµ(x) can be computed as

µ(x) =
T∑

t=1

ytpt =
T∑

t=1

[ n∑
j=1

rjtxj

]
pt.

Similarly, several risk measures can be LP computable with respect to the realizationsyt.
The assumption on equally probable scenarios is the most typically applied when us-

ing historical data, but other ways to compute scenario probabilities have been proposed.
In (Speranza, 1993), for instance, historical realizations are weighted in a semi-absolute
deviation model for portfolio selection by means of the exponential smoothing technique.

When, in particular, securities have to be priced at some future time period the pricing
models may be based on Monte Carlo simulation of the term structure (see Sakalauskas,
2002). In this case possible states of the economy at a given time period are usually
obtained by means of a binomial lattice. More precisely, each price is obtained as the ex-
pected discounted value of its cash flow with discounting done at the risk free rate. Notice
that any suitable term structure can be used for the purpose of Monte Carlo simulation
(see the binomial lattice model described in (Blacket al., 1990)).

In (Carinoet al., 1998) while analyzing the technical aspects of the Russell–Yasuda
Kasai financial planning model, the authors also consider different models for discrete
distribution scenario generation. In particular the proposed software allows the user to
select among different discrete scenarios generation: the scenarios can be independent
period by period, dependent through some factor model or general. In all these cases the
number and the form of the scenarios are crucial factors in the size and complexity of the
models to be solved.

Finally, when considering historical data the impact of parameter estimation on op-
timal portfolio selection has been recognized by a number of authors who show that
practical application of portfolio analysis can be seriously hampered by estimation error,
especially in expected return. As pointed out by Simaan (1997) in order to reduce estima-
tion error the number of historical periods taken into account should be sufficiently large
and be strictly dependent on the used measure of risk.

The mean absolute deviation was very early considered in the portfolio analysis
(Sharpe, 1971a) and references therein) while quite recently Konno and Yamazaki (1991)
presented and analyzed the complete portfolio LP solvable optimization model based on
this risk measure – the so-called MAD model. Yitzhaki (1982) introduced the mean-risk
model using Gini’s mean (absolute) difference as the risk measure. For a discrete random
variable represented by its realizationsyt, the Gini’s mean difference is LP computable
(when minimized). Recently, Young (1998) analyzed the LP solvable portfolio optimiza-
tion model based on risk defined by the worst case scenario (minimax approach), while
Ogryczak (2000) introduced the multiple criteria LP model covering all the above as
special aggregation techniques.

The Markowitz model is frequently criticized as not consistent with axiomatic mod-
els of preferences for choice under risk (Rothschild and Stiglitz, 1969). Models consis-
tent with the preference axioms are based on the relations of stochastic dominance or
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on expected utility theory (Whitmore and Findlay, 1978; Levy, 1992). The relations of
stochastic dominance allow a pairwise comparison of given portfolios but do not offer
any computational recipe to analyze the portfolio selection problem. The expected utility
theory, when used for the portfolio selection problem, is restrictive in modeling prefer-
ences of investors. If the rates of return are normally distributed, then most of the LP
computable risk measures become proportional to the standard deviationσ(x) (Kruskal
and Tanur, 1978, pp. 1216–1217). Hence the corresponding LP solvable mean-risk mod-
els are then equivalent to the Markowitz mean-variance model. However, the LP solvable
mean-risk models do not require any specific type of return distributions. Moreover, oppo-
site to the mean-variance approach, for general random variables some consistency with
the stochastic dominance relations was shown for the Gini’s mean difference (Yitzhaki,
1982), for the MAD model (Ogryczak and Ruszczyński, 1999) and for many other LP
solvable models as well (Ogryczak, 2000).

It is often argued that the variability of the rate of return above the mean should not be
penalized since the investors are concerned of an underperformance rather than the over-
performance of a portfolio. This led Markowitz (1959) to propose downside risk measures
such as (downside) semivariance to replace variance as the risk measure. Consequently,
one observes growing popularity of downside risk models for portfolio selection (Sortino
and Forsey, 1996). Actually, most of the LP solvable models may be viewed as based on
some downside risk measures. Moreover, the models may be extended with some piece-
wise linear penalty (risk) functions to provide opportunities for more specific modeling of
the downside risk (Carinoet al., 1998; Konno, 1990; Michalowski and Ogryczak, 1999;
Michalowski and Ogryczak, 2001).

The variety of LP solvable portfolio optimization models presented in the literature
generates a need for their classification and comparison. This is the major goal of this
paper. We provide a systematic overview of the models with a wide discussion of their
theoretical properties.

The paper is organized as follows. In the next section we show how various LP com-
putable performance measures can be derived from shortfall criteria related to the stochas-
tic dominance. Section 3 gives a detailed revue of the LP solvable portfolio optimization
models we examine. Finally, in Section 4 some concluding remarks are stated.

2. Shortfall Criteria and Performance Measures

In this section we first recall the concepts of shortfall criteria and stochastic dominance.
Then, we show how various possible portfolio performance measures can be derived
from shortfall criteria and that some of them are consistent with the stochastic dominance
relations. Some of the performance measures are risk measures (to be minimized) and
some are safety measures (to be maximized). We also show how these measures become
LP computable in the case of returns defined by discrete random variables.
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2.1. Shortfall Criteria and Stochastic Dominance

The notion of risk is related to a possible failure of achieving some targets. It was for-
malized as the so-called safety-first strategies (Roy, 1952) and later led to the concept of
below-target risk measures (Fishburn, 1977) or shortfall criteria. The simplest shortfall
criterion for the specific target valueτ is the mean below-target deviation

δ̄τ (x) = E
{

max{τ −Rx, 0}
}
, (2)

which is LP computable for returns represented by their realizationsyt as:

δ̄τ (x) = min
T∑

t=1

d−t pt subject tod−t � τ − yt, d−t � 0 for t = 1, . . . , T. (3)

We show that the concept of mean below-target deviation is related to the second
degree stochastic dominance relation (Whitmore and Findlay, 1978) which is based on an
axiomatic model of risk-averse preferences (Rothschild and Stiglitz, 1969). In stochastic
dominance, uncertain returns (random variables) are compared by pointwise comparison
of functions constructed from their distribution functions. The first functionF

(1)
x is given

as the right-continuous cumulative distribution function of the rate of returnF
(1)
x (η) =

Fx(η) = P{Rx � η} and it defines the weak relation of thefirst degree stochastic
dominance(FSD) as follows:

Rx′ �
F SD

Rx′′ ⇔ Fx′(η) � Fx′′(η) for all η.

The second function is derived from the first as:

F (2)
x (η) =

η∫
−∞

Fx(ξ) dξ for real numbersη,

and defines the (weak) relation ofsecond degree stochastic dominance(SSD):

Rx′ �
SSD

Rx′′ ⇔ F
(2)
x′ (η) � F

(2)
x′′ (η) for all η.

We say that portfoliox′ dominatesx′′ under the SSD(Rx′ �SSD Rx′′), if F (2)
x′ (η) �

F
(2)
x′′ (η) for all η, with at least one strict inequality. A feasible portfoliox0 ∈ P is called

SSD efficientif there is nox ∈ P such thatRx �
SSD

Rx0 . If Rx′ �
SSD

Rx′′ , thenRx′

is preferred toRx′′ within all risk-averse preference models where larger outcomes are
preferred.

Note that the SSD relation covers increasing and concave utility functions, while the
first stochastic dominance is less specific as it covers all increasing utility functions (Levy,
1992), thus neglecting a risk averse attitude. It is therefore a matter of primary importance
that a model for portfolio optimization be consistent with the SSD relation, in the sense



42 R. Mansini, W. Ogryczak, M.G. Speranza

thatRx′ �
SSD

Rx′′ implies that the performance measure inx′ takes a value not worse
than (lower than or equal to, in the case of a risk measure) inx′′. The consistency with
the SSD relation implies that an optimal portfolio is SSD efficient.

FunctionF (2)
x , used to define the SSD relation, can also be presented as follows

(Ogryczak and Ruszczyński, 1999):

F (2)
x (η) = P{Rx � η}E

{
η −Rx|Rx � η

}
= E

{
max{η −Rx, 0}

}
= δ̄η(x).

Hence, the SSD relation can be seen as a dominance for mean below-target devia-
tions from all possible targets. The mean below-target deviation from a specific tar-
get (2) represents only a single criterion. One may consider several, saym, targets
τ1 > τ2 > . . . > τm and use the weighted sum of the shortfall criteria as a risk measure

m∑
k=1

wk δ̄τk
(x)=

m∑
k=1

wkE
{

max{τk−Rx, 0}
}

=E

{ m∑
k=1

wk max{τk−Rx, 0}
}
, (4)

wherewk (for k = 1, . . . ,m) are positive weights which maintains LP computability of
the measure (when minimized). Actually, the measure (4) can be interpreted as a single
mean below-target deviation applied with a penalty function:E{u(max{τ1 − Rx, 0})}
whereu is increasing and convex piece-wise linear penalty function with breakpoints
bk = τ1 − τk and slopessk = w1 + · · · + wk, k = 1, . . . ,m. Such a piece-wise linear
penalty function is used in the Russel–Yasuda Kasai financial planning model (Carinoet
al., 1998) to define the corresponding risk measure.

2.2. MAD and Downside Versions

When an investment situation involves minimal acceptable returns, then the below-target
deviation and its extensions are considered to be good risk measures (Fishburn, 1977).
However, when the mean portfolio return is used as a target, then in (2) the meanµ(x)
can be used instead of the fixed targetτ .

This results in the risk measure known as thedownside mean semideviationfrom the
mean

δ̄(x) = E

{
max

{
µ(x) −Rx, 0

}}
= F (2)

x

(
µ(x)

)
. (5)

For a discrete random variable represented by its realizationsyt, the mean semidevia-
tion (5), when minimized, is LP computable by formula (3) withτ = µ(x).

The downside mean semideviation is always equal to the upside one and therefore we
refer to it hereafter as to the mean semideviation. The mean semideviation is a half of the
mean absolute deviation from the mean (see Speranza, 1993), i.e.,

δ(x) = E

{∣∣Rx − µ(x)
∣∣} = 2δ̄(x).
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Hence the corresponding mean-risk model is equivalent to the MAD model which is LP
computable as:

δ(x) = min
T∑

t=1

(d−t + d+
t )pt s.t. d−t − d+

t = µ(x) − yt, (6)

d−t , d
+
t � 0 ∀t = 1, . . . , T.

Due to the use of distribution dependent target valueµ(x), the mean semideviation
cannot be directly considered an SSD shortfall criterion. However, as shown by Ogryczak
and Ruszczýnski (1999), the mean semideviation is closely related to the graph ofF

(2)
x .

The functionF (2)
x is continuous, convex, nonnegative and nondecreasing. The graph

F
(2)
x (η), referred to as the Outcome–Risk (O–R) diagram, has two asymptotes which

intersect at the point(µ(x), 0) (Fig. 1). Specifically, theη-axis is the left asymptote and
the lineη − µ(x) is the right asymptote. In the case of a deterministic (risk-free) return
(Rx = µ(x)), the graph ofF (2)

x (η) coincides with the asymptotes, whereas any uncertain
return with the same expected valueµ(x) yields a graph above (precisely, not below) the
asymptotes. The space between the curve(η, F (2)

x (η)), and its asymptotes represents the
dispersion (and thereby the riskiness) ofRx in comparison to the deterministic return
µ(x). Therefore, it is called the dispersion space. The mean semideviation turns out to
be the largest vertical diameter of the dispersion space while the variance represents its
doubled area (Ogryczak and Ruszczyński, 1999).

Every shortfall risk measure or, more precisely, every pair of a target valueτ and
the corresponding downside deviation defines also the quantity of mean below-target
underachievement

τ − δ̄τ (x) = E
{
τ − max{τ −Rx, 0}

}
= E

{
min{Rx, τ}

}
.

The latter portfolio performance measure can be considered a safety measure as the larger
values are preferred. In the case of a fixed targetτ one getsτ − δ̄τ (x′) � τ − δ̄τ (x′′) iff
δ̄τ (x′) � δ̄τ (x′′). Hence, the minimization of the mean below-target deviation (risk mea-
sure) and the maximization of the corresponding mean below-target underachievement

Fig. 1. The O–R diagram and the mean semideviation.
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(safety measure) are equivalent. The latest property is no longer valid whenµ(x) is used
as the target. One may introduce the safety measure ofmean downside underachievement

µ(x) − δ̄(x) = E

{
µ(x) − max

{
µ(x) −Rx, 0

}}
= E

{
min

{
Rx, µ(x)

}}
, (7)

but the minimization of the mean semideviation is, in general, not equivalent to the maxi-
mization of the mean downside underachievement. Note that, as shown in (Ogryczak and
Ruszczýnski, 1999),Rx′ �

SSD
Rx′′ implies the inequalityµ(x′) − δ̄(x′) � µ(x′′) −

δ̄(x′′) while the corresponding inequality on the mean semideviationsδ̄(x′) � δ̄(x′′)
may not be valid. Thus, the mean downside underachievement is consistent with the SSD
relation, while the consistency is not guaranteed for the mean semideviation.

For better modeling of the downside risk, one may consider a risk measure defined
by the mean semideviation applied with a piece-wise linear penalty function (Konno,
1990) to penalize larger downside deviations. It turns out, however, that for maintain-
ing both the LP computability and SSD consistency (Michalowski and Ogryczak, 2001),
the breakpoints (or additional target values) must be located at the corresponding mean
downside underachievements (7). Namely, when usingm distribution dependent tar-
getsµ1(x) = µ(x), µ2(x), . . . , µm(x) and the corresponding mean semideviations
δ̄1(x) = δ̄(x), δ̄2(x), . . . , δ̄m(x) defined recursively according to the formulas:

δ̄k(x)=E

{
max

{
µk(x)−Rx, 0

}}
=E

{
max

{
µ(x)−

k−1∑
i=1

δ̄i(x)−Rx, 0
}}

,

µk+1(x) = µk(x) − δ̄k(x) = µ(x) −
k∑

i=1

δ̄i(x) = E

{
min

{
Rx, µk(x)

}}
,

one may combine the semideviations by the weighted sum to the measure

δ̄(m)(x) =
m∑

k=1

wk δ̄k(x), 1 = w1 � w2 � · · · � wm � 0, (8)

as in them-MAD model (Michalowski and Ogryczak, 2001). Actually, the measure can
be interpreted as a single mean semideviation (from the mean) applied with a penalty
function: δ̄(m)(x) = E{u(max{µ(x) − Rx, 0})} whereu is increasing and convex
piece-wise linear penalty function with breakpointsbk = µ(x) − µk(x) and slopes
sk = w1 + · · · + wk, k = 1, . . . ,m. Therefore, we will refer to the measureδ̄(m)(x)
as to themean penalized semideviation. The mean penalized semideviation (8) defines
the corresponding safety measureµ(x) − δ̄(m)(x) which may be expressed directly as
theweighted sum of the mean downside underachievementsµk(x):

µ(x) − δ̄(m)(x) = (w1 − w2)µ2(x) + (w2 − w3)µ3(x) + · · ·
+(wm−1 − wm)µm(x) + wmµm+1(x), (9)
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where the weights coefficients are nonnegative and total to 1. This safety measure
was shown (Michalowski and Ogryczak, 2001) to be SSD consistent in the sense that
Rx′ �

SSD
Rx′′ impliesµ(x′) − δ̄(m)(x′) � µ(x′′) − δ̄(m)(x′′).

2.3. Minimax and the CVaR Measures

For a discrete random variable represented by its realizationsyt, theworst realization

M(x) = min
t=1,...,T

yt (10)

is a well appealing safety measure, while themaximum (downside) semideviation

∆(x) = µ(x) −M(x) = max
t=1,...,T

(µ(x) − yt) (11)

represents the corresponding risk measure. The latter is well defined in the O–R diagram
(Fig. 1) as it represents the maximum horizontal diameter of the dispersion space. The
measureM(x) is known to be SSD consistent and it was applied to portfolio optimization
by Young (1998).

A natural generalization of the measureM(x) is the worst conditional expectation
or the conditional value-at-risk (CVaR) (Rockafellar and Uryasev, 2000) defined as the
mean of the specified size (quantile) of worst realizations. For the simplest case of equally
probable scenarios (pt = 1/T ), one may define the CVaR measureM k

T
(x) as the mean

return under thek worst scenarios. In general, theconditional value-at-risk (CVaR)and
theworst conditional semideviation(conditional drawdown) for any real tolerance level
0 < β � 1 (replacing the quotientk/T ) are defined as

Mβ(x) =
1
β

β∫
0

F (−1)
x (α) dα for 0 < β � 1, (12)

and

∆β(x) = µ(x) −Mβ(x) for 0 < β � 1, (13)

whereF (−1)
x (p) = inf{η: Fx(η) � p} is the left-continuous inverse of the cumula-

tive distribution functionFx. For any tolerance level0 < β � 1 the corresponding
CVaR measureMβ(x) is an SSD consistent measure. Actually, the CVaR measures pro-
vide an alternative characterization of the SSD relation (Ogryczak, 2000; Ogryczak and
Ruszczýnski, 2002) in the sense of the following equivalence:

Rx′ �
SSD

Rx′′ ⇔ Mβ(x′) � Mβ(x′′) for all 0 < β � 1. (14)
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Note thatM1(x) = µ(x) andMβ(x) tends toM(x) for β approaching 0. By the
theory of convex conjugent (dual) functions (Rockafellar, 1970), the CVaR measure may
be defined by optimization (Ogryczak and Ruszczyński, 2002):

Mβ(x) = max
η∈R

[
η − 1

β
F (2)

x (η)
]

= max
η∈R

[
η − 1

β
δ̄η(x)

]
, (15)

whereη is a real variable taking the value ofβ-quantileQβ(x) at the optimum (Ogryczak
and Ruszczýnski, 2002). Hence, the value of CVaR and the corresponding worst condi-
tional semideviation express the results of the O–R diagram analysis according to a slant
direction defined the slopeβ (Fig. 2).

For a discrete random variable represented by its realizationsyt, due to (3), problem
(15) becomes an LP. Thus

Mβ(x) = max
[
η − 1

β

T∑
t=1

d−t pt

]
s.t. d−t � η − yt, (16)

d−t � 0 for t = 1, . . . , T,

whereas the worst conditional semideviations may be computed as the corresponding
differences from the mean (∆β(x) = µ(x) −Mβ(x)) or directly as:

∆β(x) = min
T∑

t=1

(
d+

t +
1 − β

β
d−t

)
pt s.t. d−t − d+

t = η − yt,

d+
t , d

−
t � 0 for t = 1, . . . , T,

whereη is an auxiliary (unbounded) variable. Note that forβ = 0.5 one has1 − β = β.
Hence,∆0.5(x) represents the mean absolute deviation from the median, the risk measure

Fig. 2. Quantile safety measures in the O–R diagram.
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suggested by Sharpe (1971a). The LP problem for computing this measure takes the form:

∆0.5(x) = min
T∑

t=1

(d−t + d+
t )pt s.t. d−t − d+

t = η − yt,

d+
t , d

−
t � 0 for t = 1, . . . , T.

One may notice that the above models differs from the classical MAD formulation (6)
only due to replacement ofµ(x) with (unrestricted) variableη.

2.4. Gini’s Mean Difference

Yitzhaki (1982) introduced the mean-risk model using Gini’s mean (absolute) difference
as the risk measure. For a discrete random variable represented by its realizationsyt, the
Gini’s mean difference

Γ(x) =
1
2

T∑
t′=1

T∑
t′′=1

|yt′ − yt′′ |pt′pt′′ (17)

is obviously LP computable (when minimized).
In the case of equally probableT scenarios withpt = 1/T the Gini’s mean differ-

ence may be expressed as the weighted average of the worst conditional semideviations
∆ k

T
(x) for k = 1, . . . , T (Ogryczak, 2000). Exactly, using weightswk = (2k)/T 2 for

k = 1, 2, . . . , T −1 andwT = 1/T = 1−
∑T−1

k=1 wk, one getsΓ(x) =
∑T

k=1 wk∆ k
T

(x).
On the other hand, for general discrete distributions, directly from the definition (17):

Γ(x) =
T∑

t′=1

[ ∑
t′′: yt′′<yt′

(yt′ − yt′′)pt′′

]
pt′ =

T∑
t=1

F (2)
x (yt)pt =

T∑
t=1

δ̄yt(x)pt.

Hence,Γ(x) can be interpreted as the weighted sum of multiple mean below-target devia-
tions (4) but both the targets and the weights are distribution dependent. This corresponds
to an interpretation ofΓ(x) as the integral ofF (2)

x with respect to the probability mea-
sure induced byRx (Ogryczak and Ruszczyński, 2002). Thus although not representing
directly any shortfall criterion, the Gini’s mean difference is a combination of the basic
shortfall criteria.

Note that the Gini’s mean difference defines the corresponding safety measure

µ(x) − Γ(x) = E{Rx ∧Rx}, (18)

where the cumulative distribution function ofRx ∧ Rx for any η ∈ R is given as
Fx(η)(2 − Fx(η)). Hence, (18) is the expectation of the minimum of two independent
identically distributed random variables (i.i.d.r.v.)Rx (Yitzhaki, 1982) thus representing
themean worse return. This safety measure is SSD consistent (Yitzhaki, 1982; Ogryczak
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and Ruszczýnski, 2002) in the sense thatRx′ �
SSD

Rx′′ implies µ(x′) − Γ(x′) �
µ(x′′) − Γ(x′′). In the case of equally probableT scenarios withpt = 1/T the safety
measureµ(x) − Γ(x) may be expressed as the weighted average of the CVaR values
M k

T
(x), for k = 1, . . . , T , with weightswk = (2k)/T 2 for k = 1, 2, . . . , T − 1 and

wT = 1/T .

3. LP Solvable Models

In this section we present the complete set of LP solvable models we consider and their
LP formulation.

3.1. Risk and Safety Measures

Following Markowitz (1952), the portfolio optimization problem is modeled as a mean-
risk bicriteria optimization problem

max
{[
µ(x),−	(x)

]
: x ∈ P

}
, (19)

where the meanµ(x) is maximized and the risk measure	(x) is minimized. A feasible
portfolio x0 ∈ P is called efficient solution of problem (19) orµ/	-efficientportfolio if
there is nox ∈ P such thatµ(x) � µ(x0) and	(x) � 	(x0) with at least one inequality
strict.

The original Markowitz model (Markowitz, 1952) uses the standard deviationσ(x)
as the risk measure. As shown in the previous section, several other risk measures may
be used instead of the standard deviation thus generating the corresponding LP solvable
mean-risk models. In this paper we restrict our analysis to the risk measures which, sim-
ilar to the standard deviation, are shift independent dispersion parameters. Thus, they are
equal to 0 in the case of a risk free portfolio and take positive values for any risky portfo-
lio. This excludes the direct use of the mean below-target deviation (2) and its extensions
with penalty functions (4). Nevertheless, as shown in Section 2, there is a gamut of LP
computable risk measures fitting the requirements.

In Section 2 we have seen that in the literature some of the LP computable measures
are dispersion type risk measures and some are safety measures, which, when embed-
ded in an optimization model, are maximized instead of being minimized. Moreover, we
have shown that each risk measure	(x) has a well defined corresponding safety measure
µ(x) − 	(x) and viceversa. Although the risk measures are more "natural", due to the
consolidated familiarity with Markowitz model, we have seen that the safety measures,
contrary to the dispersion type risk measures, satisfy axioms of the so-called coherent risk
measurement (Artzneret al., 1999). Moreover, they are SSD consistent in the sense that
Rx′ �SSD Rx′′ impliesµ(x′) − 	(x′) � µ(x′′) − 	(x′′) (Michalowski and Ogryczak,
2001; Ogryczak and Ruszczyński, 1999; Ogryczak, 2000; Yitzhaki, 1982; Young, 1998).
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The practical consequence of the lack of SSD consistency can be illustrated by two
portfoliosx′ andx′′ (with rate of return given as percentage):

P{Rx′ = ξ} =
{

1, ξ = 1.0,
0, otherwise;

P{Rx′′ = ξ} =




1/2, ξ = 3.0,
1/2, ξ = 5.0,
0, otherwise.

Note that the risk free portfoliox′ with the guaranteed result 1.0 is obviously worse
than the risky portfoliox′′ giving 3.0 or 5.0. Certainly, in all models consistent with
the preference axioms (Artzneret al., 1999; Levy, 1992; Whitmore and Findlay, 1978),
portfolio x′ is dominated byx′′, in particularRx′′ �

SSD
Rx′ . When a dispersion type

risk measure	(x) is used, then both the portfolios may be efficient in the corresponding
mean-risk model since for each such measure	(x′′) > 0 while 	(x′) = 0. This is a
common flaw of all Markowitz-type mean-risk models where risk is measured with some
dispersion measure.

It is interesting to note that, in order to overcome this weakness of the Markowitz
model already in 1964 Baumol (Baumol, 1964) suggested to consider a safety measure,
which he called the expected gain-confidence limit criterion,µ(x) − λσ(x) to be max-
imized instead of theσ(x) minimization. Thus, on the basis of the above remarks, for
each risk measure, it is reasonable to consider also an alternative mean-safety bicriteria
model:

max
{[
µ(x), µ(x) − 	(x)

]
: x ∈ P

}
. (20)

Summarizing, in a computational analysis one should consider the full set of risk and
safety measures presented in Table 1.

Note that the MAD model was first introduced (Konno and Yamazaki, 1991) with
the risk measure of mean absolute deviationδ(x) whereas the mean semideviationδ̄(x)
we consider is half of it. This is due to the fact that the resulting optimization models

Table 1

Risk and safety measures

Risk measure Safety measure

�(x) µ(x) − �(x)

MAD model δ̄(x) (5) E{min{Rx, µ(x)}} (7)
(Konno and Yamazaki, 1991)

m-MAD model δ̄(m)(x) (8) µ(x) − δ̄(m)(x) (9)
(Michalowski and Ogryczak, 2001)

Minimax model ∆(x) (11) M(x) (10)
(Young, 1998)

CVaR model ∆β(x) (12) Mβ(x) (13)
(Rockafellar and Uryasev, 2000)

GMD model Γ(x) (17) E{Rx ∧ Rx} (18)
(Yitzhaki, 1982)
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are equivalent and that the model with the semideviation is more efficient (see Speranza,
1993). For the MAD model, the safety measure represents the mean downside under-
achievement. For them-MAD model the two measures represent the mean penalized
semideviation and the weighted sum of the mean downside underachievements, respec-
tively.

The Minimax model was considered and tested (Young, 1998) with the safety mea-
sure of the worst realizationM(x) but it was also analyzed with the maximum semidevi-
ation∆(x) (Ogryczak, 2000). The CVaR model was considered with the safety measure
(Rockafellar and Uryasev, 2000). The corresponding risk measure represents the worst
conditional semideviation.

Yitzhaki (1982) introduced the GMD model with the Gini’s mean differenceΓ(x) but
he also analyzed the model implementation with the corresponding safety measure of the
mean worse returnE{Rx ∧Rx}.

As shown in the previous section, all the risk measures we consider may be derived
from the shortfall criteria of SSD. However, they are quite different in modeling of the
downside risk aversion. Definitely, the strongest in this respect is the maximum semide-
viation ∆(x) used in the Minimax model. It is a strict worst case measure where only
the worst scenario is taken into account. The CVaR model allows to extend the analysis
to a specifiedβ quantile of the worst returns. The measure of worst conditional semide-
viation ∆β(x) offers a continuum of models evolving from the strongest downside risk
aversion (β close to 0) to the complete risk neutrality (β = 1). The MAD model with
risk measured by the mean (downside) semideviation from the mean is formally a down-
side risk model. However, due to the symmetry of mean semideviations from the mean
(Ogryczak and Ruszczyński, 1999), it is equally appropriate to interpret the MAD model
as an upside risk model. Actually, them-MAD model has been introduced to incorporate
downside risk modeling capabilities into the MAD model. The Gini’s mean difference al-
though related to all the worst conditional semideviations is, similar to the mean absolute
deviation, a symmetric risk measure (in the sense that forRx and−Rx it has exactly the
same value).

Note that havingµ(x′) � µ(x′′) and	(x′) � 	(x′′) with at least one inequality strict,
one getsµ(x′) − 	(x′) > µ(x′′) − 	(x′′). Hence, a portfolio dominated in the mean-
risk model (19) is also dominated in the corresponding mean-safety model (20). In other
words, the efficient portfolios of problem (20) form a subset of the entireµ/	-efficient set.
Due to the SSD consistency of the safety measures, except for portfolios with identical
mean and risk measure, every portfolio belonging to this subset is SSD efficient. Although
very important, the SSD efficiency is only a theoretical property. For specific types of
distributions or feasible sets the subset of portfolios with guaranteed SSD efficiency may
be larger (Ogryczak, 2000; Ogryczak and Ruszczyński, 1999). Hence, the mean-safety
model (20) may be too restrictive in some practical investment decisions. In conclusion,
we believe the computational testing of the models resulting from all the risk and safety
measures summarized in Table 1 is an important part of the models comparison.
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3.2. How to Solve Bicriteria Problems

In order to compare on real-life data the performance of various mean-risk models, one
needs to deal with specific investor preferences expressed in the models. There are two
ways of modeling risk averse preferences and therefore two major approaches to han-
dle bicriteria mean-risk problems (19). First, having assumed a trade-off coefficientλ

between the risk and the mean, the so-calledrisk aversion coefficient, one may directly
compare real valuesµ(x)−λ	(x) and find the best portfolio by solving the optimization
problem:

max
{
µ(x) − λ	(x): x ∈ P

}
. (21)

Various positive values of parameterλ allow to generate various efficient portfolios.
By solving the parametric problem (21) with changingλ > 0 one gets the so-called
critical line approach (Markowitz, 1959). Due to convexity of risk measures	(x)
with respect tox, λ > 0 provides the parameterization of the entire set of theµ/	-
efficient portfolios (except of its two ends which are the limiting cases). Note that
(1−λ)µ(x)+λ(µ(x)− 	(x)) = µ(x)−λ	(x). Hence, bounded trade-off0 < λ � 1 in
the Markowitz-type mean-risk model (19) corresponds to the complete weighting param-
eterization of the model (20). The critical line approach allows to select an appropriate
value of the risk aversion coefficientλ and the corresponding optimal portfolio through a
graphical analysis in the mean-risk image space.

Unfortunately, in practical investment situations, the risk aversion coefficient does
not provide a clear understanding of the investor preferences. The commonly accepted
approach to implementation of the Markowitz-type mean-risk model is then based on
the use of a specified lower boundµ0 on expected returns which results in the following
problem:

min
{
	(x): µ(x) � µ0, x ∈ P

}
. (22)

This bounding approach provides a clear understanding of investor preferences and a
clear definition of solution portfolios to be used in the models comparison. Therefore, we
use the bounding approach (22) in our analysis.

Due to convexity of risk measures	(x) with respect tox, by solving the paramet-
ric problem (22) with changingµ0 ∈ [ min

j=1,...,n
µj , max

j=1,...,n
µj ] one gets various efficient

portfolios. Actually, forµ0 smaller than the expected return of the MRP (the minimum
risk portfolio defined as solution ofmin

x∈P
	(x)) problem (22) generates always the MRP

while larger values ofµ0 provide the parameterization of theµ/	-efficient set. As a com-
plete parameterization of the entireµ/	-efficient set, the approach (22) generates also
those portfolios belonging to the subset of efficient solutions of the corresponding mean-
safety problem (20). The latter correspond to larger values of boundµ0 exceeding the
expected return of the portfolio defined as solution ofmax

x∈P
[µ(x) − 	(x)]. Thus, opposite

to the critical line approach, having a specified value of parameterµ0 one does not know
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if the optimal solution of (22) is also an efficient portfolio with respect to the correspond-
ing mean-safety model (20) or not. Therefore, when using the bounding approach to the
mean-risk models (19), we need to consider explicitly a separate problem

max
{
µ(x) − 	(x): µ(x) � µ0, x ∈ P

}
(23)

for the corresponding mean-safety model (20).
An alternative approach looks for a risky portfolio offering the maximum increase

of the mean return while comparing to the risk-free investment opportunities. Namely,
given the risk-free rate of returnr0 one seeks a risky portfoliox that maximizes the ratio
(µ(x) − r0)/	(x). This leads us to the following ratio optimization problem:

max {(µ(x) − r0)/	(x): x ∈ P} . (24)

The optimal solution of problem (24) is usually called thetangent portfolioor themar-
ket portfolio(Elton and Gruber, 1987). Note that clear identification of dispersion type
risk measures	(x) for all the LP computable performance measures allows us to define
tangent portfolio optimization for all the models. Rather surprisingly the ratio model (24)
can be converted into an LP form (Williams, 1993). Thus the LP computable portfolio
optimization models, we consider, remain within LP environment even in the case of ratio
criterion used to define tangent portfolio.

Finally, in practice another frequently used approach for models comparison is the
analysis of the efficient risk-return frontiers. Notice that this approach strictly depends on
the space risk/return used to compare the models.

3.3. The LP Models

We provide here the detailed LP formulations for all the models we have analyzed. For
each type of model, the pair of problems (22) and (23), we have analyzed, can be stated
as:

max
{
αµ(x) − 	(x): µ(x) � µ0, x ∈ P

}
, (25)

covering the minimization of risk measure	(x) (22) for α = 0 while for α = 1 it
represents the maximization of the corresponding safety measureµ(x)−	(x) (23). Both
optimizations are considered with a given lower bound on the expected returnµ(x) � µ0.
All the models for the case of the simplest feasible setP (1) are summarized in Table 2.

All the models (25) contain the following core LP constraints:

x ∈ P and z � µ0, (26)
n∑

j=1

µjxj = z, (27)

n∑
j=1

rjtxj = yt for t = 1, . . . , T, (28)
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Table 2

Risk and safety LP models

Model max{αµ(x) − �(x): µ(x) � µ0, x ∈ P}

Core constraints

n∑
j=1

xj = 1

xj � 0 ∀j = 1, . . . , n
n∑

j=1

µjxj = z andz � µ0

n∑
j=1

rjtxj = yt ∀t = 1, . . . , T

MAD model max αz − z1

s.t. core constraints and
T∑

t=1

ptd1t = z1

d1t + yt � z, d1t � 0 ∀t = 1, . . . , T

m-MAD model max αz − z1 −
m∑

k=2

wkzk

s.t. MAD constraints and fork = 2, . . . , m:
T∑

t=1

ptdkt = zk

dkt +

k−1∑
i=1

zi + yt � z, dkt � 0 ∀t = 1, . . . , T

Minimax model max y − (1 − α)z

s.t. core constraints and

yt � y ∀t = 1, . . . , T

CVaR model max y − (1 − α)z − 1

β

T∑
t=1

ptdt

s.t. core constraints and

dt + yt � y, dt � 0 ∀t = 1, . . . , T

GMD model max αz −
T∑

t′=1

∑
t′′ �=t′

pt′pt′′dt′t′′

s.t. core constraints and

dt′t′′ � yt′ − yt′′ , dt′t′′ � 0 ∀t′, t′′ = 1, . . . , T ; t′′ �= t′
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wherez is an unbounded variable representing the mean return of the portfoliox and
yt (t = 1, . . . , T ) are unbounded variables to represent the realizations of the portfolio
return under the scenariot. In addition to these common variables and constraints, each
model contains its specific linear constraints to define the risk or safety measure.

MAD models. The standard MAD model (Konno and Yamazaki, 1991), when im-
plemented with the mean semideviation as the risk measure(	(x) = δ̄(x)), leads to the
following LP problem:

maximize αz − z1

subject to (26)–(28) and
T∑

t=1

ptd1t = z1, (29)

d1t + yt � z, d1t � 0 for t = 1, . . . , T, (30)

where nonnegative variablesd1t represent downside deviations from the mean under sev-
eral scenariost andz1 is a variable to represent the mean semideviation itself. The latter
can be omitted by using the direct formula for mean semideviation in the objective func-
tion instead of equation (29). The above LP formulation usesT + 1 variables andT + 1
constraints to model the mean semideviation.

In order to incorporate downside risk aversion by techniques of them-MAD model
(Michalowski and Ogryczak, 2001), one needs to repeat constraints of type (29)–(30) for
each penalty levelk = 2, . . . ,m.

maximize αz − z1 −
m∑

k=2

wkzk

subject to (26)–(28), (29)–(30) and fork = 2, . . . ,m :
T∑

t=1

ptdkt = zk,

dkt +
k−1∑
i=1

zi + yt � z, dkt � 0 for t = 1, . . . , T.

This results in the LP formulation that usesm(T +1) variables andm(T +1) constraints
to model them-level penalized mean semideviation.

CVaR models. For any0 < β < 1 the CVaR model (Rockafellar and Uryasev, 2000)
with 	(x) = ∆β(x), due to (15), may be implemented as the following LP problem:

maximize y − (1 − α)z − 1
β

T∑
t=1

ptdt

subject to (26)–(28) and dt + yt � y, dt � 0 for t = 1, . . . , T.

It is very similar to that of MAD but while defining the downside deviations an indepen-
dent free variabley is used instead ofz representing the mean. Recall that the optimal
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value ofy represents the value ofβ-quantile.T + 1 variables andT constraints are used
here to model the worst conditional semideviation.

As the limiting case whenβ tends to0 one gets the standard Minimax model (Young,
1998). The latter may be additionally simplified by dropping the explicit use of the devi-
ational variables:

maximize y − (1 − α)z

subject to (26)–(28) and yt � y for t = 1, . . . , T,

thus resulting inT constraints and a single variable used to model the maximum semide-
viation.

GMD model. The model with risk measured by the Gini’s mean difference(	(x) =
Γ(x) (Yitzhaki, 1982), according to (17) takes the form:

maximize αz −
T∑

t′=1

∑
t′′ �=t′

pt′pt′′dt′t′′

subject to (26)–(28) anddt′t′′ � yt′ − yt′′ ,

dt′t′′ � 0 for t′, t′′ = 1, . . . , T ; t′′ 
= t′,

which containsT (T − 1) nonnegative variablesdt′t′′ andT (T − 1) inequalities to de-
fine them. However, variablesdt′t′′ are associated with the singleton coefficient columns.
Hence, while solving the dual instead of the original primal, the corresponding dual con-
straints take the form of simple upper bounds (SUB) (Nazareth, 1987) which are handled
implicitly outside the LP matrix. In other words, the dual containsT (T −1) variables but
the number of constraints (excluding the SUB structure) is then proportional toT . Such
a dual approach may dramatically improve the LP model efficiency in the case of large
number of scenarios. Certainly, one cannot take the advantages of solving dual in the case
of some discrete constraints defining the portfolios setP .

As mentioned, an alternative approach to bicriteria mean-risk problem of portfo-
lio selection depends on search for the tangent portfolio which maximizes the ratio
(µ(x) − r0)/	(x). The corresponding ratio optimization problem (24) can be converted
into an LP form by the following transformation: introduce variablesv = µ(x)/	(x) and
v0 = 1/	(x), then replace the original decision variablesxj with x̃j = xj/	(x), getting
the linear criterionmax v− r0v0 and an LP feasible set. Below we demonstrate a sample
transformation for the MAD and CVaR models while more formulations are summarized
in Table 3. All they are based on the simplest form of feasible set (1) but the transforma-
tion itself can easily be applied to any form of the LP feasible set. Once the transformed
problem is solved the values of the portfolio variablesxj can be found by dividing̃xj by
v0 while 	(x) = 1/v0 andµ(x) = v/v0 (as stated in the last row of Table 3).

MAD ratio model. In the MAD model, risk measure	(x) = δ̄(x) is directly repre-
sented by variablez1 defined in equation (29). Hence, the entire MAD ratio model can
be written as

max
z − r0z1

z1
subject tox ∈ P , (27)–(28) and (29)–(30).



56 R. Mansini, W. Ogryczak, M.G. Speranza

Table 3

LP formulations of the ratio optimization models

Model max

{
µ(x) − r0

�(x)
: x ∈ P

}

Core constraints

n∑
j=1

x̃j = v0

x̃j � 0 ∀j = 1, . . . , n
n∑

j=1

µj x̃j = v

n∑
j=1

rjtx̃j = ỹt ∀t = 1, . . . , T

MAD model max v − r0v0

s.t. core constraints and
T∑

t=1

ptd̃1t = 1

d̃1t + ỹt � v, d̃1t � 0 ∀t = 1, . . . , T

m-MAD model max v − r0v0

s.t. core constraints and

v1 +

m∑
k=2

wkvk = 1

T∑
t=1

ptd̃kt = vk ∀k = 1, . . . , m

d̃kt +

k−1∑
i=1

vi + ỹt � v, d̃kt � 0 ∀k = 1, . . . , m; t = 1, . . . , T

Minimax model max v − r0v0

s.t. core constraints and

ỹt � v − 1 ∀t = 1, . . . , T

CVaR model max v − r0v0

s.t. core constraints and

v − ỹ +
1

β

T∑
t=1

ptd̃t = 1

d̃t + ỹt � ỹ, d̃t � 0 ∀t = 1, . . . , T

GMD model max v − r0v0

s.t. core constraints and
T∑

t′=1

∑
t′′ �=t′

pt′pt′′ d̃t′t′′ = 1

d̃t′t′′ � ỹt′ − ỹt′′ , d̃t′t′′ � 0 ∀t′, t′′ = 1, . . . , T ; t′′ �= t′

Final solution xj =
x̃j

v0
∀j = 1, . . . , n, µ(x) =

v

v0
, �(x) =

1

v0
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Introducing variablesv = z/z1 andv0 = 1/z1 we get linear criterionv − r0v0. Further,
we divide all the constraints byz1 and make the substitutions:d̃1t = d1t/z1, ỹt = yt/z1
for t = 1, . . . , T , as well as̃xj = xj/z1, for j = 1, . . . , n. Finally, we get the following
LP formulation:

maximize v − r0v0

subject to
T∑

t=1

ptd̃1t = 1,

d̃1t + ỹt � v, d̃1t � 0 for t = 1, . . . , T,
n∑

j=1

µj x̃j = v,

n∑
j=1

rjtx̃j = ỹt for t = 1, . . . , T,

n∑
j=1

x̃j = v0, x̃j � 0 for j = 1, . . . , n,

where the last constraints correspond to the setP definition (1).
CVaR ratio model. In the CVaR model, risk measure	(x) = ∆β(x) is not directly

represented. We can introduce, however, the equation:

z − y +
1
β

T∑
t=1

ptdt = z0,

allowing us to represent∆β(x) with variablez0. Introducing variablesv = z/z0 and
v0 = 1/z0 we get linear criterionv − r0v0 of the corresponding ratio model. Further, we
divide all the constraints byz0 and make the substitutions:̃dt = dt/z0, ỹt = yt/z0 for
t = 1, . . . , T , as well as̃xj = xj/z0, for j = 1, . . . , n andỹ = y/z0. Finally, we get the
following LP formulation:

maximize v − r0v0

subject to

v − ỹ +
1
β

T∑
t=1

ptd̃t = 1

d̃t + ỹt � ỹ, d̃t � 0 for t = 1, . . . , T
n∑

j=1

µj x̃j = v

n∑
j=1

rjtx̃j = ỹt for t = 1, . . . , T

n∑
j=1

x̃j = v0, x̃j � 0 for j = 1, . . . , n



4. Concluding Remarks

The classical Markowitz model uses the variance as the risk measure, thus resulting in a
quadratic optimization problem. Several alternative risk measures were later introduced
which are computationally attractive as (for discrete random variables) they result in
solving linear programming (LP) problems. The LP solvability is very important for ap-
plications to real-life financial decisions where the constructed portfolios have to meet
numerous side constraints and take into account transaction costs. A gamut of LP solv-
able portfolio optimization models has been presented in the literature thus generating a
need for their classification and comparison. In this paper we have provided a systematic
overview of the models with a wide discussion of their theoretical properties. We have
shown that all the risk measures used in the LP solvable models can be derived from the
SSD shortfall criteria.

The presented formulations show that all the mean-risk models, we consider, can eas-
ily be implemented within the LP methodology. In order to implement the corresponding
risk measures, the simplest models require onlyT (the number of scenarios) auxiliary
variables and inequalities. Them-MAD model, providing more detailed downside risk
modeling capabilities, requires also more complex LP formulations. The number of aux-
iliary variables and constraints is there multiplied bym (the combination size) but still
remain proportional to the number of scenariosT . The Gini’s mean difference requires
essentiallyT 2 auxiliary variables and constraints, but taking advantage of the dual formu-
lation allows to reduce the auxiliary structure size. Moreover, we have shown that the LP
computable portfolio optimization models, we consider, remain within LP environment
even in the case of ratio criterion taking into account the risk-free return.

The portfolio optimization problem considered in this paper follows the original
Markowitz’ formulation and is based on a single period model of investment. Certainly,
the LP computable risk measures can be applied to multi-period problems of portfolio
management (Carinoet al., 1998; Pflug and́Swietanowski, 1999) and to many other fi-
nancial problems (Zenios and Kang, 1993). Similar, the LP portfolio optimization models
can be applied together with more complex models for the rates of return. In particular,
one may consider they applied to the Sharpe’s type models (c.f., Elton and Gruber (1987)
with distinguished nondiversifiable part of risky returns. However, all these extensions
exceed the scope of our analysis and they can be considered as potential directions of
further research.

Theoretical properties, although crucial for understanding the modeling concepts,
provide only a very limited background for comparison of the final optimization mod-
els. Computational results are known only for individual models and not all the models
were tested in a real-life decision environment. In a future work we will present a com-
prehensive experimental study comparing practical performances of various LP solvable
portfolio optimization models on real-life stock market data (Mansiniet al., 2002).
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Portfelio optimizavimo TP sprendžiam ↪u modeli ↪u apžvalga: I dalis

Renata MANSINI, Włodzimierz OGRYCZAK, M. Grazia SPERANZA

Investicij ↪u portfelio optimizavimas gerai žinomame Markowitz modelyje remiasi dviem aiš-
kiais kriterijais: portfelio gr↪ažos vidurkiu ir rizika, matuojama galimos gr↪ažos variacij↪u dy-
džiu. Kadangi Markowitz modelyje rizikos matu tarnauja dispersija, optimalaus portfelio radimas
suvedamas↪i kvadratinio optimizavimo uždavin↪i. Pradedant nuo Sharpe darbo daug pastang↪u yra
dedama portfelio uždaviniui linearizuoti. Yra pasiulyta keletas patraukli↪u skaǐciuojamuoju požīuriu
rizikos mat↪u (diskrěci ↪uj ↪u atsitiktini ↪u dydži ↪u atveju), kuriais remiantis portfelio optimizavimas
suvedamas↪i tiesinio programavimo (TP) uždavin↪i. TP sprendžiamumas yra svarbus realiuose fi-
nans↪u valdymo uždaviniuose, nes pastar↪uj ↪u formulavimas dažnai siejasi su dideliu tiesini↪u ribojim ↪u
skaǐciumi. Darbo tikslas û klasifikuoti ir palyginti žinomus portfelio optimizavimo modelius. Pir-
mojoje dalyje yra teoriškai aptariami TP sprendžiami modeliai. Antroji dalis bus skirta modeliams
palyginti skaitmeniškai.


