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Abstract. This paper introduces how predictor-based control principles are applied to the control
of human excitement signal as a response to a 3D face virtual stimuli. A dynamic human 3D face
is observed in a virtual reality. We use changing distance-between-eyes in a 3D face as a stimulus –
control signal. Human responses to the stimuli are observed using EEG-based signal that character-
izes excitement. A parameter identification method for predictive and stable model building with the
smallest output prediction error is proposed. A predictor-based control law is synthesized by mini-
mizing a generalized minimum variance control criterion in an admissible domain. An admissible
domain is composed of control signal boundaries. Relatively high prediction and control quality of
excitement signals is demonstrated by modelling results.

Key words: dynamic virtual 3D face, human response, virtual reality, predictive input–output
model, generalized minimum variance control.

1. Introduction

Virtual environments already became a part of our daily life including applied computer
games, learning environments (Devlin et al., 2015), business and project management
environment (Mattioli et al., 2015), social networks and their games. These applications
and its multimedia elements are causing negative or positive emotions and are considered
as a virtual stimuli (Wrzesien et al., 2015). These stimuli may be used as a clue to regulate
human psychological, emotional and social state (Devlin et al., 2015) or even to treat
various mental diseases (Calvo et al., 2015). For this purpose, a control mechanism for
human state regulation or stabilization is needed.

EEG-based emotion signals (excitement, frustration, engagement/boredom) are char-
acterized as reliable and quick response signals (Hondrou and Caridakis, 2012; Mattioli et
al., 2015; Sourina and Liu, 2011). However, foremost we need to compose and investigate
mathematical models describing dependencies between emotion signals as a reaction to
stimuli.
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Predictive input-output structure models were proposed and investigated for explor-
ing dependencies between virtual 3D face features and human reaction to them when dy-
namic virtual 3D face is observed without a virtual reality headset (Kaminskas et al., 2014;
Kaminskas and Vidugirienė, 2016; Vaškevičius et al., 2014). Predictive models are nec-
essary in the design of predictor-based control systems (Astrom and Wittenmark, 1997;
Clarke, 1994; Kaminskas, 2007). Predictor-based control was applied to the control of
human emotion signals, when a dynamic 3D face is observed without a virtual reality
headset (Kaminskas et al., 2015; Kaminskas and Ščiglinskas, 2016).

This paper introduces a predictor-based control with a generalized minimum variance
control quality principles which are applied to the control of human response signal, when
a dynamic virtual 3D face as stimuli is observed using a virtual reality headset.

2. Experiment Planning and Cross-Correlation Analysis

A virtual 3D face with changing distance-between-eyeswas used for input and EEG-based
pre-processed excitement signal of a volunteer was measured as output (Fig. 1). The out-
put signal was recorded with Emotiv Epoc device. This device records EEG inputs from
14 channels (in accordance with the international 10–20 locations): AF3, F7, F3, FC5,
T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 (Emotiv Epoc specifications, Mattioli et al.,
2015). Values of the output signal (excitement) vary from 0 to 1. If excitement is low, the
value is close to 0 and if it is high, the value is close to 1.

A dynamic stimulus was formed from a changing woman face (Kaminskas et al.,
2015). A 3D face created with Autodesk MAYA was used as a “neutral” one (Fig. 2,
middle). Other 3D faces were formed by changing distance-between-eyes in an extreme
manner (Fig. 2, top, bottom). The transitions between normal and extreme stages were
programmed. “Neutral” face has 0 value, largest distance-between-eyes corresponds to
value 3 and smallest distance-between-eyes corresponds to value – 3 (Fig. 2). At first
“neutral” face was shown for 5 s, then the distance-between-eyes was increased continu-
ously and in 10 s the largest distance between eyes was reached, then 5 s of steady face
was shown and after that the face came back to “normal” state in 10 s. Then “normal”
face was shown for 5 s, followed by 10 s of continuous change to the face with the small-
est distance between-eyes, again 5 s of steady face was shown and in the next 10 s the
face came back to “normal”. The experiment was continued in the same way further using
3 s time intervals for steady face and 5 s for continuous change. Eight volunteers (four

Fig. 1. Input–output scheme.
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Fig. 2. Experiment plan for a stimulus – testing input.

males and four females) were tested. Each volunteer was watching a changing virtual 3D
face with virtual reality headset and each experiment was approximately about 100 s long.
EEG-based excitement and changing distance-between-eyes signals were measured with
sampling period T0 = 0.5 s and recorded in real time.

To estimate the possible relation between human response (excitement) and virtual
3D face feature (distance-between-eyes) a cross-correlation analysis was performed. The
estimates of the maximum cross-correlation function values

max
τ

∣∣ryx[τ ]
∣∣ = max

τ

∣∣∣∣
Ryx[τ ]√

Ryy[0]Rxx[0]

∣∣∣∣ (1)

are shown in Table 1. In Eq. (1) Ryx[τ ] is a cross-covariation function between distance-
between-eyes (x) and excitement (y) signals, and Ryy [τ ], Rxx[τ ] are auto-covariation
functions (Vaškevičius et al., 2014). Examples of cross-correlation functions are demon-
strated in Fig. 3.

The shift of the maximum values of cross-correlation functions in relation to Ryx[0]

allows stating that there exists dynamic relationship between virtual 3D face feature
(distance-between-eyes)and human response (excitement) to them. High cross-correlation
values justify a possibility of linear dynamic relations.
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Table 1
Maximum cross-correlation function values.

No. 1 2 3 4 5 6 7 8
volunteer Female Female Female Female Male Male Male Male

Max. values 0.90 0.68 0.66 0.50 0.83 0.81 0.81 0.48

Fig. 3. Examples of cross-correlation functions of males (left) and of females (right).

3. Input–Output Model

Dependency between human excitement signal as a response to a virtual 3D face fea-
ture (distance-between-eyes) changes is described by linear input-output structure model
(Kaminskas et al., 2014)

A
(
z−1

)
yt = θ0 + B

(
z−1

)
xt + εt , (2)

where

A(z−1) = 1 +

n∑

i=1

aiz
−i , B(z−1) =

m∑

j=0

bjz
−j , (3)

yt is an output (excitement), xt is an input (distance-between-eyes) signals respectively
observed as

yt = y(tT0), xt = x(tT0)

with sampling period T0, εt corresponds to noise signal, z−1 is the backward-shift operator
(z−1xt = xt−1) and θ0 is a constant value.

Eq. (2) can be expressed in the following expanded form

yt = θ0 +

m∑

j=0

bjxt−j −

n∑

i=1

aiyt−i + εt . (4)
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Parameters (coefficients bj and ai , degreesm and n of the polynomials (3) and constant θ0)
of the model (2) or (4) are unknown. Parameter identification is performed in accordance
with the observations obtained during the experiments with the volunteers.

4. Parameter Identification Method

The current estimates of the parameters can be obtained in the identification process from
the condition (Kaminskas, 2007)

ĉt : Q̃t (c) =
1

t − n

t∑

k=n+1

ε2

k|k−1
(c) → min

cǫ�c
, (5)

where

cT = [θ0, b0, b1, . . . , bm, a1, a2, . . . , an] (6)

is a vector of the coefficients of the polynomials (3) and θ0,

εt+1|t(c) = yt+1 − yt+1|t (7)

is one-step-ahead output prediction error,

yt+1|t = θ0 + z
[
1 − A(z−1)

]
yt + B

(
z−1

)
xt+1 (8)

is one-step-ahead output prediction model,

�c =
{
ai :

∣∣zA
i

∣∣ < 1, i = 1,2, . . . , n
}

(9)

is stability domain (unity disk) for the model (2), zA
i is the roots of the polynomial

zA
i : A(z) = 0, i = 1, . . . , n, A(z) = znA

(
z−1

)
, (10)

z is a forward-shift operator (zyt = yt+1), T is a vector transpose sign, sign |.| denotes
absolute value.

Predictive model (8) can be expressed in the form of linear regression

yt+1|t = βT
t c, (11)

where

βT
t = [1, xt+1, xt , . . . , xt−m+1,−yt ,−yt−1, . . . ,−yt−n]. (12)
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Considering Eq. (7) and Eq. (11), identification criterion

Qt (c) =
1

t − n

t∑

k=n+1

(
yk − βT

k−1
c
)2

(13)

is a quadratic form of the vector variable c.
Accordingly, solution of the minimization problem (5) is separated into two stages. In

the first stage, which is application of the least squares method, parameter estimates are
calculated without evaluation of restrictions

ct =

[ t∑

k=n+1

βk−1β
T
k−1

]−1[ t∑

k=n+1

ykβk−1

]
. (14)

In the second stage, these estimates are projected into stability domain (9)

ĉt = Ŵct , (15)

where

Ŵ =




1 0 0
0 Ib 0
0 0 γ Ia


 , 0 < γ 6 1 (16)

is a diagonal block-matrix of projection of the dimension (m + n + 2) × (m + n + 2),
Ib and Ia are correspondingly unity matrix dimension (m + 1) × (m + 1) and (n × n).

Factor γ in matrix (16) is calculated by equation

γ = min{1, γmax − γ0}, (17)

where γmax‖ct‖ is the distance from the point 0 (origin) to the boundary of stability do-
main �c in the direction of ct , ‖.‖ is the Euclidean norm sign, γ0 is a small and positive
constant. When n6 2 (stability domain for the model (2) is defined by linear inequations)
factor γ calculation was given (Kaminskas et al., 2014) and when n6 3 (stability domain
is defined by linear and quadratic inequations) factor γ calculation was given (Kaminskas
and Vidugirienė, 2016).

Estimates of the model orders (m̂, n̂) are defined from the following conditions
(Kaminskas and Vidugirienė, 2016):

m̂ = min{m̃}, n̂ = min{ñ}, (18)

where m̃ and ñ are polynomial (3) degrees when the following inequalities are correct

∣∣∣∣
σε[m,n + 1] − σε[m,n|

σε[m,n]

∣∣∣∣6 δε, n = 1,2, . . . ,

∣∣∣∣
σε[m + 1, n] − σε[m,n|

σε[m,n]

∣∣∣∣6 δε, m = 0,1, . . . , n, (19)
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σǫ[m,n] is one-step-ahead prediction error standard deviation for model order (m,n),
δǫ[0.01,0.1] is chosen constant value (which corresponds to a relative variation of pre-
dictions error standard deviation from 1% to 10%).

Validation of the predictive models (8) was performed for each of eight volunteers
(four males and four females). For the identification of unknown parameters the first 60
to 100 observations were used for each volunteer. For evaluation of the model order and
prediction accuracy all 185 observations were used. Each model is selected from twelve
possible models (when n = 1,2,3, m = 0,1,2,3). The analysis of the experiment results
showed relations between distance-between-eyes and excitement and it can be described
using first order (m̂ = 0, n̂ = 1) model

ŷt+1|t = θ̂0 + b̂0xt+1 − â1yt . (20)

Prediction accuracies with predictive model (20) were correspondingly evaluated us-
ing the prediction error standard deviation, relative prediction error standard deviation and
average absolute relative prediction error (Vaškevičius et al., 2014):

σε =

√√√√ 1

N − n

N−1∑

t=n

(
yt+1 − ŷt+1|t

)2
, (21)

σ̃ε =

√√√√ 1

N − n

N−1∑

t=n

(
yt+1 − ŷt+1|t

yt+1

)2

× 100%, (22)

|ε̄| =
1

N − n

N−1∑

t=n

∣∣∣∣
yt+1 − ŷt+1|t

yt+1

∣∣∣∣ × 100%, (23)

where N = 185. Parameter estimates and a predictor accuracy measures are provided in
Table 2. Figures 4 and 5 show examples of one-step-ahead prediction results when we are
using model (20) for four volunteers.

The analysis of the identification results showed what relations between distance-
between-eyes and excitement is described by first order (m̂ = 0, n̂ = 1) model (20). The

Table 2
Estimates of parameter and prediction accuracy measures.

No. Volunteer θ̂0 b̂0 â1 σε σ̂ε(%) |ε̄| (%)

1 Female 0.0383 −0.0115 −0.9431 0.0391 9.2 7.3
2 Female 0.0042 0.0027 −0.9674 0.0150 10.0 7.2
3 Female 0.0139 0.0060 −0.9244 0.0258 8.7 6.5
4 Female 0.0383 −0.0142 −0.9152 0.0413 10.9 7.4
5 Male 0.0056 −0.0061 −0.9935 0.0252 9.8 7.3
6 Male 0.0152 −0.0104 −0.9833 0.0324 11.4 8.9
7 Male 0.0014 −0.0028 −0.9972 0.0298 11.0 8.3
8 Male 0.0162 −0.0064 −0.9698 0.0386 9.3 7.0

Average 0.0309 10.0 7.5
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Fig. 4. Example of one-step-ahead prediction results for female (right volunteer No. 1 and left No. 2).

Fig. 5. Example of one-step-ahead prediction results for male (right volunteer No. 5 and left No. 6).

validation results show that excitement can be predicted on average with less than 8% av-
erage absolute relative prediction error. Accordingly, input-output structure model (2), (3)
in the predictive form (8) can be applied to the design of prediction-based control system
of human excitement signal.

5. Generalized Minimum Variance Control

A predictor-based control law is synthesized by minimizing control quality criterion Qt

(xt+1) in an admissible domain �x (Kaminskas, 2007)

x∗
t+1

: Qt (xt+1) → min
xt+1ǫ�x

, (24)

Qt (xt+1) = E
{(

yt+1 − y∗
t+1

)2
+ qx2

t+1

}
, (25)

�x =
{
xt+1: xmin 6 xt+1 6 xmax,

∣∣xt+1 − x∗
t

∣∣6 δt

}
, (26)

where E is an expectation operator, y∗
t+1

is a reference signal (reference trajectory for ex-
citement signal), xmin and xmax are input signal boundaries (smallest and largest distance-
between-eyes), δt > 0 are the restriction values for the change rate of the input signal, and
sign |.| denotes absolute value, q > 0 are weight coefficients.
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Fig. 6. The scheme of a generalized minimum variance control with constraints.

Then solving the minimization problem (24)–(26) for one-step ahead prediction model
(8), the control law is described by equations:

x∗
t+1

=

{
min{xmax, x

∗
t + δt , x̃t+1}, if x̃t+1 > x∗

t ,

max{xmin, x
∗
t − δt , x̃t+1}, if x̃t+1 < x∗

t ,
(27)

B̃
(
z−1

)
x̃t+1 = −L

(
z−1

)
yt + y∗

t+1
− θ0, (28)

L(z−1) = z
[
1 − A(z−1)

]
, (29)

B̃
(
z−1

)
= λ + B

(
z−1

)
, λ = q/b0. (30)

If the roots of polynomial

B̃(z) = zmB̃
(
z−1

)
(31)

are in the unity disk

∣∣zB
j

∣∣ < 1, zB
j : B̃(z) = 0, j = 1, . . . ,m, (32)

then from (28)–(30) the following equation is correct

x̃t+1 =
1

b0 + λ

{ n∑

i=1

aiyt+1−i −

m∑

j=1

bj x̃t+1−j + y∗
t+1

− θ0

}
. (33)

If a part or all of polynomial (31) roots do not belong to the unity disk, weight factor |λ|

is increased until all roots rely in the unity disk. The scheme of a generalized minimum
variance controller (27)–(30) is illustrated in Fig. 6.

When inserting the control signal, which is described by equations (28) and (30), to
the model (2) we get a closed-loop system equation

[
B

(
z−1

)
+ λA

(
z−1

)]
yt = B

(
z−1

)(
y∗
t − θ0

)
+ εt . (34)
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It is clear from equation (34), what stability of the closed-loop system is dependent of
characteristic polynomial

D(z) = zdD
(
z−1

)
,

D
(
z−1

)
= B

(
z−1

)
+ λA

(
z−1

)
, d = max{m,n}, (35)

roots, all the roots must be inside the unity disk

∣∣zD
i

∣∣ 6 1, zD
i : D(z) = 0, i = 1,2, . . . , d. (36)

The analysis of characteristic polynomial equation (35) allows to state what having sta-
ble model in the process of the identification (5)–(10), stability of a closed-loop system
is obtained with any arrangement of roots of the polynomial B(z−1), when the weight
factor |λ| is increased.

From equation (34) we get what permanent component of output signal in stationary
regime (y∗

t = y∗) is

y = Kp
(
y∗ − θ0

)
, (37)

where

Kp =
B(1)

B(1) + λA(1)
(38)

is a gain of the transfer function of the reference signal y∗
t in a closed – loop

Wp(z
−1) =

B(z−1)

B(z−1) + λA(z−1)
. (39)

Considering the expression (38), weight factor λ is calculated by equation

λ =
K0(1 − Kp)

Kp
, (40)

where

K0 =
B(1)

A(1)
(41)

is a gain of the transfer function of the input-output model (2)

W
(
z−1

)
=

B(z−1)

A(z−1)
. (42)

From equation (37) follows that sistematic control error

ep = y∗ − y = (1 − Kp)y
∗ + Kpθ0 (43)
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grows if Kp is significantly lower than unit (weight factor |λ| or weight coefficient q in
control criterion (25) are high). Accordingly, the gain Kp is selected from an interval

Kp ∈ [0.8,1], if (b0 > 0) ∧ (K0 > 0)or(b0 < 0) ∧ (K0 < 0) (44)

or

Kp ∈ [1,1.2], if (b0 > 0) ∧ (K0 < 0)or(b0 < 0) ∧ (K0 > 0). (45)

When Kp = 1 (λ = 0, q = 0), we get a minimum variance control, in other cases we
get a generalized minimum variance control.

Modelling experiments consisted of two phases. In the first phase a human excitement
signal as a response to dynamical 3D face stimuli (testing input) were observed. According
with these observations parameter estimates of the predictive model (20) were calculated
using identification. In the second phase, dynamical virtual 3D face features were formed
according with the control law (27) and (33) (control output). The control tasks were to
maintain high excitement levels (reference signals). In this case a control efficiency can
be evaluated by a relative measure

△y =
ȳc − ȳT

ȳT

× 100%, (46)

where ȳT is an average of output yT
t (excitement) as a response to testing input, and ȳc

is an average of output yc
t (excitement) as a response to control input. These measures

are given in Table 3. Examples of excitement control results are shown in Fig. 7 and Fig.
8 (weight factor λ = −0.0224 and weight coefficient q = 0.00026, when Kp = 0.9 or
λ = −0.2346, q = 0.00143, when Kp = 0.8).

Modelling results show that using predictor-based control with constraints a suffi-
ciently good quality of human excitement signal control can be reached. Excitement signal
level can be raised up on average to about 95% (when Kp = 1, minimum variance con-
trol) and about 85%–70% (when Kp = 0.9 and Kp = 0.8, generalized minimum variance
control) in comparison with testing input.

Table 3
Efficiency measure of excitement control.

No. Vol. δt = 12/s δt = 1.2/s δt = 0.3/s

Kp 1 0.9 0.8 1 0.9 0.8 1 0.9 0.8

1 Female 51.1 48.9 45.2 36.8 33.9 16.0 32.0 34.8 33.1
2 Female 86.3 83.4 77.6 83.7 82.5 77.6 80.2 77.6 77.6
3 Female 33.6 32.6 30.6 31.2 31.1 29.3 27.8 24.0 27.4
4 Female 39 35.8 31.9 27.9 17.5 31.4 27.9 16.2 14.1
5 Male 192.8 159.1 121.8 128.6 158.7 121.7 132.0 158.9 121.1
6 Male 161.2 149.0 103.3 131.0 122.7 103.3 37.6 72.5 103.2
7 Male 122.8 118.4 113.1 107.1 118.2 112.6 96.0 98.2 96.9
8 Male 65.2 61.3 57.6 48.9 27.5 50.3 27.3 43.3 55.9

Average 94 86.1 72.6 74.4 74.0 67.8 57.6 65.7 66.2
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Fig. 7. Examples of excitement control for volunteer No. 1 (female). Output: reference signal y∗
t (solid line),

output signals yc
t (dotted line) and yT

t (dashed line). Input: control signal x∗
t (solid line) and testing input xt

(dashed line).

Control quality is influenced by a control signal variation speed which is limited by the
parameter δt of the admissible domain. This parameter allows decreasing control signal
variation which is usually high in minimum variance control systems without constraints.
Control signal variation decreases when a generalized minimum variance control is ap-
plied. In this case, the quality of control depends on a gain coefficient in closed-loop
Kp (38), whose value defines weight factor λ in (30) or weight coefficient q in control
criterion (25).

6. Conclusions

Experimentplanning and cross-correlation analysis results demonstrated that there is a rel-
atively high correlation between 3D face features observed using virtual reality (distance-
between-eyes) and human response (excitement) to the stimuli. The shift of the maximum
values of the cross-correlations functions in relation to origin allows stating that there ex-
ists linear dynamic relationship between distance-between-eyes and excitement signals.
Parameter identification method for building stable input-output structure model is pro-
posed. Identification and validation results of one-step-ahead prediction model (8) show
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Fig. 8. Examples of excitement control for volunteer No. 5 (male). Output: reference signal y∗
t (solid line),

output signals yc
t (dotted line) and yT

t (dashed line). Input: control signal x∗
t (solid line) and testing input xt

(dashed line).

that excitement can be predicted on average with less than 8% average absolute relative
prediction error.

Accordingly, input-output structure model (2) (3) in the predictive form (8) can be
applied to the design of predictor-based control system for controlling human excitement
signal as a response to a dynamic virtual 3D face. Control law is synthesized by minimiz-
ing generalized minimum variance control criterion in an admissible domain for input.
Calculation method of weight factor λ in control law (27)–(30) or weight coefficient q

in control criterion (25) is proposed. This method is based on admissable value of the
systematic control error.

Sufficiently good control quality of excitement signal, maintained signal level is at
average to about 90% (when Kp = 1, minimum variance control) and about 70% (when
Kp = 0.8, generalized minimum variance control with high weight coefficient) higher
compared to testing input, is demonstrated by modelling results. Experiment results
demonstrated possibility to decrease variations of the control signal using a limited sig-
nal variation speed when decreasing constant δt in expression (27) or using a generalized
minimum variance control when increasing weight factor |λ|, which is calculated accord-
ing to equation (40). However, in these cases, particularly applying minimum variance
control, control quality decreases.
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Kaminskas, V., Vaškevičius, E., Vidugirienė, A. (2014). Modeling human emotions as reactions to a dynamical
virtual 3D face. Informatica, 25(3), 425–437.
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