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Abstract. This paper aims to propose a new distance measure, the interval-valued 2-tuple linguistic

induced continuous ordered weighted distance (IT-ICOWD) measure, which consists of the interval-

valued 2-tuple linguistic induced continuous ordered weighted averaging (IT-ICOWA) operator and

the ordered weighted distance (OWD) measure. In these operators, we consider the risk attitude of

decision maker. Furthermore, we discuss some desired properties and various special cases of the IT-

ICOWD measure. Additionally, a method of multiple attribute group decision making (MAGDM) in

interval-valued 2-tuple linguistic environment is developed on the basis of the IT-ICOWD measure.

Through this method, we obtain three simple and exact formulae to determine the order-inducing

variables of the IT-ICOWD measure, the weighting vector of decision makers and the weighting vec-

tor of attributes, respectively. At last, a numerical example is presented to illustrate the practicability

and feasibility of proposed method.

Key words: group decision making, distance measure, interval-valued 2-tuple linguistic information,

IOWA operator, COWA operator.

1. Introduction

MAGDM is a crucial branch of decision theory. It is used to select the most highly pre-

ferred alternative(s) from a finite alternatives set. This process is accorded with experts’

preference information, who are required to give their preferences based on multiple at-

tributes. Bellman and Zadeh (1970) first studied the decision making under fuzzy environ-

ment: they took time pressure into consideration to have events uncertainty limited. After

that, Zadeh (1965) proposed the traditional fuzzy environment, for instance, the interval-

valued fuzzy set (Moore, 1966), the intuitionistic fuzzy set (Atanassov, 1986), the hesitant
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fuzzy set (Torra, 2010) and the type-2 fuzzy set (Mendel, 2007). These fuzzy sets have

been widely studied and applied to decision making procedures (Zadeh, 1965; Torra, 2010;

Mendel, 2007; Atanassov, 2012; Sengupta and Pal, 2009; Zhou et al., 2014a). Aiming to

express subjective evaluations of the decision makers, Zadeh (1975a, 1975b, 1975c) then

introduced the concept of linguistic variable. Moreover, the linguistic variables have also

been deeply studied and widely used to evaluate decision information, because the quan-

titative information is not feasible to all decision cases.

Afterwards, several linguistic representation models were proposed to fit different sub-

jective situations. For example, 2-tuple linguistic representation model was developed by

Herrera and Martinez (2000) to avoid information loss in the aggregation process of lin-

guistic labels; the notion of linguistic intervals was introduced by Chen and Lee (2010) to

describe linguistic information uncertainty; the concept of hesitant fuzzy linguistic term

sets was proposed by Rodriguez et al. (2011) to express the hesitancy when linguistic la-

bels are used; the unbalanced linguistic term set was put forward by Herrera et al. (2008),

in which the linguistic labels around the centred linguistic label are not distributed sym-

metrically; an alternative form of uncertain linguistic variable was developed by Xu (2004)

in order to demonstrate the uncertainty in linguistic information; multi-granular fuzzy lin-

guistic modelling and fuzzy entropy methods were introduced by Morente-Molinera et al.

(2017) to transform the training data in ways that represent their inner meaning more pre-

cisely; a linguistic computational model based on discrete fuzzy numbers whose support

is a subset of consecutive natural numbers was presented by Massanet et al. (2014); a new

method based on linguistic granular computing to solve group decision making problems

defined in heterogeneous contexts was developed by Cabrerizo et al. (2013).

Decision making problem with interval-valued linguistic variable was utilized to deal

with practical situation such as the health-care waste treatment technology evaluation and

selection (Liu et al., 2014a), the failure mode and effects analysis (Liu et al., 2014b),

searching for an optimal investment (Zhang, 2013), etc. Aggregation techniques are es-

sential part in these applications. There are two ways to realize the aggregation: using the

aggregation operators directly (Zhang, 2013; Zhang, 2012), and combining aggregation

operators with information measures such as the weighted distance measure (Liu et al.,

2014b; Zhou et al., 2013, 2014b; Liao et al., 2014; Xu and Wang, 2011). Yager (1993)

introduced the ordered weighted averaging (OWA) operator in 1993; since then, various

aggregation operators were proposed and are combined with linguistic information (Meng

et al., 2016; Liu et al., 2014a, 2014b; Zhang, 2013).

In addition, the distance measures are uniformly distributed on the corresponding

interval variables, they are often utilized to deal with the aggregation information is

denoted by exact numbers or defined by endpoints of intervals. Obviously, it varies

among group decision making problems under uncertain environment. To solve this prob-

lem, Zhou et al. (2013, 2014b, 2016), developed the continuous intuitionistic fuzzy or-

dered weighted distance (C-IFOWD) measure, the continuous ordered weighted distance

(COWD) measure and the linguistic continuous orderedweighted distance (LCOWD) mea-

sure, respectively. These three aggregation operators combine the C-IFOWA operator (or

COWA operator/the LCOWA operator) with the ordered weighted distance (OWD) mea-
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sure, considering the risk attribute of decision makers under interval variables environ-

ment.

Motivated by the work in Zhou et al. (2013), Zhou et al. (2014b), the aim of this

paper is to develop a new distance measure named as interval-valued 2-tuples linguis-

tic induced continuous ordered weighted distance (IT -ICOWD) measure, which is based

on the ICOWA operator and the OWD measure with the interval-valued 2-tuples lin-

guistic information. We also study some desirable properties and different families of

the IT -ICOWD measure. Additionally, we extend the IT -ICOWD measure and obtain the

quasi-IT -ICOWD measure. We also propose a new approach to MAGDM by using the IT -

ICOWD measure. By this approach, we obtain promising formulae, which can determine

the order-inducing variables in the IT-ICOWD measure, the weighting vector of decision

makers and the weighting vector of attributes.

The rest of this paper is structured as follows. We briefly review some fundamen-

tal concepts about various relevant operators and measures in Section 2. In Section 3,

we present the IT -COWD and the IT -ICOWD measure, and discuss some properties and

families of the IT -ICOWD measure. We also develop some extensions of the IT -ICOWD

measure. Section 4 provides an approach based on the IT -ICOWD measure for multiple

attribute group decision making with interval-valued 2-tuple linguistic information and

give a real-life example to illustrate the efficiency of the proposed method. At last, we

give some further explanations in Section 5.

2. Preliminaries

In this section, we briefly review basic concepts about the 2-tuple linguistic, the OWA op-

erator, the IOWA operator, the GOWA operator, the COWA operator, the ICOWA operator,

the distance measure and the OWD measure.

2.1. The 2-Tuple Fuzzy Linguistic Representation Model Processing

Zadeh firstly introduced linguistic method in Zadeh (1975a, 1975b, 1975c) as an approx-

imate technique representing qualitative information by means of linguistic labels.

Let S = {si | i = 0,1, . . . , g} be a linguistic term set with odd cardinality, each term si

represents a possible value for a linguistic variable; for example, we can define S as fol-

lows:

S =
{

s0 = neither(N), s1 = very low(V L), s2 = low(L), s3 = medium(M),

s4 = high(H), s5 = very high(V H), s6 = perfect(P )
}

,

where the mid-linguistic term s3 represents “approximately 0.5” as an assessment, and

the rest of the terms placed symmetrically around it. It should be clarified that term sets

should satisfy the following characteristics:

1. Ordered set: si > sj ⇔ i > j ;
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2. Negation operator: Neg(si) = sg−i (g + 1 is the cardinality);

3. Minimum operator: min(si , sj ) = si ⇔ si 6 sj ;

4. Maximum operator: max(si, sj ) = si ⇔ si > sj .

According to symbolic translation, Herrera and Martinez (2000) originally proposed

the 2-tuple linguistic representation model for dealing with linguistic information. Be-

ing continuous in the domain is the primary advantage of this representation. A 2-tuple

(si , αi) is a 2-tuple linguistic representation model, where si is a linguistic label of prede-

fined linguistic term set S and αi is a numerical value representing the value of symbolic

translation.

Definition 1 (See Herrera and Martinez, 2000). Let S = {si | i = 0,1, . . . , g} be a set

of finite linguistic terms, and β ∈ [0, g] is the numerical value demonstrating the result

of a symbolic aggregation operation, then the function 1 denotes to obtain the 2-tuple

linguistic information being equivalent to β , which can be defined as follows:

1 : [0, g] → S × [−0.5,0.5), (1)

1(β) = (si , αi) with

{

si , i = round(β),

αi = β − i, αi ∈ [−0.5,0.5),
(2)

where round(β) is the usual round operation, si has the closest index label of β and αi is

the value of the symbolic translation.

Definition 2 (See Herrera and Martinez, 2000). Let S = {si | i = 0,1, . . . , g} be a lin-

guistic terms collection and (si , αi) be a linguistic 2-tuple term. There is always a func-

tion 1−1 such that the value which returns from 2-tuple is an equivalent numerical value

β ∈ [0, g], where

1−1 : S × [−0.5,0.5) → [0, g], (3)

1−1(si , αi) = i + αi = β, (4)

and β ∈ [0, g].

In the past few decades, multiple 2-tuple linguistic aggregation operators have been

proposed in order to aggregate 2-tuple linguistic. However, these 2-tuple linguistic aggre-

gation operators all simply focused on the usual 2-tuple. In another word, 2-tuple linguistic

from different linguistic term set with different granularities cannot be aggregated directly.

To overcome this obstacle, Chen and Tai (2005) put forward a generalized 2-tuple linguis-

tic representation model and translation function.

Definition 3 (See Chen and Tai, 2005). Let S = {si | |i = 0,1, . . . , g} be an ordered

linguistic term set, and crisp value β ∈ [0,1] can be transformed into one 2-tuple linguistic
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representation model through the following function:

1 : [0,1] → S ×
[

− 1

2g
,

1

2g

)

, (5)

1(β) = (si , αi) with

{

si , i = round(β · g);
αi = β − i

g
, αi ∈ [− 1

2g
, 1

2g
).

(6)

Conversely, the 2-tuple can be converted into a crisp β ∈ [0,1] as follows:

1−1 : S ×
[

− 1

2g
,

1

2g

)

→ [0,1], (7)

1−1(si , αi) = i

g
+ αi = β, (8)

where β ∈ [0,1] according to Definition 3. Therefore, in this method the 2-tuple linguistic

representation model is standardized, so it is easier to compare 2-tuple linguistic terms

with different multiple granularity linguistic term sets. In this paper, unless mentioned

explicitly, the 2-tuple linguistic representation model is generalized 2-tuple representation

model in Definition 3.

Considering merits of Definition 3, a new concept of the interval-valued 2-tuple lin-

guistic representation model was introduced by Zhang (2012) with some aggregation op-

erators with interval-valued 2-tuple linguistic information.

Definition 4 (See Zhang, 2012). Let S = {si | i = 0,1, . . . , g} be a set of ordered linguis-

tic terms. An interval-valued 2-tuple consists of two linguistic terms and two numbers, de-

noted as [(si, αi), (sj , αj )], where i 6 j , and αi 6 αj , si, sj ∈ S, αi, αj are crisp numbers.

The interval-valued 2-tuple that expresses the equivalent information to an interval-value

[β1, β2] (β1, β2 ∈ [0,1], β1 6 β2) as follows:

1
(

[β1, β2]
)

=
[

(si, αi), (sj , αj )
]

with



















si , i = round(β1 · g);
sj , j = round(β2 · g);
αi = β1 − i

g
, αi ∈ [− 1

2g
, 1

2g
);

αj = β2 − j
g
, αj ∈ [− 1

2g
, 1

2g
).

(9)

There always exists the inverse function 1−1 satisfying that for each interval-valued 2-

tuple, it returns corresponding interval value [β1, β2] (β1, β2 ∈ [0,1], β1 6 β2) as follows:

1−1
([

(si , αi), (sj , αj )
])

=
[

i

g
+ αi ,

j

g
+ αj

]

= [β1, β2]. (10)

Definition 5 (See Zhang, 2012). If [(si, αi), (sj , αj )] and [(sk, αk), (st , αt )] are any two

interval-valued 2-tuple linguistic information, l, l1, l2 ∈ [0,1], then basic operational laws

can be defined as follows:
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1)
[

(si, αi), (sj , αj )
]

⊕
[

(sk, αk), (st , αt )
]

=
[

1(min{1−1(si , αi) + 1−1(sk, αk),1}),
1
(

min{1−1(sj , αj ) + 1−1(st , αt ),1}
)]

; 2)l ⊗
[

(si , αi), (sj , αj )
]

=
[

1(l1−1(si , αi)),1(l1−1(sj , αj ))
]

;
3)

(

l1 ⊗ [(si, αi), (sj , αj )]
)

⊕
(

l2 ⊗ [(si, αi), (sj , αj )]
)

= (l1 + l2) ⊗
[

(si , αi), (sj , αj )
]

;
4) l ⊗

([

(si , αi), (sj , αj )
]

⊕
[

(sk, αk), (st , αt )
])

=
(

l ⊗
[

(si , αi), (sj , αj )
])

⊕
(

l ⊗
[

(sk, αk), (st , αt )
])

.

Aiming to compare two interval-valued 2-tuple linguistic terms, Zhang (2012) pro-

posed the concept of the score and accuracy.

Definition 6 (See Zhang, 2012). For an interval-valued 2-tuple Ã = [(si, αi), (sj , αj )],
its score function can be defined as

(Ã) = i + j

2g
+ αi + αj

2
, (11)

and the accuracy function can be defined as

H(Ã) = j − i

g
+ αj − αi, (12)

where S = {si | i = 0,1, . . . , g} is an ordered linguistic term set with g + 1 linguistic

labels. Obviously, 0 6 S(A)6 1, and 0 6 H(A)6 1.

Definition 7 (See Zhang, 2012). Let Ã = [(si, αi), (sj , αj )] and B̃ = [(sk, αk), (st , αt )]
be two interval-valued linguistic 2-tuples. It follows that:

(1) If S(Ã) < S(B̃), then Ã < B̃;

(2) If S(Ã) = S(B̃), then:

if H(Ã) < H(B̃), then Ã > B̃;

if H(Ã) = H(B̃), then Ã = B̃.

2.2. The OWA Operator, the IOWA Operator and the GOWA Operator

The OWA operator (Yager, 1988) provides a parameterized family of aggregationoperators

including the maximum, the minimum, and the average.

Definition 8 (See Yager, 1988). The n-dimensional OWA operator is a mapping

OWA: Rn → R,
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where W = (w1,w2, . . . ,wn) is a weighting vector,
∑n

j=1
wj = 1 and wj ∈ [0,1] satis-

fying

OWA(a1, a2, . . . , an) =
n
∑

j=1

wjbj , (13)

where bj is the j -th largest value among arguments a1, a2, . . . , an.

The IOWA operator (Yager and Filev, 1999) can be regarded as extension of the OWA

operator.

Definition 9 (See Yager and Filev, 1999). An n-dimensional IOWA operator is a mapping

IOWA: Rn × Rn → R,

where W = (w1,w2, . . . ,wn) is a weighting vector,
∑n

j=1
wj = 1 and wj ∈ [0,1] satis-

fying

IOWA
(

〈v1, a1〉, 〈v2, a2〉, . . . , 〈vn, an〉
)

=
n
∑

j=1

wjaσ(j), (14)

where aσ(j) is the ai value of the IOWA pair 〈vi , ai〉 having the j -th largest vi .

Yager (2004a) proposed the generalized ordered weighted averaging (GOWA) operator.

Definition 10 (See Yager, 2004a). An n-dimensional GOWA operator is a mapping

GOWA: Rn → R

where W = (w1,w2, . . . ,wn) is a weighting vector,
∑n

j=1
wj = 1 and wj ∈ [0,1] satis-

fying

GOWA(a1, a2, . . . , an) =
( n
∑

j=1

wjb
λ
j

)1/λ

, (15)

where λ ∈ (−∞,∞), λ 6= 0, bj is the j -th largest of the arguments among a1, a2, . . . , an.

A group of special cases can be obtained through giving different values to parameter λ

in the GOWA operator.

2.3. The COWA Operator and the ICOWA Operator

To deal with the case that the given argument is a continuous valued interval, Yager

(2004b) introduced continuous ordered weighted averaging (COWA) operator.
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Definition 11 (See Yager, 2004b). A COWA operator is a mapping F : 2 → R+

FQ(ã) = FQ

(

[aL, aU ]
)

=
∫

1

0

dQ(y)

dy

(

aU − y(aU − aL)
)

dy, (16)

where 2 is the set of all nonnegative interval arguments and ã = [aL, aU ] ∈ 2, and Q is

a basic unit monotonic (BUM) function.

Let λ =
∫

1

0
Q(y) dy be the attitudinal character of Q, then the general formulation of

FQ(ã) is as follows:

FQ(ã) = FQ

(

[aL, aU ]
)

= λaU + (1 − λ)aL. (17)

As we can see, the COWA operator FQ(ã) is the weighted arithmetical mean of end

points according to the attitudinal character. The interval ã = [aL, aU ] can be replaced by

FQ(ã).

In Zhou et al. (2010) proposed induced continuous OWA (ICOWA) operator.

Definition 12 (See Zhou et al., 2010). Let [aL1, aU1], [aL2, aU2], . . . , [aLn, aUn] be an

interval number set. An ICOWA operator is a mapping ICOWA: Rn ×2n → R+ satisfying

ICOWA
(〈

u1,
[

aL1, aU1

]〉

,
〈

u2,
[

aL2, aU2

]〉

, . . . ,
〈

un,
[

aLn, aUn
]〉)

= ICOWA
(〈

u1,FQ

([

aL1, aU1

])〉

,
〈

u2,FQ

([

aL2, aU2

])〉

, . . . ,
〈

un,FQ

([

aLn, aUn
])〉)

=
n
∑

j=1

wjFQ

([

aLδ(j), aUδ(j)
])

, (18)

where W = (w1,w2, . . . ,wn) is an associated weighting vector with
∑n

j=1
wj = 1,

δ(1), δ(2), . . . , δ(n) is any permutation of (1,2, . . . , n), (u1, u2, . . . , un) is a set of or-

der inducing variables satisfying uδ(j−1) > uδ(j), j = 2,3, . . . , n, and FQ([aLδ(j), aUδ(j) ]
is the FQ([aLi , aUi ] value of the ICOWA pair 〈ui , [aLi , aUi ]〉 having the j -th largest ui ,

FQ([aLi , aUi ] is calculated by Eq. (17).

Similarly, we can obtain the interval-valued 2-tuple linguistic continuous OWA (IT-

COWA) operator and the interval-valued 2-tuple linguistic induced continuous OWA (IT-

ICOWA) operator. Let � be the set of all interval-valued 2-tuple linguistic information.

Definition 13. If Ã = [(si , αi), (sj , αj )] ∈ �, and fQ(Ã) = fQ([(si, αi), (sj , αj )]) =
(sk, αk), where

1−1(sk, αk) = FQ

([

1−1(si, αi),1
−1(sj , αj )

])

=
∫

1

0

dQ(y)

dy

(

1−1(sj , αj ) − y(1−1(sj , αj ) − 1−1(si, αi))
)

dy, (19)
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then f is the interval-valued 2-tuples linguistic continuous OWA (IT-COWA) operator,

where Q is the BUM function.

Especially, if λ =
∫

1

0
Q(y) dy is the attitudinal character of Q, then the IT-COWA op-

erator can be rewritten as follows:

fQ(Ã) = 1
(

FQ

([

1−1(si, αi),1
−1(sj , αj )

]))

= 1
(

λ1−1(sj , αj ) + (1 − λ)1−1(si , αi)
)

, (20)

Based on Eq. (20), we can see that the IT-COWA operator may be determined by the

attitudinal character λ. For convenience, fλ(Ã) denotes fQ(Ã), i.e.

fλ(Ã) = 1
(

FQ

([

1−1(si, αi),1
−1(sj , αj )

]))

= 1
(

λ1−1(sj , αj ) + (1 − λ)1−1(si , αi)
)

. (21)

Definition 14. An n-dimensional IT -ICOWA measure is a mapping IT -ICOWA

Rn × �n → �,

which is associated weighting vector W = (w1,w2, . . . ,wn),
∑n

j=1
wj = 1 and wj ∈

[0,1], satisfying

IT -ICOWA
(〈

u1,
[

(s1, α1), (s
′
1
, α′

1
)
]〉

, . . . ,
〈

un,
[

(sn, αn), (s
′
n, α

′
n)
]〉

)

= IT-ICOWA
(〈

u1, fλ

([

(s1, α1), (s
′
1
, α′

1
)
])〉

, . . . ,
〈

un, fλ

([

(sn, αn), (s
′
n, α

′
n)
])〉)

= 1

( n
∑

j=1

wj1
−1
(

fλ

([

(sδ(j), αδ(j)), (s
′
δ(j), α

′
δ(j))

]))

)

, (22)

where δ(1), δ(2), . . . , δ(n) is any permutation of (1,2, . . . , n), (u1, u2, . . . , un) is

a set of order inducing variables, such that uδ(j−1) > uδ(j), j = 2,3, . . . , n, and

fλ([(sδ(j), αδ(j)), (s
′
δ(j), α

′
δ(j))]) is the fλ([(si, αi), (s

′
i, α

′
i)]) value of the IT -ICOWA pair

〈ui , (si , αi), (s
′
i, α

′
i)〉 with the j -th largest ui , where fλ([(si, αi), (s

′
i , α

′
i)]) can be deter-

mined by Eq. (21).

2.4. Distance Measure

Definition 15 (See Zhou et al., 2013, 2014b). Let A1,A2,A3 be elements of a set. A dis-

tance measure D should satisfy properties as follows:

– Nonnegativity: D(A1,A2)> 0;

– Commutativity: D(A1,A2) = D(A2,A1);

– Reflexivity: D(A1,A1) = 0;

– Triangle inequality: D(A1,A2) + D(A1,A3)> D(A2,A3).



330 X. Liu et al.

Note that different D can derive different types of distance measures.

On the basis of Liu et al. (2014b), Zhou et al. (2014b), Li et al. (2014), Xu (2005),

now we present several interval-valued linguistic distance measures including the interval-

valued linguistic distance measure, the continuous interval-valued linguistic distance mea-

sure and the interval-valued 2-tuple linguistic distance measure.

– Interval-valued linguistic distance measure:

d(A1,A2) = d
(

[si, sj ], [sk, st ]
)

= s 1

g (
|i−k|+|j−t|

2
)
, (23)

where [si , sj ] and [sk, st ] are two interval-valued linguistic variables, respectively.

– Continuous interval-valued linguistic distance measure:

d ′(A1,A2) = d ′([si, sj ], [sk, st ]
)

= s |FQ([i,j])−FQ([k,t])|
g

= s |λj+(1−λ)i−(λt+(1−λ)k)
| g

, (24)

where Q is the BUM function, λ =
∫

1

0
Q(y) dy .

– Interval-valued 2-tuple linguistic distance measure:

d ′′(Ã1, Ã2)

= d ′′([
(

si, αi), (sj , αj )
]

,
[

(sk, αk), (st , αt )
])

= 1

( |1−1(si , αi) − 1−1(sk, αk)| + |1−1(sj , αj ) − 1−1(st , αt )|
2

)

, (25)

where [(si, αi), (sj , αj )] and [(sk, αk), (st , αt )] are two interval-valued 2-tuple lin-

guistic information, respectively.

2.5. The Ordered Weighted Distance Measure

Xu and Chen (2008) developed the ordered weighted distance (OWD) measure.

Definition 16 (See Xu and Chen, 2008). An n-dimensional OWD measure is a mapping

OWD: R+n × R+n → R+ satisfying:

OWD(α,β) =
( n
∑

j=1

wj

(

d(aσ(j), bσ(j))
)λ
)1/λ

, (26)

where W = (w1,w2, . . . ,wn) is associated with weighting vector,
∑n

j=1
wj = 1 and wj ∈

[0,1], σ(1), σ (2), . . . , σ (n) is any permutation of (1,2, . . . , n), d(aσ(j−1), bσ(j−1)) >

d(aσ(j), bσ(j)), j = 1,2, . . . , n, d(aj , bj ) = |aj − bj | is the distance of aj and bj .

α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bn) are two collections of arguments, and λ > 0.
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The OWD measure is monotonic, commutative, idempotent and bounded. We can ob-

tain a group of special cases when considering as many as values of the parameter λ in

the OWD measure. For instance, the ordered weighted Hamming distance (OWHD) mea-

sure, the ordered weighted Euclidean distance (OWED) measure and the ordered weighted

Geometric (OWGD) measure can be determined in the following way:

– The OWHD measure is obtained if λ = 1.

– The OWED measure is obtained if λ = 2.

– The OWGD measure is obtained if λ → 0.

3. The Interval-Valued 2-Tuples Linguistic Induced Continuous Ordered Weighted

Distance Measure

In this section, we introduce the interval-valued 2-tuples linguistic continuous ordered

weighted distance (IT -COWD) measure and the interval-valued 2-tuples linguistic in-

duced continuous ordered weighted distance (IT -ICOWD) measure.

3.1. The IT-COWD Measure and the IT-ICOWD Measure

Definition 17. Let Ã1 = [(s1, α1), (s
′
1
, α′

1
)] ∈ � and Ã2 = [(s2, α2), (s

′
2
, α′

2
)] ∈ �. If

dλ(Ã1, Ã2) = 1
(∣

∣1−1
(

fλ(Ã1)
)

− 1−1
(

fλ(Ã2)
)∣

∣

)

, (27)

then dλ(Ã1, Ã2) is called the distance between Ã1 and Ã2 based on the IT-COWA operator,

where fλ(Ã1) and fλ(Ã2) can be calculated by Eq. (21).

According to Eq. (27), dλ(Ã1, Ã2) can be defined as follows:

dλ(Ã1, Ã2) = 1
(∣

∣1−1
(

fλ(Ã1)
)

− 1−1
(

fλ(Ã2)
)∣

∣

)

= 1
(∣

∣λ1−1(s′
1
, α′

1
) + (1 − λ)1−1(s1, α1) − (λ1−1(s′

2
, α′

2
)

+(1 − λ)1−1(s2, α2))
∣

∣

)

(28)

where λ =
∫

1

0
Q(y) dy is the attitudinal character of Q.

Example 1. Let S7 = {s7

i | i = 0,1, . . . ,6} be a linguistic term set, A1 = [s7

2
, s7

5
]

and A2 = [s7

3
, s7

4
] be two interval-valued linguistic variables, and Q(y) = y3, so λ =

∫

1

0
Q(y) dy = 1

4
. Therefore, A1, A2 can be rewritten as interval-valued 2-tuple linguis-

tic information Ã1 = [(s7

2
,0), (s7

5
,0)] and Ã2 = [(s7

3
,0), (s7

4
,0)]. By Eq. (23)–(25), (28),

we have

(1) d(A1,A2) = d
(

[s7

2
, s7

5
], [s7

3
, s7

4
]
)

= s 1

6
(

|2−3|+|5−4|
2

)
= s 1

6

,

(2) d ′(A1,A2) = d ′([s7

2
, s7

5
], [s7

3
, s7

4
]
)

= s | 5

4
+(1− 1

4
)2− 4

4
−(1− 1

4
)3)|

6

= s 1

12

,
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(3) d ′′(Ã1, Ã2) = d ′′([(s7

2
,0), (s7

5
,0)], [(s7

3
,0), (s7

4
,0)]

)

= 1
( |1−1(s7

2
,0) − 1−1(s7

3
,0)| + |1−1(s7

5
,0) − 1−1(s7

4
,0)|

2

)

= (s7

1
,0),

(4) dλ(Ã1, Ã2) = dλ

(

[(s7

2
,0), (s7

5
,0)], [(s7

3
,0), (s7

4
,0)]

)

= 1
(∣

∣

∣

1

4
1−1(s7

5
,0) +

(

1 − 1

4

)

1−1(s7

2
,0) − 1

4
1−1(s7

4
,0)

−
(

1 − 1

4

)

1−1(s7

3
,0))

∣

∣

∣

)

= (s7

1
,− 1

12
).

As we can see, the results do not match any of the initial linguistic terms in the aggre-

gation process of the distance measure d(A1,A2) and d ′(A1,A2), but these two distance

measures can express the results in the initial expression domain. Moreover, they are able

to deal with the situations where the input arguments are represented with interval-valued

2-tuples linguistic information.

From Definition 17, we can get the following theorems:

Theorem 1. If Ã1 = [(s1, α1), (s
′
1
, α′

1
)] ∈ �, Ã2 = [(s2, α2), (s

′
2
, α′

2
)] ∈ � and Ã3 =

[(s3, α3), (s
′
3
, α′

3
)] ∈ �, then

(1) Nonnegativity: dλ(Ã1, Ã2)> 0;

(2) Commutativity: dλ(Ã1, Ã2) = dλ(Ã2, Ã1);

(3) Reflexivity: dλ(Ã1, Ã1) = 0;

(4) Triangle inequality: dλ(Ã1, Ã2) + dλ(Ã1, Ã3)> dλ(Ã2, Ã3).

Theorem 2. If Ã1 = [(s1, α1), (s
′
1
, α′

1
)] ∈ �, Ã2 = [(s2, α2), (s

′
2
, α′

2
)] ∈ �, then

1−1(dλ(Ã1, Ã2))6 1.

The proofs of theorems are straightforward, thus omitted.

Suppose that Ã = (Ã1, Ã2, . . . , Ãn) ∈ �n and B̃ = (B̃1, B̃2, . . . , B̃n) ∈ �n, we can

define the interval-valued 2-tuple linguistic continuous ordered weighted distance (IT -

COWD) measure as follows:

Definition 18. An n-dimensional IT -COWD measure is a mapping

IT -COWD: �n × �n → �,

satisfying:

IT -COWD(Ã, B̃) = 1

(( n
∑

j=1

wj

[

1−1
(

dλ(Ãσ(j), B̃σ(j))
)]τ
)1/τ)

, (29)

where σ(1), σ (2), . . . , σ (n) is any permutation of (1,2, . . . , n) such that dλ(Ãσ(j−1),

B̃σ(j−1))> dλ(Ãσ(j), B̃σ(j)), j = 2,3, . . . , n, and dλ(Ãj , B̃j ) is the distance between Ãj
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Table 1

Aggregation result.

τ →0+ 1 2

IT-COWD(Ã, B̃) (s7

0
,0.0252) (s7

0
,0.0418) (s7

0
,0.0543)

τ 3 4 5

IT-COWD(Ã, B̃) (s7

0
,0.0617) (s7

0
,0.0664) (s7

0
,0.0697)

τ 6 7 8

IT-COWD(Ã, B̃) (s7

0
,0.0682) (s7

0
,0.0739) (s7

0
,0.0754)

τ 9 10 15

IT-COWD(Ã, B̃) (s7

0
,0.0766) (s7

0
,0.0776) (s7

0
,0.0808)

and B̃j based on the IT -COWA operator and the parameter τ > 0, W = (w1,w2, . . . ,wn)

is associated with vector,
∑n

j=1
wj = 1 and wj ∈ [0,1].

Here we present a simple numerical example showing how to use the IT -COWD mea-

sure in an aggregation process.

Example 2. Let Ã = (Ã1, Ã2, Ã3, Ã4) = ([(s7

3
,0.05), (s7

5
,0.01)], [(s7

2
,0.02),

(s7

4
,−0.06)], [(s7

4
,−0.04), (s7

5
,−0.07)], [(s7

1
,−0.02), (s7

2
,0.03)]) and B̃ = (B̃1, B̃2, B̃3,

B̃4) = ([(s7

4
,0.02), (s7

5
,−0.06)], [(s7

2
,0.04), (s7

3
,0.03)], [(s7

4
,−0.02), (s7

6
,−0.08)],

[(s7

1
,−0.05), (s7

2
,0.01)]) be two collections of interval-valued 2-tuples linguistic infor-

mation, and Q(y) = y3, so λ =
∫

1

0
Q(y) dy = 1

4
. From Eq. (28), we have

dλ(Ã1, B̃1) = 1

(∣

∣

∣

∣

1

4
1−1

(

s7

5
,0.01

)

+
(

1 − 1

4

)

1−1
(

s7

3
,0.05

)

−
(

1

4
1−1

(

s7

5
,−0.06

)

+
(

1 − 1

4

)

1−1
(

s7

4
,0.02

))∣

∣

∣

∣

)

= 1(0.0875) = (s7

1
,−0.0792),

dλ(Ã2, B̃2) = 1(0.005) =
(

s7

0
,0.005

)

,

dλ(Ã3, B̃3) = 1(0.055) =
(

s7

0
,0.055

)

,

dλ(Ã4, B̃4) = 1(0.01) =
(

s7

0
,0.01

)

.

So,

dl

(

Ãs(1), B̃s(1)

)

=
(

s7

1
,−0.0792

)

, dl

(

Ãs(2), B̃s(2)

)

=
(

s7

0
,0.055

)

,

dl(Ãs(3), B̃s(3)) =
(

s7

0
,0.01

)

, dl

(

Ãs(4), B̃s(4)

)

=
(

s7

0
,0.005

)

.

Let W = (0.3,0.2,0.4,0.1). By Eq. (29), we determine the distances of τ , which are

shown in Table 1.

From Table 1, it is demonstrated that the aggregation result IT-COWD(Ã, B̃) increases

as the parameter τ steadily increases.
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We define the interval-valued 2-tuples linguistic induced continuous ordered weighted

distance (IT -ICOWD) measure:

Definition 19. An n-dimensional IT -ICOWD measure is a mapping

IT − ICOWD: Rn × �n × �n → �,

which is associated with the weighting vector W = (w1,w2, . . . ,wn),
∑n

j=1
wj = 1 and

wj ∈ [0,1], satisfying:

IT -ICOWD
(

〈u1, Ã1, B̃1〉, 〈u2, Ã2, B̃2〉, . . . , 〈un, Ãn, B̃n〉
)

= 1

([ n
∑

j=1

wj

[

1−1
(

dλ(Ãδ(j), B̃δ(j))
)]τ
]1/τ)

, (30)

where δ(1), δ(2), . . . , δ(n)is any permutation of (1,2, . . . , n), (u1, u2, . . . , un) is a set of

order inducing variables, such that uδ(j−1) > uδ(j), j = 2,3, . . . , n, and dλ(Ãδ(j), B̃δ(j))

is the dλ(Ãi, B̃i) value of the IT -ICOWD pair 〈ui , Ãi, B̃i〉 having the j th largest ui ,

dλ(Ãj , B̃j ) can be calculated by Eq. (28) and the parameter τ > 0.

In the following, we present a simple numerical example showing how to use the IT -

ICOWD measure in an aggregation process.

Example 3. Let Ã = (Ã1, Ã2, Ã3, Ã4) = ([(s7

3
,0.05), (s7

5
,0.01)], [(s7

2
,0.02), (s7

4
,

−0.06)], [(s7

4
,−0.04), (s7

5
,−0.07)], [(s7

1
,−0.02), (s7

2
,0.03)]) and B̃ = (B̃1, B̃2, B̃3, B̃4) =

([(s7

4
,0.02), (s7

5
,−0.06)], [(s7

2
,0.04), (s7

3
,0.03)], [(s7

4
,−0.02), (s7

6
,−0.08)], [(s7

1
,−0.05),

(s7

2
,0.01)]) be two interval-valued2-tuples linguistic information collections, and Q(y) =

y2, so λ =
∫

1

0
Q(y) dy = 1

3
. From Eq. (28), we have

dλ(Ã1, B̃1) = 1

(∣

∣

∣

∣

1

3
1−1

(

s7

5
,0.01

)

+
(

1 − 1

3

)

1−1
(

s7

3
,0.05

)

−
(

1

3
1−1

(

s7

5
,−0.06

)

+
(

1 − 1

3

)

1−1
(

s7

4
,0.02

)

)∣

∣

∣

∣

)

= 1(0.07) =
(

s7

0
,0.07

)

,

dλ(Ã2, B̃2) =
(

s7

0
,0.0133

)

, dλ(Ã3, B̃3) =
(

s7

0
,0.0667

)

,

dλ(Ã4, B̃4) =
(

s7

0
,0.0067

)

.

Let both sets be of the same order inducing variables: (u1, u2, u3, u4) = (5,1,7,3).

Thus,

dλ(Ãδ(1), B̃δ(1)) =
(

s7

0
,0.0667

)

, dλ(Ãδ(2), B̃δ(2)) =
(

s7

0
,0.07

)

,

dλ(Ãδ(3), B̃δ(3)) =
(

s7

0
,0.0067

)

, dλ(Ãδ(4), B̃δ(4)) =
(

s7

0
,0.0133

)

.
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Table 2

Aggregation result.

τ → 0 1 2

IT-ICOWD(Ã, B̃) (s7

0
,0.0228) (s7

0
,0.038) (s7

0
,0.0485)

IT-IOWD(Ã, B̃) (s7

0
,0.048) (s7

0
,0.061) (s7

0
,0.071)

τ 3 4 5

IT-ICOWD(Ã, B̃) (s7

0
,0.054) (s7

0
,0.0572) (s7

0
,0.0593)

IT-IOWD(Ã, B̃) (s7

0
,0.0775) (s7

0
,0.0818) (s7

1
,−0.082)

τ 6 7 8

IT-ICOWD(Ã, B̃) (s7

0
,0.0607) (s7

0
,0.0617) (s,0.0625)

IT-IOWD(Ã, B̃) (s7

1
,−0.0798) (s7

1
,−0.0782) (s7

1
,−0.0768)

τ 9 10 15

IT-ICOWD(Ã, B̃) (s7

0
,0.0631) (s7

0
,0.0636) (s7

0
,0.0652)

IT-IOWD(Ã, B̃) (s7

1
,−0.0757) (s7

1
,−0.0748) (s7

1
,−0.0715)

Let W = (0.3,0.2,0.4,0.1). By Eq. (30), we have the distances of parameter τ , which

are shown in Table 2.

From Table 2, the aggregation result IT-ICOWD(Ã, B̃) increases as the parameter τ

steadily increases.

3.2. Properties of the IT-ICOWD Measure

The IT-ICOWD measure is of desirable properties. Now we discuss them through follow-

ing theorems.

Theorem 3 (Monotonicity-distance measure). If Ã = (Ã1, Ã2, . . . , Ãn) ∈ �n, B̃ =
(B̃1, B̃2, . . . , B̃n) ∈ �n, C = (C̃1, C̃2, . . . , C̃n) ∈ �n, and dλ(Ãj , B̃j ) 6 dλ(Ãj , C̃j ) for

all j , then

IT-ICOWD(Ã, B̃)6 IT-ICOWD(Ã, C̃). (31)

Theorem 4 (Monotonicity-parameter τ ). If Ã = (Ã1, Ã2, . . . , Ãn) ∈ �n, B̃ = (B̃1, B̃2,

. . . , B̃n) ∈ �n, and τ1 6 τ2, then

IT-ICOWDτ1
(Ã, B̃)6 IT-ICOWDτ2

(Ã, B̃). (32)

Theorem 5 (Idempotency). If Ã = (Ã1, Ã2, . . . , Ãn) ∈ �n, B̃ = (B̃1, B̃2, . . . , B̃n) ∈ �n,

and dλ(Ãj , B̃j ) = d for all j, then

IT-ICOWD(Ã, B̃) = d. (33)

Theorem 6 (Boundedness). If Ã = (Ã1, Ã2, . . . , Ãn) ∈ �n, B̃ = (B̃1, B̃2, . . . , B̃n) ∈ �n,

and maxj dλ(Ãj , B̃j ) = dmax, minj dλ(Ãj , B̃j ) = dmin, then

dmin 6 IT-ICOWD(Ã, B̃)6 dmax. (34)
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Theorem 7 (Commutativity-GOWA aggregation). If Ã = (Ã1, Ã2, . . . , Ãn) ∈ �n,

B̃ = (B̃1, B̃2, . . . , B̃n) ∈ �n, and ((Â1, B̂1), (Â2, B̂2), . . . , (Ân, B̂n)) is a permutation of

((Ã1, B̃1), (Ã2, B̃2), . . . , (Ãn, B̃n)), then

IT-ICOWD(Â, B̂) = IT-ICOWD(Ã, B̃), (35)

where Â = (Â1, Â2, . . . , Ân) ∈ �n, B̂ = (B̂1, B̂2, . . . , B̂n) ∈ �n.

Theorem 8 (Commutativity-distance measure). If Ã = (Ã1, Ã2, . . . , Ãn) ∈ �n, B̃ =
(B̃1, B̃2, . . . , B̃n) ∈ �n, then

IT-ICOWD(Ã, B̃) = IT-ICOWD(B̃, Ã). (36)

Theorem 9 (Nonnegativity). If Ã = (Ã1, Ã2, . . . , Ãn) ∈ �n, B̃ = (B̃1, B̃2, . . . , B̃n) ∈
�n, then

IT-ICOWD(Ã, B̃)> 0. (37)

Theorem 10 (Reflexivity). If Ã = (Ã1, Ã2, . . . , Ãn) ∈ �n, then

IT-ICOWD(Ã, Ã) = 0. (38)

The proofs of theorems above are straightforward, thus omitted.

3.3. Families of the IT-ICOWD Measure

Now we discuss families of the IT -ICOWD measure by using different τ and weighting

vectors to get different types of distance measure.

Remark 1. If τ = 1, the IT -ICOWD measure reduces to the IT -ICOWHD measure:

IT -ICOWHD(Ã, B̃) = 1

( n
∑

j=1

wj

[

1−1
(

dλ(Ãδ(j), B̃δ(j))
)]

)

. (39)

If τ = 2, the IT -ICOWD measure reduces to the IT -ICOWED measure:

IT -ICOWED(Ã, B̃) = 1

(( n
∑

j=1

wj

[

1−1
(

dλ(Ãδ(j), B̃δ(j))
)]2

)1/2)

. (40)

If τ → 0
+, we obtain IT -ICOWGD measure:

IT -ICOWGD(Ã, B̃) = 1

( n
∏

j=1

[

1−1
(

dλ(Ãδ(j), B̃δ(j))
)]wj

)

. (41)
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Remark 2. Some other special measures can be obtained as follows:

– The IT -ICMAXD measure: wl = 1 and wj = 0 for all j 6= l, and dλ(Ãδ(l), B̃δ(l)) =
max{dλ(Ãi, B̃i)}, i = 1,2, . . . , n.

– The IT -ICMIND measure: wl = 1 and wj = 0 for all j 6= l, and dλ(Ãδ(l), B̃δ(l)) =
min{dλ(Ãi, B̃i)}, i = 1,2, . . . , n.

– Step-IT -ICOWD measure: wk = 1 and wj = 0 for all j 6= k.

– The IT -ICND measure: wj = 1/n for all j ; specially, if τ = 1, we get the IT -ICNHD

measure. If τ = 2, we get the IT -ICNED measure. If τ → 0
+, we get the IT -ICNGD

measure.

– Median IT -ICOWD measure: w(n+1)/2 = 1 and wj = 0 for all j 6= (n + 1)/2, n is

odd; or wn/2 = w(n/2)+1 = 1

2
and wj = 0 for all j 6= n/2, (n/2) + 1, n is even.

Remark 3. Based on Yager (1993), we can get families of IT -ICOWD measure. For in-

stance:

– The Olympic IT -ICOWD measure: w1 = wn = 0 and wj = 1/(n − 2) for all j 6=
1, . . . , n.

– The general Olympic IT -ICOWD measure: wj = 0 for all j = 1,2, . . . , k, n,n −
1, . . ., n − k + 1

√
a2 + b2 and for all others wj = 1/(n − 2k), where k < n/2.

– The Window IT -ICOWD measure: wj = 1/m for k 6 j 6 k + m − 1, or wj = 0 for

j > k + m and j < k.

– The generalized S-IT -ICOWD measure: wk = (1 − (α +β)/n)+α, wt = (1 − (α +
β)/n) + β and wj = 1 − (α + β)/n for all j 6= k, t , where Ãk = maxi{Ãi}, Ãt =
mini{Ãi}, and α + β 6 1 with α,β ∈ [0,1].

3.4. Extensions of the IT-ICOWD Measure

We can develop the extension of the IT -COWD measure through the quasi-arithmetic

means, which can be named as Quasi-IT-COWD measure. The primary merit of this mea-

sure is providing a more complete generalization including a lot of particular cases that

are not included in the IT -COWD measure.

Definition 20. An n-dimensional Quasi-IT-COWD measure is a mapping

Quasi-IT-COWD: �n × �n → �,

which is associated with the weighting vector W = (w1,w2, . . . ,wn),
∑n

j=1
wj = 1 and

wj ∈ [0,1], satisfying:

Quasi-IT-COWD(Ã, B̃) = 1

(

g−1

( n
∑

j=1

wjg
[

1−1
(

dλ(Ãσ(j), B̃σ(j))
)]

))

, (42)

where g is a strictly continuous monotonic function, σ(1), σ (2), . . . , σ (n) is any permuta-

tion of (1,2, . . . , n) such that dλ(Ãσ(j−1), B̃σ(j−1)) > dλ(Ãσ(j), B̃σ(j)), j = 2,3, . . . , n,
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and dλ(Ãj , B̃j ) is the distance of Ãj and B̃j based on the IT -COWA operator and the

parameter.

Note that the IT -COWD measure is a particular case of the Quasi-IT-COWD measure

when g(x) = xτ .

Similarly, we can obtain the Quasi-IT-ICOWD measure.

Definition 21. An n-dimensional Quasi-IT-ICOWD measure is a mapping

Quasi-IT -ICOWD: �n × �n → �,

which is associated with the weighting vector W = (w1,w2, . . . ,wn),
∑n

j=1
wj = 1 and

wj ∈ [0,1], satisfying

Quasi-IT -ICOWD
(

〈u1, Ã1, B̃1〉, 〈u2, Ã2, B̃2〉, . . . , 〈un, Ãn, B̃n〉
)

= 1

(

g−1

[ n
∑

j=1

wjg
(

1−1
(

dλ

(

Ãδ(j), B̃δ(j)

)))

])

, (43)

where g is a strictly continuous monotonic function, δ(1), δ(2), . . . , δ(n) is any permu-

tation of (1,2, . . . , n), (u1, u2, . . . , un) is a set of order inducing variables such that

uδ(j−1) > uδ(j), j = 2,3, . . . , n, and dλ(Ãδ(j), B̃δ(j)) is the dλ(Ãi, B̃i) value of the IT -

ICOWD pair 〈ui, Ãi, B̃i〉 having the j -th largest ui , dλ(Ãj , B̃j ) is calculated by Eq. (28),

λ > 0.

4. An Approach to 2-Tuple Linguistic Multiple Attribute Group Decision Making

4.1. The Process of MAGDM Based on the IT-ICOWD Measure

The IT-ICOWD measure is of high feasibility in a broad range of situations, especially in

solving multiple attribute group decision making where the attribute assessment values

are represented by interval-valued 2-tuple linguistic information.

Here we propose an approach to MAGDM with interval-valued 2-tuple linguistic in-

formation by the IT-ICOWD measure. Moreover, we can determine the order-inducing

variables of the IT-ICOWD measure, the weighting vector of decision makers and the

weighting vector of attributes.

Let X = {X1,X2, . . . ,Xm} be a discrete set of alternatives, C = {C1,C2, . . . ,Cn} be

an attributes set, and w = (w1,w2, . . . ,wn)
T be the weighting vector satisfying wj ∈

[0,1], associated with weight of Cj , and
∑n

j=1
wj = 1. Let E = {e1, e2, . . . , et } be a

decision maker collection, and ω = (ω1,ω2, . . . ,ωt )
T be the weighting vector of decision

makers, where
∑t

k=1
ωk = 1, ωk ∈ [0,1]. The decision makers ek (k = 1,2, . . . , t) are

required to give his/her assessment values of alternative Xi with respect to attribute Cj

in linguistic term sets STk (STk may have different granularity), therefore, the decision

matrix R̃k can be built as R̃k = (r̃k
ij )m×n = ([rk

ij , r
′ k
ij ])m×n, where r̃k

ij is linguistic variable
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Table 3

Ideal alternative.

C1 C2 . . . Cj . . . Cn

ϕ̃k ϕ̃k
1

ϕ̃k
2

. . . ϕ̃k
j

. . . ϕ̃k
n

sk
ij , sk

ij ∈ STk , STk = {sTk

i | i ∈ {0,1, . . . , Tk − 1}}. The decision makers also establish the

ideal alternative by giving the ideal levels of each characteristic, which is shown in Table 3,

where ϕ̃k is the ideal alternative and ϕ̃k
j = [ϕk

j , ϕ′ k
j ] is the j -th ideal characteristic of ϕ̃k .

The process with the IT -ICOWD measure in MAGDM involves the following steps.

Step 1. Transform the decision matrix R̃k = (r̃k
ij )m×n (k = 1,2, . . . , t) and the ideal

alternative φ̃k into interval-valued 2-tuple linguistic decision matrix R̂k = (r̂k
ij )m×n =

([(rk
ij ,0), (r ′ k

ij ,0)])m×n (k = 1,2, . . . , t) and interval-valued2-tuple linguistic the ideal al-

ternative φ̂k = (φ̂k
j )1×n = ([(φk

1
,0), (φ′ k

1
,0)], [(φk

2
,0), (φ′ k

2
,0)], . . . , [(φk

n,0), (φ′ k
n ,0)])

respectively.

Step 2. Calculate the distance between each assessment value r̂k
ij provided by the de-

cision maker ek and his/her ideal assessment value φ̂k
j by Eq. (28):

dλ

(

r̂k
ij , φ̂k

j

)

= 1
(∣

∣

(

λ1−1
(

r ′ k
ij ,0

)

+ (1 − λ)1−1
(

rk
ij ,0

))

−
(

λ1−1
(

φ′ k
j ,0

)

+ (1 − λ)1−1
(

φk
j ,0

))∣

∣

)

(44)

where k = 1,2, . . . , t , i = 1,2, . . . ,m, j = 1,2, . . . , n, λ =
∫

1

0
Q(y) dy is the attitudinal

character of Q.

Step 3. Let d̄ij = 1( 1

t

∑t
k=1

1−1(dλ(r̂
k
ij , φ̂k

j ))), i.e. (d̄ij )m×n is the mean distance ma-

trix of dλ(r̂
k
ij , φ̂k

j ), k = 1,2, . . . , t , and (3(dλ(r̂
k
ij , φ̂

k
j ), d̄))m×n = (1(|1−1(dλ(r̂

k
ij , φ̂

k
j ))−

1−1(d̄)|))m×n is the absolute distance matrix between dλ(r̂
k
ij , φ̂k

j ) and d̄ij . Then, the sim-

ilarity measure can be defined as follows:

Simk = 1 −
∑m

i=1

∑n
j=1

1−1(3(dλ(r̂
k
ij , φ̂

k
j ), d̄ij ))

∑t
k=1

∑m
i=1

∑n
j=1

1−1(3(dλ(r̂
k
ij , φ̂k

j ), d̄ij ))
. (45)

The closer Simk is to 1, the more representative and reliable the information provided

by the k-th expert is. That is the absolute distance matrix with the more similarity measure

should be more important. Thus, we can use the similarity measure Simk as the order-

inducing variables of the assessment values to be aggregated in the process of group de-

cision making. Thus, the weighting vector ω = (ω1,ω2, . . . ,ωt )
T can be determined by

the following formula:

ωk = Simk

∑t
k=1

Simk

, k = 1,2, . . . , t. (46)
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Moreover, according to the principle that the closer a preference value is to the mid

one(s), the more the weight, the weighting vector w = (w1,w2, . . . ,wn)
T can be deter-

mined by the following formula:

wj =
Sim′

j
∑n

j=1
Sim′

j

=
(

1 −
∑t

k=1

∑m
i=1

1−1(3(dλ(r̂
k
ij , φ̂k

j ), d̄ij ))
∑t

k=1

∑m
i=1

∑n
j=1

1−1(3(dλ(r̂
k
ij , φ̂

k
j ), d̄ij ))

)

/

n
∑

j=1

(

1 −
∑t

k=1

∑m
i=1

1−1(3(dλ(r̂
k
ij , φ̂

k
j ), d̄ij ))

∑t
k=1

∑m
i=1

∑n
j=1

1−1(3(dλ(r̂
k
ij , φ̂k

j ), d̄ij ))

)

. (47)

Step 4. Utilize the IT -ICOWD measure

r̃ij = (rij , aij )

= IT -ICOWD

(

〈Sim1, [(r1

ij ,0), (r ′1

ij ,0)], [(φ1

j ,0), (φ′1

j ,0)]〉,
· · · , 〈Simn, [(r t

ij ,0), (r ′ t
ij ,0)], [(φt

j ,0), (φ′ t
j ,0)]〉

)

= 1

([ t
∑

k=1

ωk

(

1−1
[

dλ(r̂
k
δ(j), φ̂

k
δ(j))

])τ

]1/τ)

(48)

to aggregate all the 2-tuple linguistic distance matrices into the collective 2-tuple lin-

guistic distance matrix R̃ = (r̃ij )m×n = ((rij , aij ))m×n, where ω = (ω1,ω2, . . . ,ωt )
T is

the weighting vector of decision makers. Here, it should be mentioned that rij ∈ STk and

aij ∈ [− 1

2Tk
, 1

2Tk
).

Step 5. Utilize the T-GOWA operator (Liu et al., 2011)

r̃i = (ri , ai) = T -GOWA(r̃i1, r̃i2, . . . , r̃in)

= T -GOWA
(

(ri1, ai1), (ri2, ai2), . . . , (rin, ain)
)

(49)

to aggregate all of the preference values r̃ij (j = 1,2, . . . , n) in the i-th line of R̃, and

then derive the collective overall preference values r̃i = (ri , ai) (i = 1,2, . . . ,m) of the

alternative Xi (i = 1,2, . . . ,m), where w = (w1,w2, . . . ,wn)
T is the weighting vector of

attribute.

Step 6. According to the comparison law, rank the r̃i = (ri , ai) (i = 1,2, . . . ,m) in

descending order.

Step 7. Rank all of the alternatives Xi (i = 1,2, . . . ,m), and then select the best one(s)

in accordance with the collective overall preference values r̃i = (ri , ai) (i = 1,2, . . . ,m).

The best choice is the one with the smallest distance.

Step 8. End.
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4.2. Illustrative Example

In this section, we employ a practical MAGDM problem to illustrate the efficiency of the

proposed method in dealing with problems of interval-valued 2-tuple linguistic informa-

tion. Suppose that an investment company wants to find an optimal investment. There are

four possible alternatives to invest the money:

X1: car industry; X2: food company; X3: computer companyX4: arms industry.

The investment company must make a decision according to the following four at-

tributes:

C1: risk analysis; C2: growth analysis; C3: social-political impact analysis; C4: envi-

ronment impact analysis.

In order to eliminate influence among them, three decision makers are invited to pro-

vide their preferences for each possible alternative on each attributes in anonymity and in

different linguistic term sets respectively, which are seven terms: S7 = {s7

0
, s7

1
, s7

2
, s7

3
, s7

4
,

s7

5
, s7

6
}, five terms: S5 = {s5

0
, s5

1
, s5

2
, s5

3
, s5

4
} and nine terms: S9 = {s9

0
, s9

1
, s9

2
, s9

3
, s9

4
, s9

5
, s9

6
,

s9

7
, s9

8
}.

The linguistic decision matrices R̃k = (r̃k
ij )4×4 (k = 1,2,3) and the ideal alternative

φ̃k are provided as follows:

Linguistic decision matrix R̃1 provided by D1

R̃1 =
X1

X2

X3

X4

C1 C2 C3 C4










[s7

1
, s7

3
] [s7

1
, s7

2
] [s7

1
, s7

2
] [s7

3
, s7

5
]

[s7

3
, s7

5
] [s7

1
, s7

3
] [s7

0
, s7

2
] [s7

1
, s7

3
]

[s7

4
, s7

5
] [s7

1
, s7

4
] [s7

1
, s7

3
] [s7

1
, s7

2
]

[s7

0
, s7

1
] [s7

2
, s7

5
] [s7

2
, s7

4
] [s7

2
, s7

3
]











.

Linguistic decision matrix R̃2 provided by D2

R̃2 =
X1

X2

X3

X4

C1 C2 C3 C4










[s5

1
, s5

2
] [s5

1
, s5

3
] [s5

0
, s5

1
] [s5

1
, s5

3
]

[s5

2
, s5

3
] [s5

0
, s5

2
] [s5

1
, s5

3
] [s5

1
, s5

3
]

[s5

1
, s5

3
] [s5

1
, s5

2
] [s5

0
, s5

3
] [s5

2
, s5

3
]

[s5

0
, s5

1
] [s5

2
, s5

3
] [s5

1
, s5

3
] [s5

0
, s5

2
]











.

Linguistic decision matrix R̃3 provided by D3

R̃3 =
X1

X2

X3

X4

C1 C2 C3 C4










[s9

1
, s9

4
] [s9

4
, s9

7
] [s9

3
, s9

4
] [s9

1
, s9

2
]

[s9

1
, s9

2
] [s9

1
, s9

4
] [s9

4
, s9

6
] [s9

2
, s9

5
]

[s9

5
, s9

7
] [s9

5
, s9

6
] [s9

3
, s9

4
] [s9

4
, s9

6
]

[s9

4
, s9

6
] [s9

3
, s9

5
] [s9

1
, s9

2
] [s9

1
, s9

4
]











.
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Table 4

Ideal alternative.

C1 C2 C3 C4

φ̃1 (s7

4
, s7

6
) (s7

4
, s7

5
) (s7

3
, s7

4
) (s7

4
, s7

5
)

φ̃2 (s5

3
, s5

4
) (s5

2
, s5

4
) (s5

2
, s5

3
) (s5

3
, s5

4
)

φ̃3 (s9

6
, s9

8
) (s9

5
, s9

7
) (s9

6
, s9

7
) (s9

5
, s9

6
)

Then, we utilize the method developed to obtain the best alternative(s).

Step 1. Transform the decision matrix R̃k = (r̃k
ij )4×4, k = 1,2,3 and the ideal al-

ternative φ̃k into interval-valued 2-tuple linguistic decision matrix R̂k = (r̂k
ij )4×4 =

([(rk
ij ,0), (r ′ k

ij ,0)])4×4 and interval-valued 2-tuple linguistic ideal alternative φ̂k =
(φ̂k

j )1×4 = ([(φk
1
,0), (φ′ k

1
,0)], [(φk

2
,0), (φ′ k

2
,0)], . . . , [(φk

4
,0), (φ′ k

4
,0)]), shown as fol-

lows:

Interval-valued 2-tuple linguistic decision matrix R̂1 provided by D1

R̂1 =
X1

X2

X3

X4

C1 C2 C3 C4










[(s7

1
,0), (s7

3
,0)] [(s7

1
,0), (s7

2
,0)] [(s7

1
,0), (s7

2
,0)] [(s7

3
,0), (s7

5
,0)]

[(s7

3
,0), (s7

5
,0)] [(s7

1
,0), (s7

3
,0)] [(s7

0
,0), (s7

2
,0)] [(s7

1
,0), (s7

3
,0)]

[(s7

4
,0), (s7

5
,0)] [(s7

1
,0), (s7

4
,0)] [(s7

1
,0), (s7

3
,0)] [(s7

1
,0), (s7

2
,0)]

[(s7

0
,0), (s7

1
,0)] [(s7

2
,0), (s7

5
,0)] [(s7

2
,0), (s7

4
,0)] [(s7

2
,0), (s7

3
,0)]











.

Interval-valued 2-tuple linguistic decision matrix R̂2 provided by D2

R̂2 =
X1

X2

X3

X4

C1 C2 C3 C4










[(s5

1
,0), (s5

2
,0)] [(s5

1
,0), (s5

3
,0)] [(s5

0
,0), (s5

1
,0)] [(s5

1
,0), (s5

3
,0)]

[(s5

2
,0), (s5

3
,0)] [(s5

0
,0), (s5

2
,0)] [(s5

1
,0), (s5

3
,0)] [(s5

1
,0), (s5

3
,0)]

[(s5

1
,0), (s5

3
,0)] [(s5

1
,0), (s5

2
,0)] [(s5

0
,0), (s5

3
,0)] [(s5

2
,0), (s5

3
,0)]

[(s5

0
,0), (s5

1
,0)] [(s5

2
,0), (s5

3
,0)] [(s5

1
,0), (s5

3
,0)] [(s5

0
,0), (s5

2
,0)]











.

Interval-valued 2-tuple linguistic decision matrix R̂3 provided by D3

R̂3 =
X1

X2

X3

X4

C1 C2 C3 C4










[(s9

1
,0), (s9

4
,0)] [(s9

4
,0), (s9

7
,0)] [(s9

3
,0), (s9

4
,0)] [(s9

1
,0), (s9

2
,0)]

[(s9

1
,0), (s9

2
,0)] [(s9

1
,0), (s9

4
,0)] [(s9

4
,0), (s9

6
,0)] [(s9

2
,0), (s9

5
,0)]

[(s9

5
,0), (s9

7
,0)] [(s9

5
,0), (s9

6
,0)] [(s9

3
,0), (s9

4
,0)] [(s9

4
,0), (s9

6
,0)]

[(s9

4
,0), (s9

6
,0)] [(s9

3
,0), (s9

5
,0)] [(s9

1
,0), (s9

2
,0)] [(s9

1
,0), (s9

4
,0)]











.
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Interval-valued 2-tuple linguistic ideal alternative φ̂k (k = 1,2,3)

φ̂1

φ̂2

φ̂3

C1 C2 C3 C4

[(s7

4
,0), (s7

6
,0)] [(s7

4
,0), (s7

5
,0)] [(s7

3
,0), (s7

4
,0)] [(s7

4
,0), (s7

5
,0)]

[(s5

3
,0), (s5

4
,0)] [(s5

2
,0), (s5

4
,0)] [(s5

2
,0), (s5

3
,0)] [(s5

3
,0), (s5

4
,0)]

[(s9

6
,0), (s9

8
,0)] [(s9

5
,0), (s9

7
,0)] [(s9

6
,0), (s9

7
,0)] [(s9

5
,0), (s9

6
,0)]

.

Step 2. Calculate the distance of each assessment value r̂k
ij provided by the decision

maker ek and his/her ideal assessment value φ̂k
j by Eq. (44), where Q(y) = y2, λ = 1

3
.

The results are listed as follows:

Distance matrix of decision maker D1

X1

X2

X3

X4

C1 C2 C3 C4










(s7

3
,0) (s7

3
,0) (s7

2
,0) (s7

1
,−0.0553)

(s7

1
,0) (s7

3
,−0.0557) (s7

3
,−0.0553) (s7

3
,−0.0557)

(s7

0
,0.0557) (s7

2
,0.0553) (s7

2
,−0.0557) (s7

3
,0)

(s7

4
,0.0557) (s7

1
,0.056) (s7

1
,−0.0553) (s7

2
,0.0003)











.

Distance matrix of decision maker D2

X1

X2

X3

X4

C1 C2 C3 C4










(s5

2
,0) (s5

1
,0) (s5

2
,0) (s5

2
,−0.0833)

(s5

1
,0) (s5

2
,0) (s5

1
,−0.0833) (s5

2
,−0.0833)

(s5

2
,−0.0833) (s5

1
,0.0833) (s5

1
,0.0833) (s5

1
,0)

(s5

3
,0) (s5

0
,0.0833) (s5

1
,−0.0833) (s5

3
,−0.0833)











.

Distance matrix of decision maker D3

X1

X2

X3

X4

C1 C2 C3 C4










(s9

5
,−0.0417) (s9

1
,−0.0417) (s9

3
,0) (s9

4
,0)

(s9

5
,0.0417) (s9

4
,−0.0417) (s9

2
,−0.0417) (s9

2
,0.0417)

(s9

1
,0) (s9

0
,0.0417) (s9

3
,0) (s9

1
,−0.0417)

(s9

2
,0) (s9

2
,0) (s9

5
,0) (s9

3
,0.0417)











.

Step 3. Calculate the mean distance matrix d̄ and the absolute distance matrix

3(dλ(r̂
k
ij , φ̂

k
j ), d̄), k = 1,2,3, where d̄ chooses the linguistic term sets S5. The results

are shown as follows:

The mean distance matrix d̄

(d̄ij )4×4 =











(s5

2
,0.0278) (s5

1
,0.0278) (s5

2
,−0.0972) (s5

1
,0.0927)

(s5

1
,0.1112) (s5

2
,−0.0324) (s5

1
,0.0232) (s5

2
,−0.1158)

(s5

1
,−0.0509) (s5

1
,0.0046) (s5

1
,0.0787) (s5

1
,0.0278)

(s5

2
,0.0741) (s5

1
,−0.0647) (s5

1
,0.051) (s5

2
,−0.0277)











.
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The absolute distance matrix of decision maker D1

(3(dλ(r̂
1

ij , φ̂
1

j ), d̄ij ))4×4

=









(s7

0
,0.0278) (s7

1
,0.0556) (s7

1
,−0.0694) (s7

1
,0.0647)

(s7

1
,0.0276) (s7

0
,0.0232) (s7

0
,0.0117) (s7

0
,0.0601)

(s7

1
,−0.0232) (s7

1
,−0.0326) (s7

1
,−0.0323) (s7

1
,0.0556)

(s7

1
,−0.0184) (s7

0
,0.0373) (s7

2
,0.0161) (s7

1
,−0.028)









.

The absolute distance matrix of decision maker D2

(

3(dλ(r̂
2

ij , φ̂
2

j ), d̄ij )
)

4×4

=











(s5

0
,0.0278) (s5

0
,0.0278) (s5

0
,0.0972) (s5

0
,0.074)

(s5

0
,0.1112) (s5

0
,0.0324) (s5

0
,0.1066) (s5

0
,0.0324)

(s5

1
,−0.0324) (s5

0
,0.0788) (s5

0
,0.0047) (s5

0
,0.0278)

(s5

1
,−0.0741) (s5

0
,0.102) (s5

1
,−0.1157) (s5

1
,−0.0557)











.

The absolute distance matrix of decision maker D3

(3(dλ(r̂
3

ij , φ̂
3

j ), d̄ij ))4×4

=











(s9

0
,0.0556) (s9

2
,−0.0556) (s9

0
,0.0556) (s9

1
,0.0323)

(s9

2
,0.0554) (s9

0
,0.0092) (s9

2
,−0.0254) (s9

1
,−0.0324)

(s9

1
,−0.0509) (s9

2
,−0.0317) (s9

0
,0.037) (s9

2
,−0.0556)

(s9

3
,−0.0509) (s9

1
,−0.0603) (s9

1
,0.0393) (s9

0
,0.0557)











.

Then, we can get the similarity measure by Eq. (45) and the weighting vector ω by

Eq. (46):

Sim1 = 0.6386, Sim2 = 0.7471, Sim3 = 0.6143,

ω1 = 0.3193, ω2 = 0.3736, ω3 = 0.3071.

Moreover, we can obtain the weighting vector w by Eq. (47):

w1 = 0.228, w2 = 0.2669, w3 = 0.2582, w4 = 0.2469.

Step 4. Utilize the IT -ICOWD measure to aggregate 2-tuple linguistic distance matrix

into the collective 2-tuple linguistic distance matrix R̃ = (r̃ij )4×4 = ((rij , aij ))4×4, where

τ = 3. We can use the similarity measure Simk as the order-inducing variables. Note that

rij ∈ STk and aij ∈ [− 1

2Tk
, 1

2Tk
).
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The collective 2-tuple linguistic distance matrix R̃

R̃ =
X1

X2

X3

X4

C1 C2 C3 C4










(s5

2
,0.0284) (s5

1
,0.1229) (s5

2
,−0.088) (s5

2
,−0.1042)

(s5

2
,−0.0394) (s5

2
,−0.0324) (s5

2
,0.0835) (s5

2
,−0.1011)

(s5

1
,0.0375) (s5

1
,0.0733) (s5

1
,0.0803) (s5

1
,0.1229)

(s5

3
,−0.0956) (s5

1
,−0.0412) (s5

2
,−0.0746) (s5

2
,0.0075)











.

Step 5. Utilize the T-GOWA operator to derive the collective overall preference value

r̃i = (ri , ai) (i = 1,2,3,4) of the alternative Xi (i = 1,2,3,4):

r̃1 =
(

s5

2
,−0.0671

)

, r̃2 =
(

s5

2
,−0.0807

)

,

r̃3 =
(

s5

1
,0.0821

)

, r̃4 =
(

s5

2
,−0.0055

)

.

Assume that the parameter τ in the T-GOWA operator is equal to the parameter τ in

the IT -ICOWD measure.

Step 6. According to the comparison law, rank the r̃i = (ri , ai) (i = 1,2,3,4) in de-

scending order:

r̃4 > r̃1 > r̃2 > r̃3.

Step 7. Rank all of the alternatives Xi (i = 1,2,3,4) as follows:

X3 ≻ X2 ≻ X1 ≻ X4,

and the best alternative is thus X3. i.e. the best alternative is the computer company.

Furthermore, it is possible to analyse how the different particular cases of the IT -

ICOWD measure influence for the aggregation results. Here we consider the IT -ICOWHD

measure, the IT -ICOWED measure, the IT -ICOWGD measure, the IT -ICMAXD measure,

the IT -ICMIND measure, the Step-IT-ICOWD measure (k = 2), the IT-ICND measure,

the IT-ICNHD measure, the IT-ICNED measure, the IT-ICNGD measure, the Median IT -

ICOWD measure and the Olympic IT -ICOWD measure. The results are clearly demon-

strated in Table 5. Now, we are able to propose the order of the companies for each case.

The results are clearly demonstrated in Table 6. Note that the best and the most optimal

investment is the one possessing the lowest distance.

As we can see, the company order varies with category of IT -ICOWD measures.

Moreover, we can also analyse how different parameter τ affects the aggregation re-

sults. Considering different values of parameter τ ∈ (0,20) provided by the decision mak-

ers, here we take λ = 1

3
. The results are shown in Fig. 1.

Similarly, the company order varies with parameter τ . From Fig. 1, we can conclude

that

(1) when τ ∈ (0,0.398], alternative’s rank is X3 ≻ X4 ≻ X1 ≻ X2, and the best alter-

native is X3;
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Table 5

Aggregated results.

IT -ICOWHD IT -ICOWED IT -ICOWGD IT -ICMAXD

X1 (s5

2
,−0.1167) (s5

2
,−0.0864) (s5

1
,0.0839) (s5

2
,0.0214)

X2 (s5

1
,0.118) (s5

2
,−0.1042) (s5

1
,0.0864) (s5

2
,0.0287)

X3 (s5

1
,0.0179) (s5

1
,0.0572) (s5

1
,−0.0431) (s5

2
,−0.072)

X4 (s5

2
,−0.122) (s5

2
,−0.0558) (s5

1
,0.0519) (s5

2
,0.1233)

IT -ICMIND Step-IT-ICOWD IT-ICND IT-ICNHD

X1 (s5

1
,0.0888) (s5

2
,−0.0977) (s5

2
,−0.0657) (s5

2
,−0.1151)

X2 (s5

1
,0.0565) (s5

1
,0.1106) (s5

2
,−0.0792) (s5

1
,0.1179)

X3 (s5

1
,−0.0779) (s5

1
,0.033) (s5

1
,0.0783) (s5

1
,0.014)

X4 (s5

1
,0.021) (s5

2
,−0.0204) (s5

2
,−0.0044) (s5

2
,−0.12)

IT-ICNED IT-ICNGD Median IT -ICOWD Olympic IT -ICOWD

X1 (s5

2
,−0.0849) (s5

1
,−0.0853) (s5

2
,−0.0887) (s5

2
,−0.0887)

X2 (s5

2
,−0.1036) (s5

1
,0.086) (s5

2
,−0.0933) (s5

2
,−0.0933)

X3 (s5

1
,0.0532) (s5

1
,−0.0465) (s5

2
,−0.1233) (s5

2
,−0.1233)

X4 (s5

2
,−0.054) (s5

1
,0.0544) (s5

2
,−0.375) (s5

2
,−0.0375)

Table 6

Ordering of the companies.

Ordering Ordering

IT -ICOWHD X3 ≻ X2 ≻ X4 ≻ X1 IT-ICND X3 ≻ X2 ≻ X1 ≻ X4

IT -ICOWED X3 ≻ X2 ≻ X1 ≻ X4 IT-ICNHD X3 ≻ X2 ≻ X4 ≻ X1

IT -ICOWGD X3 ≻ X4 ≻ X1 ≻ X2 IT-ICNED X3 ≻ X2 ≻ X1 ≻ X4

IT -ICMAXD X3 ≻ X1 ≻ X2 ≻ X4 IT-ICNGD X3 ≻ X4 ≻ X1 ≻ X2

IT -ICMIND X3 ≻ X4 ≻ X2 ≻ X1 Median IT -ICOWD X3 ≻ X2 ≻ X1 ≻ X4

Step-IT-ICOWD X3 ≻ X2 ≻ X1 ≻ X4 Olympic IT -ICOWD X3 ≻ X2 ≻ X1 ≻ X4

3X  ( ,0.0179) ( ,0.0572)  ( , -0.0431) ( , -0.072)  

4X  ( , -0.122) ( , -0.0558)  ( ,0.0519) ( ,0.1233)  

  

1X  ( ,0.0888) ( , -0.0977)  ( , -0.0657)  ( , -0.1151)  

2X  ( ,0.0565) ( ,0.1106)  ( , -0.0792) ( ,0.1179)  

3X  ( , -0.0779)  ( ,0.033)  ( ,0.0783) ( ,0.014)

4X  ( ,0.021) ( , -0.0204)  ( , -0.0044) ( , -0.12)
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Fig. 1. Variations of the aggregation results with parameter τ .

(2) when τ ∈ (0.398,1.006], alternative’s rank is X3 ≻ X4 ≻ X2 ≻ X1, and the best

alternative is X3;

(3) when τ ∈ (1.006,1.265], alternative’s rank is X3 ≻ X2 ≻ X4 ≻ X1, and the best

alternative is X3.
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(4) when τ ∈ (1.265,4.979], alternative’s rank is X3 ≻ X2 ≻ X1 ≻ X4, and the best

alternative is X3;

(5) when τ ∈ (4.979,20], alternative’s rank is X3 ≻ X1 ≻ X2 ≻ X4, and the best al-

ternative is X3.

4.3. Discussion of Comparative Analysis

In order to evaluate the performance and effectiveness of the proposed distance measure

with the existing one, this paper conducts a comparative study in this subsection, includ-

ing the comparison with well-applied distance measures and algorithm-based aggregation

tools.

(1) Comparison with the existing distance measure.

Compared with the previous distance measure, we can conclude that the IT -ICOWD

measure is very useful to deal with deviated problem in aggregation on continuous valued

interval 2-tuple linguistic information. The prominent characteristic of the IT -ICOWD

measure is that it combines the GOWA operator with the distance measure and the IT -

ICOWA operator in the same formula. The decision maker is able to consider the MAGDM

problem more clearly according to his/her risk attitude in aggregation process because

the parameter λ, which lies in the interval [0,1], can be considered as the measure of the

decision maker’s attitudinal character.

(2) Comparison with the aggregation tool based algorithm.

In Liu et al. (2014b), Liu et al. proposed the interval 2-tuple hybrid weighted distance

(IT-HWD) measure to aggregate the interval-valued 2-tuple linguistic information. To fa-

cilitate a comparison with the proposed approach, we adopt the algorithm proposed by

Liu et al. (2014b) and solve the same illustrative example described above. The steps are

as follows:

Step 1. Interval-valued 2-tuple linguistic decision matrix R̂k = (r̂k
ij )4×4 = ([(rk

ij ,0),

(r ′ k
ij ,0)])4×4 (k = 1,2,3) and interval-valued 2-tuple linguistic ideal alternative φ̂k =

(φ̂k
j )1×4 = ([(φk

1
,0), (φ′ k

1
,0)], [(φk

2
,0), (φ′ k

2
,0)], . . . , [(φk

4
,0), (φ′ k

4
,0)]) are listed as

shown in Section 4.2.

Step 2. According to the interval 2-tuple linguistic distance (Liu et al., 2014b) between

two interval 2-tuple linguistic information, the distance of each assessment value r̂k
ij pro-

vided by the decision maker ek and his/her ideal assessment value φ̂k
j are calculated. The

results are listed as follows:

Distance matrix of decision maker D1

X1

X2

X3

X4

C1 C2 C3 C4










(s7

3
,0) (s7

3
,0) (s7

2
,0.0002) (s7

1
,−0.0486)

(s7

1
,0.0003) (s7

3
,−0.0752) (s7

3
,−0.0748) (s7

3
,−0.0752)

(s7

1
,−0.0486) (s7

2
,0.0392) (s7

2
,−0.0699) (s7

3
,0)

(s7

5
,−0.0788) (s7

1
,0.0695) (s7

1
,−0.0486) (s7

2
,0.0002)











.
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Distance matrix of decision maker D2

X1

X2

X3

X4

C1 C2 C3 C4








(s5

2
,0) (s5

1
,0) (s5

2
,0) (s5

2
,−0.1047)

(s5

1
,0) (s5

2
,0) (s5

1
,−0.0732) (s5

2
,−0.1047)

(s5

2
,−0.1047) (s5

2
,−0.1047) (s5

1
,0.1036) (s5

1
,0)

(s5

3
,0) (s5

1
,−0.0732) (s5

1
,−0.0732) (s5

3
,−0.1126)









.

Distance matrix of decision maker D3

X1

X2

X3

X4

C1 C2 C3 C4










(s9

5
,−0.059) (s9

1
,−0.0366) (s9

3
,0) (s9

4
,0)

(s9

6
,−0.0597) (s9

4
,−0.0581) (s9

2
,−0.0524) (s9

2
,0.0295)

(s9

1
,0) (s9

1
,−0.0366) (s9

3
,0) (s9

1
,−0.0366)

(s9

2
,0) (s9

2
,0) (s9

5
,0) (s9

3
,0.0203)











.

Step 3. Calculate the collective 2-tuple linguistic distance matrix R̃ = (r̃ij )4×4 =
((rij , aij ))4×4 by using the IT-HWD measure, which is proposed by Liu’s algorithm. Here,

in order to eliminate the unnecessary impacts, we also suppose the objective weight vec-

tor ω = (0.3193,0.3736,0.3071)T , the subjective weight vector W = (0.3,0.4,0.3)T and

the parameter λ = 3.

The collective 2-tuple linguistic distance matrix R̃

R̃ =
X1

X2

X3

X4

C1 C2 C3 C4










(s5

2
,0.027) (s5

1
,0.0901) (s5

2
,−0.0492) (s5

2
,−0.0909)

(s5

2
,−0.0557) (s5

2
,−0.0214) (s5

1
,0.0352) (s5

2
,−0.1089)

(s5

1
,0.0773) (s5

1
,0.1142) (s5

1
,0.0999) (s5

1
,0.0901)

(s5

3
,−0.0431) (s5

1
,−0.0334) (s5

2
,−0.1069) (s5

2
,0.0518)











.

It is noted that the balancing coefficient is n = 3 and rij ∈ S5.

Step 4. Utilize the T-GOWA operator to derive the collective overall preference value

r̃i = (ri , ai) (i = 1,2,3,4) of the alternative Xi (i = 1,2,3,4):

r̃1 =
(

s5

2
,−0.0613

)

, r̃2 =
(

s5

2
,−0.0878

)

,

r̃3 =
(

s5

1
,0.0967

)

, r̃4 =
(

s5

2
,0.0198

)

.

Assume that the parameter λ in the T-GOWA operator is equal to the parameter λ in

the IT -HWD measure.

Step 5. According to the comparison law, rank the r̃i = (ri , ai) (i = 1,2,3,4) in de-

scending order:

r̃4 > r̃1 > r̃2 > r̃3.
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Step 6. Rank all of the alternatives Xi (i = 1,2,3,4) as follows:

X3 ≻ X2 ≻ X1 ≻ X4.

Therefore, the best alternative is X3, i.e. the best alternative is the computer company.

From the comparison with interval 2-tuple linguistic distance of Liu et al. (2014b),

the newly proposed approach and Liu’s have their own merits. For one thing, the interval

2-tuple linguistic distance (Liu et al., 2014b) is defined by endpoints of interval-valued

2-tuple linguistic information. This measure varies with the uncertain linguistic environ-

ment in GDM and makes it more flexible in diverse circumstances. For another, the ap-

proach proposed in this paper is able to provide more decision-related information such

as order-inducing variables in the IT-ICOWD measure, the weighting vector of decision

makers and the weighting vector of attributes. This enables decision-making process more

evidential and reliable, and these intermediate results can be applied for multiple times

when necessary. However, this benefit requires more efforts in computation, opposed to

Liu’s approach. Therefore, decision makers who request a deterministic answer as well as

reasonable and solid evidence would prefer the novel IT-ICOWD measure regardless of

computational complexity.

5. Conclusion

In this paper, we introduced the interval-valued 2-tuple linguistic induced continuous or-

dered weighted distance (IT -ICOWD) measure. Comparing with existing methods of ag-

gregating interval-valued linguistic variables, we firstly demonstrated that the IT -ICOWD

measure is of high practicality to uncertain cases when the decision maker is only able

to express preference information in interval-valued 2-tuples linguistic terms. Further-

more, we discussed several desirable properties and different families of the IT -ICOWD

measure. At last, feasibility and practicability of proposed approach were illustrated by a

numerical example.

In future research, we look forward to applying the IT -ICOWD measure to different

decision making application, such as dynamic decision making (Pérez et al., 2010), con-

sensus reaching process (Dong et al., 2016), social media (Dong et al., 2017), heteroge-

neous information merging process (Liu et al., 2017). Simultaneously, we are going to

develop further extensions of the IT -ICOWD measure to other types of distance measure

and decision information.
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