
INFORMATICA, 2003, Vol. 14, No. 1, 3–18 3
 2003Institute of Mathematics and Informatics, Vilnius

Wrapping of Soft IPs for Interface-based Design
Using Heterogeneous Metaprogramming

Robertas DAMAŠEVǏCIUS,Vytautas ŠTUIKYS
Software Engineering Department, Kaunas University of Technology
Student¸u 50, LT-3031 Kaunas, Lithuania
e-mail: damarobe@soften.ktu.lt, vystu@if.ktu.lt

Received: October 2002

Abstract. We discuss the application of heterogeneous metaprogramming (MPG) for the interface-
based design, which deals with the synthesis of the communication interfaces between Intellectual
Property components (IPs). Heterogeneous MPG is based on the simultaneous usage of a domain
language for describing domain functionality and a metalanguage for developing generic compo-
nents and program generators. We present a design framework based on the MPG techniques. The
novelty of our approach is that we apply the concept of heterogeneous MPG for the automatic
generation of IP wrappers for communication between the third-party soft IPs systematically. We
present a case study for the synthesis of the communication interfaces using a FIFO protocol.

Key words: heterogeneous metaprogramming, interface-based design, interface synthesis, IP
wrapper.

1. Introduction

As complexity ofSystems-on-Chip(SoC) continuously increases, the designers are fo-
cusing on reusing and integrating the existingIntellectual Propertycomponents (IPs)
into SoC rather than developing new components from scratch. The vast majority of IPs
exists now in the form of the so-calledsoft IP (Keating and Bricaud, 1999). The soft IP is
a description of the hardware (HW) component in a high-level HW description language
(HDL) such as VHDL, Verilog, or SystemC. The problem of integrating soft IPs that were
developed by different IP vendors using different design methodologies and implemen-
tation technologies, and use different communication protocols (e.g., handshake, FIFO,
etc.) and operating frequencies, is an imperative in SoC design. When such soft IPs have
to be integrated into new systems, a very important issue is the adaptation of the IP’s
interface to a system-specific HW communication model without affecting the function-
ality of the IP. The soft IP integration issues are addressed by the so-called interface-based
design.

The interface-based design(Rowson and Sangiovanni–Vincentelli, 1997) is a design
methodology that focuses on theexplicit separationof the soft IP’s functionality from
the communication aspects of the soft IPs to be composed into a system. The design of a
system is carried out in two steps: (a) the design (or selection) of the soft IPs, and (b) the



4 R. Damaševiˇcius, V. Štuikys

design of the interaction between these soft IPs through the appropriate communication
protocol. This separation allows (1) to explore the soft IP design space by choosing be-
tween different communication models, (2) to model the system behaviour independently
of the communication, and (3) to reuse the existing communication models.

The main problem of the interface-based design is how to generate (akasynthesise) a
communication interface in the form of aglue logic(akaIP wrapper) that allows soft IPs
to communicate one with another differently depending on the context of an application.
Soft IPs, for example, may communicate asynchronously or synchronously, and each
soft IP may operate at the same or different clock frequencies. Furthermore, multiple
soft IPs may communicate with a single component through a single I/O port or through
many ports. Each of these options presents a unique challenge for automating interface
generation. The process of generating interfaces is also known aswrappingof the IPs
(Lennardet al.,2000). We consider thewrappingof the soft IPs for the interface-based
design as asub-problemof SoC design here.

The common way to implement the generation of the glue logic is to apply some gene-
rative techniques such asmetaprogramming(MPG) (Sheard, 2001). The standard HDLs
have limited support for MPG. Some HDLs (such as VHDL, SystemC) supporthomoge-
neousMPG only, and thus have limited capabilities for the automatic customisation of
the IP interface through the existing parameterisation mechanisms. Other HDLs (such as
Verilog) have no MPG capabilities at all. Therefore, the most straightforward solution is a
manual modification of the soft IP, which is error-prone and requires detailed knowledge
about the implementation of the IP.

The goal of this paper is to present an approach based on theheterogeneousMPG
techniques in order to automate the process of generating communication interfaces be-
tween soft IPs. We formulate the problem under consideration as follows. For a given
soft IP, which is considered as a black-box entity, we need to automatically generate a
IP wrapper – the communication interface with other soft IP – satisfying a variety of the
pre-specified requirements.

A novelty and contribution of our approach is that we apply the heterogeneous
MPG techniques for creating IP wrappers systematically. The techniques allow achie-
ving higher flexibility, reusability and adaptability in soft IP design. We present a design
framework based on the heterogeneous MPG techniques.

The structure of the paper is as follows. We consider the related works in Section 2.
We analyse the soft IP interfaces, describe a concept of the IP wrapper and its generation
using the heterogeneous MPG techniques, and present a design framework in Section 3.
We present a case study in Section 4. We evaluate the results and present discussion in
Section 5. Finally, we conclude in Section 6.

2. Related Works

The researchers propose several related design methodologies such asinterface-based
design(Rowson and Sangiovanni–Vincentelli, 1997),interface synthesis(Rajawatet al.,



Wrapping of Soft IPs for Interface-based Design 5

2000), orcommunication-based design(Sgroi et al., 2001). These methodologies, de-
spite their differences, all deal with the problem of inter-connecting IPs, and emphasise
the need for theorthogonalisation of concerns, i.e., separating the computation (the func-
tional behaviour of IPs) from the communication (interaction between IPs) aspects. The
research of the interface-based design can be categorised into four areas as follows.

2.1. Optimisation

The interface optimisation deals with the improvement of system’s performance by op-
timising the IP communication at a high level in terms of better utilisation of resources
(busses, buffers, control logic, etc.). The optimisation usually involves three problems: (a)
sharing of busses and bus control signals between different HW components; (b) schedul-
ing interface operations; and (c) determining the constraints imposed by the communica-
tion.

For example, Gutberlet and Rosenstiel(1994) use a subset of VHDL (procedures)
to describe the interface behaviour by the low-level signal assignments andwait state-
ments. By specifying the interface as a sequence of the atomic operations, performance
optimisations can be made at the behavioural level, rather than the logic level, which
has a greater impact on the system’s performance. In the next step, the interface compo-
nents, which handle the communication between IPs, are generated. Lysecki and Vahid
(2002) use a Petri net model to describe a pre-fetching scheme, which allows reducing
the performance penalty introduced by the interface synthesis.

2.2. Interface Specification Languages

This area of research deals with the development of the interface specification (model-
ling) languages, or formal methods for generating communication protocols from the
high-level specifications. These languages introduce the constructs allowing a rapid pro-
totyping of the synthesizable interface descriptions.

For example, Madsen and Hald (1995) use a formal notation, which describes the
communication events, to transform the server-side interface description into the client-
side one. Rowson and Sangiovanni–Vincentelli (1997) describe communication at a high
level of abstraction using tokens. As the design moves to the implementation phase, a
framework is provided for transforming the token passing scheme into actual bus proto-
cols, such as PCI or EISA. Öberget al.(1996) developedProGramlanguage, which pro-
vides constructs that are particular to interfaces: port definitions, which declare the direc-
tions of interface signals, the width of communication busses and the frequency at which
they operate. Communication is described by the patterns of bits that are written to or read
from the IP’s ports. Grammar rules describe legal operation alternatives based on the state
of the interface. Finally, a synthesizable description of the interface is generated. Ortega
and Borriello (1998) examine the problem of mapping a high-level specification to an
architecture that uses particular bus protocols for communication. Siegmund and Mueller
(2000) use the extension of VHDL for the specification and synthesis of the adaptive in-
terfaces for soft IPs. The specifications of IP’s functional behaviour and IP’s interface are



6 R. Damaševiˇcius, V. Štuikys

separated into different design units. The interface unit then can be efficiently adapted to a
system-specific communication scheme without the need for a protocol conversion mod-
ule or the modification of the IP. The Synopsys’Protocol Compiler, which is based on
the research of Seawrightet al.(1996), is the most commonly used industrial tool capable
to synthesise the interfaces. The Protocol Compiler provides a framework for graphically
specifying an interface using state and data-frame based semantics. This specification can
be transformed into a synthesizable HDL model. The disadvantage of this tool is that the
user himself has to design the communication protocol.

2.3. Protocol Conversion

This area of research involves the design of the protocol conversion modules (aka convert-
ers, transducers) that allow the communication between the incompatible IPs. Converters
are either (a) selected from a library of the pre-designed modules, or (b) generated from
the description of the communicating IPs.

For example, Daveauet al. (1997) take a behavioural description, automatically se-
lect a protocol from a library, and generate the required interfaces to implement the com-
munication. Passeroneet al. (1998) describe an algorithm for generating the interfaces
between HW blocks that use incompatible protocols. Given a state-based description of
each communicating component, this algorithm computes the product of the two finite
state machines (FSMs) that map one component protocol onto the other and vice-versa.
Smith and Micheli (1998) describe the techniques for automating the process of genera-
ting interfaces between two or more components described in a HDL. Components are
linked through a standard communication scheme implemented in an interface architec-
ture that is general enough to accommodate the requirements of any domain interface.
Gajski et al. (1998) generate buses for communication between two processes using a
technique calledinterface refinement. After analysing the size of data communicated and
the rate of data generation, the width of the generated bus is determined and the commu-
nication channels are merged onto the bus.

2.4. System-Level Interface Synthesis

The system-level interface synthesis expands the problem of the interface generation to
communication between HW and SW components.

For example, Chouet al. (1995) present a set of algorithms for the synthesis of
HW/SW interfaces. Given a functional description of component ports and detailed tim-
ming, operational, and data width information, the device drivers that enable HW/SW
communication are generated. Baganneet al. (1997) describe a formal technique to com-
munication synthesis for HW/SW co-design systems. A communication interface is gen-
erated at the same time as the HW module by a high-level synthesis tool. Hesselet al.
(1999) use a multi-language design approach, which allows to transform a system com-
posed of the subsystems, described in different languages that communicate through the
communication channels using different communication primitives, into a set of inter-
connected processors that communicate via signals and share the communication pro-
tocols. Vahid and Tauro (1997) developed an object-oriented communication library for



Wrapping of Soft IPs for Interface-based Design 7

HW/SW co-design. The library consists of a set of the protocol independent C/VHDL
send/receive primitives, which can be used in an early design phase when the architec-
ture is not fixed, and later refined into implementations of the selected protocols.

2.5. Standardisation of Interfaces

The industrial consortium VSIA has recognised the importance of simplifying the con-
nection of system’s components. So far, VSIA has proposed to standardise data formats,
test methodologies, and interfaces (Cyret al., 2001). A standard VCI bus protocol can
be used to connect the soft IPs with an on-chip bus. However, the competition within
the IP design industry is likely to hinder the adoption of the common IP communication
standards and preserve the need for synthesising interfaces between the soft IPs.

2.6. Summary

We summarise the related works as follows. The authors use a wide variety of the design
techniques, such as graph-based ones (Madsen and Hald, 1995; Chouet al.,1995), formal
methods (Baganneet al. 1997), automata theory (Smith and Micheli, 1998; Passerone
et al., 1998), Petri nets (Lysecki and Vahid, 2002), grammar-based approaches (Öberg
et al., 1996; Siegmund and Mueller, 2000) and object-oriented techniques (Vahid and
Tauro, 1997) to implement the interface synthesis. Some authors use the generative tech-
niques (e.g., Siegmund and Mueller (2000) apply code templates to generate interface
controllers).

Our approach is concerned with the generation of the IP wrappers for IP communica-
tion using the heterogeneous MPG techniques systematically. The heterogeneous MPG
techniques allow us to achieve higher reusability and flexibility while developing generic
components and wrapper generators. Furthermore, for us MPG is not just one of the
possible ways for implementing the code generation. We use the concept of MPG as a
methodological basis in our research (Štuikyset al., 2002; Štuikys, 2002). In the follow-
ing section, we present a framework of the heterogeneous MPG-based design methodo-
logy for the interface-based design of soft IPs .

3. A Framework of the Methodology for the Interface-based Design

3.1. Analysis of Soft IP Interfaces

In our analysis, we apply the principles of themulti-dimensional separation of concerns
(Ossher and Tarr, 2000), which allow considering the orthogonal and overlapping di-
mensions of concerns in design space, as well as their separation, representation and
integration when describing and implementing a complex system.

The soft IP design space has many dimensions, the IP interface is just one of them. The
IP interface represents the external behaviour of an IP and has several levels of abstraction
such as physical (logic voltage levels, current, capacity load), timing (spacing between



8 R. Damaševiˇcius, V. Štuikys

events), data transaction (bit-level transfer of data), packet (block-level transfer of data),
and message (inter-process communication) (Borrielloet al.,1998). The soft IP interfaces
deal only with the higher-levels of abstraction (data transaction and higher).

The main purpose of the soft IP interface is to ensure the relevant movement of data
(e.g., operands, commands, addresses, values destined for a memory location, etc.) to
and from the soft IP. The movement of data can be described using different rules or
protocols, i.e., an agreed format for transmitting data between IPs.

In terms of the interface-based design, the soft IP interface plays two roles: (1)explic-
itly – to specify the I/O ports of the soft IP, and (2)implicitly – to specify the communica-
tion model used by the soft IP. The role (1) is achieved directly using the appropriate HDL
abstractions (e.g.,entity, portin VHDL). The role (2) requires to additionally specify the
implementation details (e.g., an input signal namedCLK or clockmay imply that a com-
ponent is driven synchronously, but the implementation of a synchronous communication
model still requires a functional description).

We decompose the soft IPinterface concernsinto two dimensions as follows.
(1) The vertical dimension, which corresponds to the different types of I/O sig-

nals. The signals are: data signals, control signals (clock, reset, enable), communica-
tion protocol-specific signals (e.g., request, acknowledgement for handshaking), memo-
ry access signals (e.g., column select, row select, etc.), bus configuration signals (e.g.,
data/address multiplexing), status signals, etc.

(2) Thehorizontal dimension, which corresponds to the aspects of a particular signal,
such as signal name, direction (input, output), data width and data type (e.g.,bit, std_logic
in VHDL).

In the next subsection, we describe how we use the results of the soft IP interface
analysis for the interface synthesis.

3.2. Interface Synthesis

In order to design a HW system that is composed of the different communicating soft IPs
(possibly designed by the third-party vendors), a standard (at least in terms of a designed
system) communication model should be used. Initially, when a system designer selects
a soft IP, he (she) usually considers only itsstaticbehaviour (functionality). To actually
use the soft IP, however, the designer has to design or adapt itsdynamicbehaviour – the
communication model (protocol). This is the issue of the interface synthesis.

We perform the interface synthesis by (1) extracting the interface parameter values
from the soft IP interface (i.e.,port statement in the VHDLentitydescription), (2) genera-
ting the modified soft IP interface, and additional functionality (glue code) to implement
the communication protocol.

The soft IPinterface parameters, which uniquely characterise the soft IP interface,
are extracted from the high-level description of the soft IP interface automatically using a
VHDL parser (see Fig. 1). We perform the mapping between the soft IP interface concerns
and interface parameters as follows: (1) every aspect of a signal is a separate parameter,
and (2) a list of the parameter values is composed of the values of aspects for every



Wrapping of Soft IPs for Interface-based Design 9

interface signal. Further, we use the soft IPinterface parametersto generate the modified
soft IP interface needed for the glue logic.

We perform the generation of the modified interface using a set ofinterface transfor-
mationsas follows. (1)Inclusive compositionis performed when interfaces of the diffe-
rent soft IPs are merged together, and all signals appear in a new interface. (2)Exclusive
compositionis performed when signals with a common meaning (e.g., a shared clock)
are merged during the composition of the soft IP interfaces. (3)Type modificationis per-
formed over selected signal(s) when type conversion is required for smooth integration
of the soft IPs. (4)Width modificationis performed over selected signal(s) when a soft IP
is used in the context where the data path width is different (usually narrower). (5)Signal
inclusionis performed when a new signal is added to the soft IP interface for control or
other purposes (e.g., clock, or enable signal). (6)Signal exclusionis performed when a
signal is removed from the soft IP interface.

To implement interface synthesis, we apply a variety of the application-specifichigh-
level design transformations. These are performed on theblack-boxsoft IPs. The soft IP
is not actually modified, but a wrapper component(s) is (are) generated, which modify
the behaviour of the soft IPwithoutmodifying its internal implementation. We consider
the interface synthesis as a high-level design transformation, which performs asuperim-
positionof a communication protocol on the soft IP. The result of this transformation is
a component calledIP wrapper, because it “wraps” the existing soft IP with additional
functionality. In the following subsection, we consider a concept of the IP wrapper in
detail.

3.3. The Concept of IP Wrapper

An IP wrapper is a component that allows adapting the interface and behaviour of an-
other component (IP) to the requirements of its context of application. The usage of the

Fig. 1. Scheme of the interface synthesis.



10 R. Damaševiˇcius, V. Štuikys

IP wrapper (1) allows separating explicitly and implementing different design concerns
separately, (2) enables the integration of the soft IPs into different HW systems, and (3)
facilitates the greater reusability of the soft IPs.

We describe concisely the structure of the IP wrapper using an UML (Boochet al.,
1998) class diagram (see Fig. 2). The abstract class (entity in VHDL) Wrapperinherits
the I/O ports of theIP, and declares new I/O ports for wrapper functionality. The class
(architecturein VHDL) IPModelimplements the functionality of entityIP. The architec-
ture WrapperModelimplements the functionality ofWrapperand contains component
IP. Essentially, this description means thatWrapperModelwrapsIPModel with a new
functionality.

Wrapping can be nested, i.e., we can apply wrappers to the wrapped soft IP again and
again. Many different wrappers can be applied to the same soft IP, also the same wrapper
can be applied to the different soft IPs. However, a designer must be cautious for an area
and delay overhead, which is usually introduced by the wrapping procedure.

In this paper, we use heterogeneous MPG to develop the IP wrapper generator, which
automatically generates the IP wrapper for any given black-box soft IP. In the next sub-
section, we describe how we implement the generation process using the heterogeneous
MPG techniques.

Fig. 2. Structure of the IP wrapper.

3.4. Metaprogramming Techniques

MPG is a higher-level programming technique, which provides means for describing
generic domain programs and generating their particular instances. Two underlying prin-
ciples form the basics of MPG, theseparationof concerns and theirintegration (see
Fig. 3).

To describe the essence of programming, Wirth (1976) used the following equation:

“program = data structure+ algorithm”.

Our equation for describing MPG is as follows (Štuikys, 2002):

“Metaprogram= program instances as data+ modification algorithm”.



Wrapping of Soft IPs for Interface-based Design 11

Fig. 3. Separation and integration of concerns in metaprogramming.

The main aim of MPG is to create ametaprogram(MP) – a generic specification,
which describes explicitly the process of generation for a narrow domain of application.
In fact, a MP describes a family of the related (syntactically or semantically) particular
domain program instances in the context of different applications, whereas its environ-
ment (processor, compiler) generates a particular domain program instance depending
upon the values of the generic parameters.

A MP is a structure, which consists of the domain program instances encapsulated
with their modification algorithm. Here the modification algorithm ranges from the sim-
plemetaconstructssuch asmetaif (conditional generation) andmetafor(repetitive gener-
ation) to the sophisticated application-specificmetapatterns, which are composed of the
nested combinations of the simpler metaconstructs.

The development of a MP consists of the several steps as follows. (1) The domain
(usually represented by one or more available component instances and the requirements
for a modification) is analysed and the modification concerns are identified and sepa-
rated. These concerns represent thevariable aspects in a domain, which aredepend-
able upon the generic parameters and require the application of the MPG techniques.
(2) The modification concerns are expressed through the parameters, implemented using
the parameterisation-based MPG techniques, and then integrated with thefixedaspects
of a domain, which areorthogonalwith respect to the generic parameters. Such metapro-
grams describe variations in a particular programming application domain.

The MPG abstractions can be categorised into two large groups as follows: theho-
mogeneousandheterogeneousones. The form and way how the concerns are separated
underscores the essential differences between these MPG paradigms. At the core of ho-
mogeneous MPG is theimplicit separation of concerns. At the core of heterogeneous
MPG is theexplicit separation of concerns. In this paper, we consider heterogeneous
MPG only.

In Fig. 4, we deliver the general framework for understanding heterogeneous MPG.
Heterogeneous MPG implies the usage of two different languages. The lower-level lan-
guage (domain language, DL) is used for expressing basic domain functionality. The
higher-level language (metalanguage, ML) is used for expressing generalisation and de-
scribing domain code modifications. Using a ML, designer develops a MP, which is then
used as a set of instructions for a ML processor to generate the specific DL code instances.



12 R. Damaševiˇcius, V. Štuikys

Fig. 4. Framework of the heterogeneous metaprogramming.

In the next subsection, we present an overall view to the interface-based design
methodology based on MPG.

3.5. Overall View to the Methodology

Suppose, that a SoC designer retrieves a third-party soft IP, analyses it, and discovers that
the IP needs some customisation to bridge the incompatible interfaces or to implement a
different communication model in order to successfully integrate it into a particular HW
system. Then the designer needs to perform the interface synthesis as follows. (1)Extract
the IP interface parameters from the soft IP interface and use them as generic parameters
for a MP. (2)Designa MP, where a ML performs the required DL code modifications
depending upon the values of the generic parameters. (3)Generatethe IP wrapper.

In many cases, the design process based on this methodology (see Fig. 5) can be auto-
mated for a wide variety of the application-specific architectures such as communication
protocols as follows. The design step (1) is performed automatically by a DL parser,
which analyses the source code of a given soft IP interface, constructs a syntax tree, and
extracts the values of the interface parameters. The design step (2) is performed by the
pre-designed MPs, which capture the widely used domain entities. The design step (3) is

Fig. 5. Design-flow of the proposed methodology.



Wrapping of Soft IPs for Interface-based Design 13

performed by the ML processor, which generates (instantiates) the IP wrapper. We imply
that both the soft IP and MPs are reusable items, which can be designed separately and
used in other applications, too. Therefore, we depict the design (or retrieval) of the soft
IP and MPs as the design step (0).

We illustrate the synthesis of a FIFO communication interface for the third-party soft
IPs as a case study of the proposed design methodology.

4. Case Study: Synthesis of Communication Interface

We use the concept of the IP wrapper to implement the communication interface for a syn-
chronous FIFO protocol. The application architecture is as follows (see Fig. 6). The FIFO
protocol is used in the producer-consumer communication model to smoothen bursts in
the requests for a service (Gajski, 1997). The production of data by other SoC compo-
nents, which are sending data to the IP, may momentarily exceed the consumption of data
by the IP. To deal with such burst, the FIFOs are inserted between the data producer and
the data consumer (IP). The FIFOs store the surplus data, which is read in the same order
in which it was written in. The size of the FIFO determines how large a burst can be
tolerated.

We treat the IP as a black-box component, of which only the interface is known. Our
aim is to adapt the IP to the FIFO protocol by generating the FIFO wrapper (i.e., the
IP wrapper, which implements the FIFO protocol). For this, we need to modify the IP
interface and to wrap the IP with the FIFOs and control logic (FSM). Note that in this
case study, we generate only a client side of the application. The wrapped IP is now ready
for integration into a SoC.

We have constructed the FIFO wrapper generator to automatically generate the FIFO
wrappers for the black-box third-party soft IP cores described in VHDL as follows:

(1) The VHDL parser analyses the supplied soft IP source code, constructs a syntax
tree, and extracts the values of the parameters for generation. These parameters basically
represent the interface signals of the soft IP.

(2) The FIFO wrapper was implemented as a set of MPs using heterogeneous MPG
(Java in the role of a ML, and VHDL as a DL). Each MP is a Java class, which encapsu-

Fig. 6. Architecture of the FIFO wrapper.



14 R. Damaševiˇcius, V. Štuikys

Table 1

Synthesis results

IP Area, cells Area, cells Increase Est. power, uW Est. power, uW Increase

(IP) (FIFO (4)) (IP) (FIFO (4))

Free-6502 4670 6880 47% 8.2693 13.2107 37%

Dragonfly 5883 10451 44% 19.9421 25.3074 21%

DLX 20118 25735 22% 23.2075 28.3474 18%

lates a generic domain entity (e.g., FIFO, FSM, etc.) and generates a specific instance of it
in VHDL according to the values of the generic parameters specified via the constructor.

(3) The FIFO wrapper generator performs wrapping of the soft IP by generating the
instances of the FIFO buffer, aport mapstatement to map the signals of the FIFO wrapper
to the soft IP, and additional control logic (FSM), which handles the data flow between
the input FIFO, the soft IP, and the output FIFO. The wrapper interface is synthesised
using theexclusive compositiontechnique (see Section 3.2). For the asynchronous soft
IPs, thesignal inclusionis used to insert a clock signal.

We have performed the experiments using the third-party soft IPs as follows: (1) Free-
6502 8-bit micro-processor (Kessner, 1999); (2) DRAGONFLY 8-bit core (LEOX, 2001);
(3) DLX 32-bit micro-processor (Gumm, 1995). Synthesis results (we use Synopsys
tools; CMOS 0.35 um technology) for the original soft IPs and the generated compo-
nents (FIFO size is 4) are presented in Table 1.

The synthesis results show an average increase of about 38% in chip area (the ratio
tends to decrease as the area of the soft IP increases), and about 25% in estimated power
usage for the generated FIFO(4) wrappers.

5. Evaluation and Discussion

The complexity in SoC design can be managed at the relevant extent by raising the level
of abstraction through the introduction of the new design methodologies, which deal with
reuse and integration of the pre-designed soft IPs. As the IP-based approaches predomi-
nate in SoC design now, the role of the high-level design processes, such as wrapping for
interface synthesis, grows increasingly.

A higher abstraction level in HW design can be achieved either by extending the capa-
bilities of the standard HDL languages, or applying the multi-language design paradigm.
Metaprogramming (MPG) is a specific case of that paradigm. In this paper, we considered
the usage ofheterogeneousMPG, which is performed using an external metalanguage
(ML). The aim the ML is to deliver the means for describing modifications of a domain
program and generating its particular instance written in a domain language (DL). So, he-
terogeneous MPG implements the multi-language design paradigm, and allows achieving
a clearer separation of concerns in a design.

The usage of MPG for the interface-based design allows us to develop metaprograms
(soft IP wrapper generators), which (1) encapsulate common domain solutions (com-



Wrapping of Soft IPs for Interface-based Design 15

munication protocols), and (2) allow flexible adaptation of the soft IPs to the different
communication models.

We also have applied UML to describe the structure of the IP wrapper at a high level
of abstraction. The benefits of using UML in HW design are as follows. (1) The level
of abstraction is raised, which allows dealing with growing complexity of the HW de-
signs. (2) The comprehensibility of the design process is increased. (3) The design pro-
ductivity can be significantly increased, because the automated code generation can be
implemented.

6. Conclusions and Future Work

We have presented an approach to the interface-based design, which is based on the sys-
tematic usage of the heterogeneous metaprogramming (MPG) techniques. MPG allows
us (1) to raise the level of abstraction, and (2) to increase the reusability and customis-
ability of the soft IPs, and (3) to generate automatically the communication interfaces. In
order to adapt the soft IPs to the context of application, we have used the concept of IP
wrapper, which allows the explicit separation of different design concerns, and enable the
integration of the soft IPs into different HW systems.

Future work will focus on the creation of a library of the generators for the commu-
nication interface synthesis using different data protocols.

Acknowledgements

We would like to thank the anonymous referees for their insightful comments and sug-
gestions for improving the paper.

References

Baganne, A., J.L. Philippe and E. Martin (1997). A formal technique for hardware interface design. InProc. of
IEEE International Symposium on Circuit and Systems (ISCAS 97), Vol. 3. pp. 1592–1595.

Booch, G., I. Jacobson, J. Rumbaugh and J. Rumbaugh (1998).The Unified Modeling Language User Guide.
Addison–Wesley.

Borriello, G., L. Lavagno and R.B. Ortega (1998). Interface synthesis: a vertical slice from digital logic to
software components. InProc. of International Conference on Computer-Aided Design (ICCAD 1998), San
Jose, CA, USA. pp. 693–695.

Chou, P.H., R.B. Ortega and G. Borriello (1995). Interface co-synthesis techniques for embedded systems. In
Proc. of the IEEE/ACM International Conference on Computer Aided Design (ICCAD 95), San Jose, CA,
USA. pp. 280–287.

Cyr, G., G. Bois and M. Aboulhamid (2001). Synthesis of communication interface for SoC using VSIA re-
commendations. InProc. of DATE Design Forum 2001, Munich, Germany. pp. 155–159.

Daveau, J.M., G.Marchioro, T. Ben–Ismail and A.A. Jerraya (1997). Protocol selection and interface generation
for Hw–Sw co-design. InIEEE Transactions on VLSI Systems, Vol. 5, No. 1. pp. 136–144.

Gajski, D. (1997).Principles of Digital Design. Prentice Hall.
Gajski, D.D., F. Vahid, S. Narayan and J. Gong (1998). SpecSyn: an environment supporting the specify-

explore-refine paradigm for hardware/software system design.IEEE Transactions on Very Large Scale Inte-
gration Systems, Vol. 6, No. 1. pp. 84–100.



16 R. Damaševiˇcius, V. Štuikys

Gumm, M. (1995). DLX Processor.
ftp://ftp.informatik.uni-stuttgart.de/pub/vhdl/vlsi_course/vhdl_src/

Gutberlet, P., and W. Rosenstiel (1994). Specification of interface components for synchronous data paths. In
Proc. of the 7th International Symposium on System Synthesis (ISSS’94). pp. 134–139.

Hessel, F., P. Coste, P. LeMarrec, N. Zergainoh, J. Daveau and A. Jerraya (1999). Communication interface
synthesis for multilanguage specifications. InProc. of the 10th IEEE International Workshop on Rapid
System Prototyping (RSP 1999), Clearwater, Florida, USA. pp. 15–20.

Keating, M., and P. Bricaud (1999).Reuse Methodology Manual for System-on-a-chip Designs. Kluwer Aca-
demic Publishers.

Kessner, D. (1999). Free-6502 core.http://www.free-ip.com/6502/
Lennard, C.K., P. Schaumont, G. de Jong, A. Haverinen and P. Hardee (2000). Standard for system-level design:

practical reality or solution in search of a question? InProc. of Design, Automation and Test in Europe
Conference (DATE 2000), Paris, France. pp. 576–583.

LEOX Team (2001). DRAGONFLY micro-core.http://www.leox.org
Lysecki, R., and F. Vahid (2002). Prefetching for improved bus wrapper performance in cores.ACM Transac-

tions on Design Automation for Electronic Systems, Vol. 7, No. 1. pp. 58–90.
Madsen, J., and B. Hald (1995). An approach to interface synthesis. InProc. of the 8th International Symposium

on System Synthesis (ISSS’95), Cannes, Cote d’Azur, France. pp. 16–21.
Öberg, J., A. Kumar and A. Hemani (1996). Grammar-based hardware synthesis of data communication proto-

cols. InProc. of the 9th International Symposium on System Synthesis (ISSS’96), San Diego, CA, USA. pp.
14–19.

Ortega, R., and G. Borriello (1998). Communication synthesis for distributed embedded systems. InProc. of
International Conference on Computer Aided Design (ICCAD 98), San Jose, CA, USA. pp. 437–444.

Ossher, H., and P.Tarr (2000). Multi-dimensional separation of concerns and the hyperspace approach. In M.
Aksit (Ed.),Software Architectures and Component Technology: the State of the Art in Software Develop-
ment. Kluwer Academic Publishers.

Passerone, R., J. Rowson and A. Sangiovanni–Vincentelli (1998). Automatic synthesis of interface between
incompatible protocols. InProc. of the 35th Design Automation Conference (DAC98), San Francisco, CA,
USA. pp. 8–13.

Rajawat, A., M. Balakrishnan and A. Kumar (2000). Interface synthesis: issues and approaches. InProc. of the
13th International Conference on VLSI Design, Calcutta, India. pp. 92–97.

Rowson, J., and A. Sangiovanni–Vincentelli (1997). Interface-based design. InProc. of the 34th Design Au-
tomation Conference (DAC 97), Anaheim, CA, USA. pp. 178–83.

Seawright, A., U. Holtmann, W. Meyer, B. Pangrle, R. Verbrugghe and J. Buck (1996). A system for com-
piling and debugging structured data processing controllers. InProc. of European Conference on Design
Automation (EuroDAC96), Geneva, Switzerland. pp. 86–91.

Sgroi, M., M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey and A. Sangiovanni–Vincentelli (2001). Ad-
dressing the system-on-a-chip interconnect woes through communication-based design. InProc. of the 38th
Design Automation Conference (DAC 2001), Las Vegas, Nevada, USA. pp. 667–672.

Sheard, T. (2001). Accomplishments and research challenges in metaprogramming. In2nd International Work-
shop on Semantics, Application, and Implementation of Program Generation (SAIG’2001), Florence, Italy.
Lecture Notes in Computer Science, 2196, pp. 2–44.

Siegmund, R., and D. Mueller (2000). A method for interface customization of soft IP cores. In R. Seepold and
M. Navidad (Eds.),Virtual Component Design and Reuse. Kluwer Academic Publishers.

Smith, J., and G.D. Micheli (1998). Automated composition of hardware components. InProc. of the 35th
Design Automation Conference (DAC98), San Francisco, CA, USA. pp. 14–19.

Štuikys, V., R. Damaševičius, G. Ziberkas and G. Majauskas (2002). Soft IP design framework using metapro-
gramming techniques. In B. Kleinjohann, K.H. (Kane) Kim, L. Kleinjohann and A. Rettberg (Eds.),Design
and Analysis of Distributed Embedded Systems, Kluwer Academic Publishers. pp. 257–266.

Štuikys, V. (2002). Metaprogramming techniques for program generation and soft ip design.Research Report
Presented for Habilitation, KTU, Technologija.

Vahid, F., and L. Tauro (1997). Object-oriented communication library for hardware-software codesign. InProc.
of the 5th International Workshop on Hardware/Software Codesign (CODES/CASHE’97), Braunschweig,
Germany. pp. 81–86.

Wirth, N. (1976).Algorithms + Data Structures = Programs. Prentice–Hall, Englewood Cliffs, New Jersey.



Wrapping of Soft IPs for Interface-based Design 17

R. Damaševǐcius received MSc. degree in informatics from Kaunas University of Tech-
nology, Lithuania in 2001. Currently he is PhD student at Informatics faculty, Kaunas
University of Technology. His research interests include metaprogramming, software
reuse, software generation and program transformation, as well as hardware design with
VHDL and SystemC.

V. Štuikys received PhD degree from Kaunas Polytechnic Institute in 1970 and Dr. habil.
from Kaunas Polytechnic University of Technology in 2003. Currently he is a professor
at Software Engineering Department, Kaunas University of Technology, Lithuania. His
research interests include domain-specific and software reuse, high level domain-specific
languages, component-based programming, metaprogramming and program generation,
expert systems and CAD systems, and soft IP design.



18 R. Damaševiˇcius, V. Štuikys

Lanksči ↪u intelektualiosios nuosavyḃes komponent↪u komunikavimo
s ↪asaj ↪u kūrimas naudojant heterogenin↪i metaprogramavim ↪a

Robertas DAMAŠEVǏCIUS, Vytautas ŠTUIKYS

Šiame straipsnyje mes aptarėme heterogeninio metaprogramavimo taikym↪a, kaip kurti ko-
munikavimo s↪asajas tarp lanksči ↪u Intelektualiosios Nuosavybės (IN) komponent↪u. Heterogeninis
metaprogramavimas remiasi dviej↪u kalb ↪u – srities ir metakalbos – naudojimu toje pačioje speci-
fikacijoje. Srities kalba yra naudojama srities funkcionalumui aprašyti, o metakalba – bendrini-
ams komponentams ir program↪u generatoriams kurti. Mes pateikėme projektavimo metodologij↪a,
pagr↪ist ↪a metaprogramavimo metodais. M̄us ↪u metodo naujumas yra sisteminis heterogeninio
metaprogramavimo taikymas kuriant IN↪ivyniojimo komponentus, kurie yra skirti komunikavimui
tarp trěcios šalies lankšci ↪u IN komponent↪u. Mes pateik̇eme eksperiment↪a sukurdami komunikavi-
mo s↪asaj↪a, kuri naudoja FIFO protokol↪a.


