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Abstract. The probabilistic linguistic terms set (PLTS) can reflect different importance degrees

or weights of all possible linguistic terms (LTs) given by the experts for a specific object. The

PROMETHEE II method is an important ranking method which can comprise preferences as well

as indifferences, and it has a unique characteristic that can provide different types of preference

functions. Based on the advantages of the PLTS and the PROMETHEE II method, in this paper, we

extend the PROMETHEE II method to process the probabilistic linguistic information (PLI), and

propose the PL-PROMETHEE II method with an improved possibility degree formula which can

avoid the weaknesses from the original formula. Then concerning the multi-attribute decision mak-

ing (MADM) problems with totally unknown weight information, the maximum deviation method

is used to get the objective weight vector of the attributes, and net flows of the alternatives from the

PROMETHEE II method are used to rank the alternatives. Finally, a numerical example is given to

illustrate the feasibility of the proposed method.

Key words: probabilistic linguistic term, PROMETHEE II, MADM.

1. Introduction

Due to the uncertainty and complexity of decision environment, as well as the ambi-

guity of human thinking, it is impossible to accurately describe the attribute values of

the MADM problems by crisp numbers (Liu, 2017; Li et al., 2014; Liu and Su, 2012;

Liu and Chen, 2017; Liu and Li, 2017; Liu et al., 2016b, 2017a, 2017b; Ye, 2017), how-

ever, it can be depicted more conveniently by linguistic terms (LTs). For example, when

the risk of an investment object is evaluated, decision makers (DMs) are more likely to

using “high”, “medium”, “low” and other similar LTs to express their assessing results

(Dong et al., 2015; Wu et al., 2015), i.e. LTs are more consistent with people’s habits

of thinking. In order to scientifically use the LTs, Zadeh (1975a, 1975b, 1975c) firstly

proposed the linguistic variable (LV) which provided the foundation about the linguistic

MADM (LMADM). Further, LVs are extended to some new types for the different fuzzy
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information, such as intuitionistic linguistic sets and intuitionistic linguistic numbers (Liu

and Wang, 2017; Wang and Li, 2009), intuitionistic uncertain LV (IULV) (Liu and Jin,

2012), interval-valued IULV (Liu, 2013), 2-dimension uncertain LVs (Liu et al., 2016a;

Liu and Teng, 2016), neutrosophic uncertain LVs (Liu and Shi, 2017; Liu and Tang, 2016)

and so on.

Now, there are many linguistic models to process the linguistic information, such as

LVs, the granular LTs (Cabrerizo et al., 2014) and unbalanced LTs (Cabrerizo et al., 2017).

Obviously, these models can express the preferences or assess judgments of DMs only by

one LT. However, in practice, the DMs may have some hesitations on several possible

LTs. In order to deal with such situation, Rodriguez et al. (2012) proposed the hesitant

fuzzy LTSs (HFLTSs). HFLTSs consist of some possible LTs provided by the DMs and

all of these terms have of degrees or weights equal importance. However, the HFLTSs

have caused some new thinking about whether all the LTs exactly have the same impor-

tant degree, and if not, how to describe them. Based on this question, Pang et al. (2016)

extended the HFLTSs to a more general concept, named as probabilistic LTSs (PLTSs).

The PLTSs allow the DMs to provide more than one LT with probability which can ex-

press importance degrees or weights of all the possible evaluation values. In the PLTSs,

LTs can be expressed by multi-granular (Cabrerizo et al., 2014) or unbalanced linguistic

form Cabrerizo et al. (2017). Those improve the flexibility of the expression of linguistic

information. So, compared to other expressed linguistic information, the PLTs are more

suitable to solve the practical problems. At present, there are some studies about PLTs,

for example, Gou and Xu (2016) proposed some novel operational laws about the PLTs,

Bai et al. (2017) proposed the possibility degree formula for PLTSs, Pang et al. (2016)

extended TOPSIS method to the PLTs, Zhang and Xing (2017) extended VIKOR method

to the PLTs.

There are many traditional MADM methods, such as TOPSIS method (Pang et al.,

2016), VIKOR method (Tan et al., 2016; Zhao et al., 2017), TODIM method (Gomes

and Lima, 1991; Liu et al., 2017a; Wang and Liu, 2017), ELECTRE method (Greco

et al., 2011; You et al., 2016) and PROMETHEE method (Brans and Vincke, 1985),

and other well-known decision models like consensus model (Chiclana et al., 2013;

Morente-Molinera et al., 2017) and Grey Additive Ratio Assessment Method (Turskis

and Zavadskas, 2010). Each has its advantages. The TOPSIS method (Pang et al., 2016)

determines a best solution with the shortest distance to the ideal solution and the far-

thest distance to the negative-ideal solution; the VIKOR method (Tan et al., 2016;

Zhao et al., 2017) can give some compromise alternatives based on some conflicting cri-

teria. TODIM method (Gomes and Lima, 1991; Liu et al., 2017b; Wang and Liu, 2017)

can consider DMs’ bounded rationality, and the consensus model (Chiclana et al., 2013;

Morente-Molinera et al., 2017) is a dynamic and iterative group discussion process. Now

they can be extended to many linguistic environments (Li et al., 2017), such as multi-

granular LV (Cabrerizo et al., 2014; Morente-Molinera et al., 2017), unbalanced LV

(Cabrerizo et al., 2017), discrete LV (Massanet et al., 2014). The PROMETHEE (Pref-

erence Ranking Organization Method for Enrichment Evaluations) method was first pro-

posed by Brans and Vincke (1985) in 1980s, and its advantage is that it is simpler than
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other ranking methods and it can give a total ranking method which can comprise pref-

erences as well as indifferences. In general, it includes PROMETHEE I method and

PROMETHEE II method. The PROMETHEE I method gives a partial ranking of the

alternatives, including possible incomparability, and the PROMETHEE II method pro-

vides a total ranking with the net flow. Obviously, PROMETHEE II method is better

than PROMETHEE I because it includes no incomparability even when the compari-

son is difficult. Now, the PROMETHEE II method has been applied to many areas, for

example, Senvar et al. (2014) applied the PROMETHEE II method to multiple crite-

ria supplier selection, Milica and Milena (2016) applied the PROMETHEE II method

to hotel energy performance comparison. In addition, the studies on PROMETHEE II

method with the different preference function also gain great attention (Chen et al., 2011;

Li et al., 2012), and Tan et al. (2016) extended the PROMETHEE II method to HFL en-

vironment. However, the existing PROMETHEE II method cannot process the PLTs.

The PLT’s possibility degree formula was firstly proposed by Bai et al. (2017), and the

aim of the possibility degree formula is to rank the PLTs in a more suitable and accurate

way. It solves some weaknesses that exist in other ranking methods. And to some extent,

it can reduce the loss of the information. But in the practical experiments, we find this

possibility degree formula also has some weaknesses. The first one is that when the PLTs

only have one LT, this formula cannot calculate the correct answer. The second one is

that when the two PLTSs have the same upper limit and lower limit (also have the same

probability), this formula will ignore the data information. So, in this paper, motivated by

Tan et al. (2016), we firstly proposed an improved PLT’s possibility degree formula which

is applied to the PROMETHEE II method preference function, then the PROMETHEE

II method is extended to HFL environment, and the preference function used the HFL’s

possibility degree formula.

As discussed above, we can see the PLTSs allow DMs to express their preferences on

some LTs with different probabilities, and PROMETHEE II method is simple and flexible

total ranking method. Its flexibility is manifested in its use of different preference func-

tions, and here, we proposes the improved possibility degree formula, and applied it to the

preference function. In addition, in order to get objective weight of the attributes, we used

the maximum deviation method to calculate the weights. Therefore, it is meaningful and

necessary to extend the PROMETHEE II method to PLI environment. Motivated by this

idea, the goal and contributions of this paper are (1) to extend PROMETHEE II method

to PLI and propose PL-PROMETHEE II method; (2) to propose the improved possibility

degree formula; (3) to develop a weight determination method based on the PL distance

measures; (4) to show the feasibility and advantages of the proposed methods.

In order to achieve above goal, the remainder of this paper is set as follows. Section 2

gives some basic concepts of PLI and the PROMETHEE II method, and proposes the im-

proved possibility degree formula. In Section 3, we extend the PROMETHEE II method

to the PLI environment (PL-PROMETHEE II). In Section 4, we give an example to illus-

trate the effectiveness of proposed method. In Section 5, we give the conclusions and the

direction of future studies.
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2. Preliminaries

In this part, we introduce some concepts so as to easily understand this study for readers.

2.1. PLTS

Definition 1 (See Pang et al., 2016). Let S1 = {sα | α = −τ, . . . ,−1,0,1, . . . , τ } be a

LTS, a PLTS is defined as:

LS(p) =

{

LS(k)(p(k))
∣

∣LS(k) ∈ S1,p
(k)

> 0, k = 1,2, . . . ,#LS(p),

#LS(p)
∑

k=1

p(k)
6 1

}

,

(1)

where LS(k)(p(k)) represents the LT LS(k) with the probability p(k), and #LS(p) is the

number of all different LTs in LS(p).

2.2. Normalization of PLTS

Definition 2 (See Pang et al., 2016). Given a PLTS LS(p) with
∑#LS(p)

k=1
p(k) < 1, the

associated PLTS L̇S(p) = {LS(k)(ṗ(k)) | k = 1,2, . . . ,#LS(p)} is called as normalized

PLTS, where ṗ(k) = p(k)/
∑#LS(p)

k=1
p(k) for all k = 1,2, . . . ,#LS(p). Obviously, in PLTS

L̇S(p), there is
∑#LS(p)

k=1
ṗ(k) = 1.

Based on Definition 2, the probabilities of all LTs are normalized.

Definition 3 (See Pang et al., 2016). For any two PLTSs LS1(p) = {LS
(k)
1

(p
(k)
1

) | k =

1,2, . . . ,#LS1(p)} and LS2(p) = {LS
(k)
2

(p
(k)
2

) | k = 1,2, . . . ,#LS2(p)}, suppose #LS1(p)

and #LS2(p) are the numbers of LTs in LS1(p) and LS2(p) respectively. If #LS1(p) >

#LS2(p), then #LS1(p) − #LS2(p) LTs will be added to LS2(p) so that the numbers of

their LTs are equal. The added LTs are the smallest ones in LS2(p), and their probabilities

are zero. About the detailed information, please refer to reference (Pang et al., 2016).

By Definitions 2 and 3, the normalized PLTS (NPLTS) are obtained, which are denoted

as LSN (p) = {LSN(k)(pN(k)) | k = 1,2, . . . ,#LS(p)}, where pN(k) = p(k)/
∑#LS(p)

k=1
p(k)

for all k = 1,2, . . . ,#LS(p).

2.3. Comparison Between PLTSs

To compare the PLTSs, Pang et al. (2016) presented the concept of the score of PLTSs:
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Definition 4 (See Pang et al., 2016). Suppose LS(p) = {LS(k)(p(k)) | k = 1,2, . . . ,

#LS(p)} is a PLTS, and r(k) is the subscript of the LT LS(k). Then the score function

E(LS(p)) of LS(p) is given by

E
(

LS(p)
)

= sᾱ, where ᾱ =

#LS(p)
∑

k=1

(

r(k)p(k)
)

/

#LS(p)
∑

k=1

p(k). (2)

Obviously, the score function represents the averaging value of all LTs of a PLTS.

Generally, for a given PLTS LS(p), E(LS(p)) is an extended LT.

Based on the score function of the PLTS, we define the following relationship between

two PLTSs:

Definition 5 (See Pang et al., 2016). For any two given PLTSs LS1(p) and LS2(p), if

E(LS1(p)) > E(LS2(p)), then the PLTS LS1(p) is greater than LS2(p).

However, when E(LS1(p)) = E(LS2(p)), we cannot compare the PLTSs LS1(p) and

LS2(p). Further, in order to process this situation, we can give the following definition.

Definition 6 (See Pang et al., 2016). For a given PLTs LS(p) = {LS(k)(p(k)) | k =

1,2, . . . ,#LS(p)}, suppose r(k) is the subscript of LT LS(k), and E(LS(p)) = sᾱ , where

ᾱ =
∑#LS(p)

k=1
(r(k)p(k))/

∑#LS(p)

k=1
p(k). Then the deviation degree of LS(p) is:

σ
(

LS(p)
)

=

( #LS(p)
∑

k=1

(

p(k)
(

r(k) − ᾱ
))2

)
1

2
/

#LS(p)
∑

k=1

p(k). (3)

For any two PLTSs LS1(p) and LS2(p) with E(LS1(p)) = E(LS2(p)), if σ̄ (LS1(p)) >

σ̄ (LS2(p)), then LS1(p) < LS2(p); if σ̄ (LS1(p)) = σ̄ (LS2(p)), then LS1(p) is indifferent

to LS2(p), denoted by LS1(p) ≈ LS2(p).

Definition 7 (See Pang et al., 2016). For any two given PLTSs LS1(p) and LS2(p),

suppose L̃S1(p) and L̃S2(p) are the corresponding normalized PLTSs respectively. Then

(1) If E(L̃S1(p)) > E(L̃S2(p)), then LS1(p) > LS2(p).

(2) If E(L̃S1(p)) < E(L̃S2(p)), then LS1(p) < LS2(p).

(3) If E(L̃S1(p)) = E(L̃S2(p)), then

(i) If σ̄ (L̃S1(p)) > σ̄ (L̃S2(p)), then LS1(p) < LS2(p).

(ii) If σ̄ (L̃S1(p)) = σ̄ (L̃S2(p)), then LS1(p) ≈ LS2(p).

(iii) If σ̄ (L̃S1(p)) < σ̄ (L̃S2(p)), then LS1(p) > LS2(p).

2.4. Ranking PLTSs by Possibility Degree

The PLTS’s possibility degree formula was firstly proposed by Bai et al. (2017), and its

aim is to rank the PLTs in a more suitable and accurate way. It can solve some existing

weaknesses of the other ranking methods. To some extent, it can reduce the loss of the

information.
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Definition 8 (See Bai et al., 2017). Let LS(p) = {LS(k)(p(k)) | k = 1,2, . . . ,#LS(p)}

is a PLTS, and r(k) is the subscript of the LT LS(k). Let LS− = min(r(k)) and LS+ =

max(r(k)) be the lower bound and the upper bound of LS(p), respectively. The a(LS)− is

the lower area and the a(LS)+ is the upper area, where a(LS)− = min(r(k)) × p(k) and

a(LS)+=max(r(k)) × p(k).

Definition 9 (See Bai et al., 2017). Let S = {sα | α = −τ, . . . ,−1,0,1, . . . , τ } be an

LTS, LS1(p) and LS2(p) be two PLTSs. The possibility degree of LS1(p) being not less

than LS2(p) is defined as

p(LS1(p) > LS2(p))

= 0.5 ×

(

1 +
(a(LS1)

− − a(LS2)
−) + (a(LS1)

+ − a(LS2)
+)

|a(LS1)− − a(LS2)−| + |a(LS1)+ − a(LS2)+| + a(LS1 ∩ LS2)

)

(4)

where a(LS1 ∩ LS2) represent the area of the intersection between LS1(p) and LS2(p).

Definition 10 (See Bai et al., 2017). If p(LS1(p) > LS2(p)) > p(LS2(p) > LS1(p)),

then LS1(p) is superior to LS2(p) with the degree of p(LS1(p) > LS2(p)), denoted by

LS1(p) ≻p(LS1(p)>LS2(p)) LS2(p); if p(LS1(p) > LS2(p)) = 1, then LS1(p) is absolutely

superior to LS2(p); if p(LS1(p) > LS2(p)) = 0.5, then LS1(p) is indifferent to LS2(p),

denoted by LS1(p) = LS2(p).

But in the practical experiments, we find this possibility degree formula also has some

weaknesses.

The first one is that when the PLTSs only have one LT, this formula cannot give the

correct result. For example, we have two PLTSs LS1(p) = {s2(0.3), s3(0.7)} and LS2(p) =

{s1(1)}, and we can see the LS1(p) is absolutely superior to the LS2(p), so we can get

p(LS1(p) > LS2(p)) = 1. However, according to Eq. (4), we have

p
(

LS1(p) > LS2(p)
)

= 0.5 ×

(

1 +
(0.6 − 1) + (2.1 − 1)

|0.6 − 1| + |2.1 − 1| + 0

)

=
11

15
.

Obviously, this result is counterintuitive.

The second one is that when the two PLTSs have the same upper limit and lower

limit (also have the same probability), this formula will lose the data information.

For example, we have two PLTs LS3(p) = {s−1(0.3), s2(0,3), s3(0.4)} and LS4(p) =

{s−1(0.3), s0(0.3), s3(0.4)}, according to Eq. (5), we can get the possibility degree

p(LS1(p) > LS2(p)) = 0.5, but from intuition, we can get the LS3(p) is superior to

LS4(p) because the medium elements of PLTSs are different, the ranking results should

also be different.

Based on the above two aspects, we developed the improved possibility degree formula

to overcome these defects.

Firstly, when the two PLTs have no common LTs, we divided this into two conditions.
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Condition 1. All the probabilistic linguistic elements (PLEs) and their subscripts in the

PLTs are smaller (bigger) than the other one.

Under this condition, we can directly judge the possibility degree of PLTs, usually it

has two conditions: if all the PLEs and their subscripts in LS1(p) are bigger than LS2(p),

then p(LS1(p) > LS2(p)) = 1; if all the PLEs linguistic terms subscript in LS1(p) are

smaller than LS2(p), then p(LS1(p) > LS2(p)) = 0.

Condition 2. When the two PLTs have common PLEs, we can use the following formula

to calculate the possibility degree:

p
(

LS1(p)> LS2(p)
)

= 0.5 ×

(

1 +

∑#LS1

k=1
(a(LS1)

(k) − a(LS2)
(k))

∑#LS1

k=1
|(a(LS1)(k) − a(LS2)(k))| + a(LS1 ∩ LS2)

)

. (5)

In order to make sure all the PLTs have the same number of PLEs, we should normalize

the PLTs. In the above formula, the #LS1 and #LS2 are the numbers of all LTs in LS1(p)

and LS2(p), and the #LS1 and #LS2 are equal.

2.5. PROMETHEE II Method

The PROMETHEE method is a multicriteria analysis method that was proposed by Brans

and Vincke (1985) in 1985, including the PROMETHEE I and the PROMETHEE II.

In the PROMETHEE I method, the solution set is sorted by positive flow and negative

flow, and it only obtains a partial ranking of the solution set. In PROMETHEE II method,

it obtains a complete ranking by a net flow.

Let M = {1,2, . . . ,m} and N = {1,2, . . . , n}, and suppose the decision matrix X =

[xij ]m×n, where xij is the j -th attribute value with respect to the i-th alternative, and then

normalize X = [xij ]m×n into X̃ = [x̃ij ]m×n, xij and x̃ij are all crisp numbers, i ∈ M ,

j ∈ N .

The procedures of the PROMETHEE II method are showed as follows:

Step 1. Determine the weight wj of the attribute Cj .

Step 2. Utilize a preference function pj (xij ) for each attribute Cj . (Select the prefer-

ence function according to the actual problem.)

Step 3. Calculate the multicriterion preference index of the alternative xi over the al-

ternative xk (k = 1, . . . ,m) by using the following expression:

∏

(xi, xk) =

n
∑

j=1

ωjPj (x̃ij , x̃kj ). (6)

Step 4. Calculate the positive flow and negative flow of each alternatives:

ϕ+(xi) =

m
∑

k=1

∏

(xi, xk) =

m
∑

k=1

n
∑

j=1

ωjPj (x̃ij , x̃kj ), (7)
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ϕ−(xi) =

m
∑

k=1

∏

(xk, xi) =

m
∑

k=1

n
∑

j=1

ωjPj (x̃kj , x̃ij ). (8)

Step 5. Calculate the net flow of the alternative:

ϕ(xi) = ϕ+(xi) − ϕ−(xi). (9)

Step 6. According to the value of ϕ(xi), rank all the alternatives.

If ϕ(xi) > ϕ(xk), then xi ≻ xk,

If ϕ(xi) = ϕ(xk), then xi ≈ xk.

3. PL-PROMETHEE II Method

3.1. Determining Weights Based on the Maximum Deviation Method

In the MADM problem, the weight reflects the importance of each attribute. There are

many methods which can determine attribute weights, such as expert opinion survey

method, AHP method, and so on, but these methods have subjective factors in determin-

ing the attribute weights. In order to avoid the influence of subjective factors, we use the

maximum deviation method to calculate the object weights of the attributes.

We use the distance to represent the deviation in the maximum deviation method, and

Lin and Xu (2017) provided a series of probabilistic linguistic (PL) distance measure, here

we used the normalized Hamming distance measure. Based on this measure, we form a

systematic weight calculation method.

The steps are shown as follows:

(1) Normalize the PL decision matrix R = [LS(p)ij ]m×n;

(2) According to the PL distance measure, calculate the distance of LS(p)ij .

d
(

LS
(k1)
1

(

pk1

1

)

,LS
(k2)
2

(

pk2

2

))

=

∣

∣

∣

∣

pk1

1
×

I (LS
(k1)
1

)

τ
− pk2

2
×

I (LS
(k2)
2

)

τ

∣

∣

∣

∣

, (10)

dnhd

(

LS1(p),LS
2
(p)
)

=
1

#LS
1
(p)

#L1(p)
∑

k=1

d
(

LS
(k1)
1

(

pk1

1

)

,LS
(k2)
2

(

pk2

2

))

, (11)

where LS
(k1)
1

(pk1

1
) ∈ LS1(p) and LS

(k2)
2

(pk2

2
) ∈ LS2(p) are two PLTEs, I (LS

(k1)
1

) and

I (LS
(k2)
2

) are the subscripts of the linguistic terms LS
(k1)
1

and LS
(k2)
2

.

Finally, the weight of each attribute can be gotten as following:

wj =

∑m
i=1

∑m
l=1

d(LS(p)ij ,LS(p)lj )
∑n

j=1

∑m
i=1

∑m
l=1

d(LS(p)ij ,LS(p)lj )
. (12)
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3.2. A Decision Making Method Based on the PL-PROMETHEE II Method

For a MADM problem with PLI, let A = {A1,A2, . . . ,Am} be a finite set of alterna-

tives, C = {C1,C2, . . . ,Cn} be the set of attributes and ω = (ω1,ω2, . . . ,ωn)
T be the

weight vector of attributes Cj (j = 1,2, . . . , n), with ωj ∈ [0,1], j = 1,2, . . . , n and
∑n

j=1
ωj = 1. Suppose that R = [LS(p)ij ]m×n is the decision matrix, where LS(p)ij =

{LS
(t)
ij (p

(t)
ij ) | t = 1,2, . . . ,#LS(p)ij } is a PLTS, which is an evaluation value of alternative

Ai about attribute Cj . Then the goal is to rank the alternatives.

Step 1. Normalize the attribute values.

In real decision making, the attribute values have two types, i.e. cost type and benefit

type. In order to eliminate the difference in types, we need to convert them to the same

type.

We can convert the cost type to the benefit type, and the transformed decision matrix

is expressed by R = [LS(p)ij ]m×n, where

LS(p)ij =

{

{LS
(t)
ij (p

(t)
ij ) | t = 1,2, . . . ,#LS(p)ij } for benefit attribute Cj ,

{−LS
(t)
ij (p

(t)
ij ) | t = 1,2, . . . ,#LS(p)ij } for cost attribute Cj .

(13)

Then, according to the Definitions 2 and 3, to normalize the PL decision matrix.

Step 2. Determine the weight wj of the attribute Cj with the maximum deviation

method by formulas (10)–(12).

Step 3. Calculate the multicriterion preference index of the alternative Ai over the

alternative Ak (k = 1, . . . ,m) by the following expression:

∏

(Ai,Ak) =

n
∑

j=1

ωjPj

(

LS(p)ij ,LS(p)kj
)

. (14)

Step 4. Calculate the positive flow and negative flow of each alternative:

ϕ+(Ai) =
1

m

m
∑

k=1

∏

(Ai,Ak) =
1

m

m
∑

k=1

n
∑

j=1

ωjPj

(

LS(p)ij ,LS(p)kj
)

, (15)

ϕ−(Ai) =
1

m

m
∑

k=1

∏

(Ak,Ai) =
1

m

m
∑

k=1

n
∑

j=1

ωjPj

(

LS(p)kj ,LS(p)ij
)

. (16)

Step 5. Calculate the net flow of each alternative:

ϕ(Ai) = ϕ+(Ai) − ϕ−(Ai). (17)

Step 6. Rank LSi (i = 1,2, . . . ,m) according to the value of ϕ(Ai).

Step 7. End.
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Table 1

The decision matrix with PLTs for Example 1.

C1 C2 C3

A1 {s0(0.4), s1(0.6)} {s2(1)} {s−1(0.2), s0(0.8)}

A2 {s2(0.3), s3(0.7)} {s0(1)} {s1(0.2), s2(0.4), s3(0.4)}

A3 {s1(1)} {s1(0.5), s2(0.5)} {s2(0.6), s3(0.4)}

A4 {s2(0.5), s3(0.5)} {s−2(0.4), s−1(0.1), s0(0.2), s1(0.3)} {s1(1)}

Table 2

The normalized decision matrix with PLTs for Example 1.

C1 C2 C3

A1 {s0(0), s0(0), s0(0.4), s1(0.6)} {s2(0), s2(0), s2(0), s2(1)} {s−1(0), s−1(0), s−1(0.2), s0(0.8)}

A2 {s2(0), s2(0), s2(0.3), s3(0.7)} {s0(0), s0(0), s0(0), s0(1)} {s1(0), s1(0.2), s2(0.4), s3(0.4)}

A3 {s1(0), s1(0), s1(0), s1(1)} {s1(0), s1(0), s1(0.5), s2(0.5)} {s2(0), s2(0), s2(0.6), s3(0.4)}

A4 {s2(0), s2(0), s2(0.5), s3(0.5)} {s−2(0.4), s−1(0.1), s0(0.2), s1(0.3)} {s1(0), s1(0), s1(0), s1(1)}

4. Numerical Example

Example 1. Because of limited medical resources and the increasingly serious environ-

mental pollution in China, it is necessary to evaluate large domestic hospitals so as to

search for the optimal one with appropriate resource allocation and the reasonable re-

source input and output. There are three attributes which are adopted: the hospital envi-

ronmental status (C1); personalized diagnosis and treatment optimization (C2); and social

resource allocation optimization (C3).The experts compare each pair of hospitals using the

LTS S = {s−3, s−2, s−1, s0, s1, s2, s3}. The weight vector of these attributes is unknown

and it is determined by the maximum deviation method. There are four hospitals, which

are the West China Hospital of Sichuan University (A1), the Huashan Hospital of Fudan

University (A2), the Union Medical College Hospital (A3) and the Chinese PLA General

Hospital (A4), to be evaluated and the decision matrix is shown in Table 1. The goal is to

select the best one.

According to the Definition 2 and Definition 3, we can standardize the data in Table 1

into Table 2. For example, the {s0(0.4), s1(0.6)} only have two PLEs, and it needs to be

normalized to four PLEs, so it will add two s0(0). The normalized data is shown in Table 2.

4.1. The Decision Steps

Step 1: Because all attributes are benefit type, it is only needed to use the Definitions 2

and 3 to normalize the attribute values.

Step 2: Calculate the attribute weights by formula (12), we can get

d
(

LS(p)i1,LS(p)k1

)

=









0 0.175 0.033 0.158

0.175 0 0.142 0.083

0.033 0.142 0 0.125

0.158 0.083 0.125 0









,
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d
(

LS(p)i2,LS(p)k2

)

=









0 0.167 0.125 0.217

0.167 0 0.125 0.100

0.125 0.125 0 0.175

0.217 0.100 0.175 0









,

d
(

LS(p)i3,LS(p)k3

)

=









0 0.200 0.217 0.100

0.200 0 0.050 0.100

0.217 0.050 0 0.117

0.100 0.100 0.117 0









.

Then

w = (0.298,0.377,0.325)T .

Step 3: Utilize the improved possibility degree formula for each Cj based on formula (5),

we have

p
(

LS(p)i1,LS(p)k1

)

=









0.500 0 0.115 0

1 0.500 1 0.556

0.885 0 0.500 0

1 0.444 1 0.500









,

p
(

LS(p)i2,LS(p)k2

)

=









0.500 1 0.917 1

0 0.500 0 0.944

0.083 1 0.500 0.944

0 0.056 0.056 0.500









,

p
(

LS(p)i3,LS(p)k3

)

=









0.500 0 0 0

1 0.500 0.429 0.929

1 0.571 0.500 1

1 0.071 0 0.500









.

Step 4: Calculate the multi-criterion preference index of the alternative Ai over the alter-

native Ak (k = 1, . . . ,m), and we obtain

∏

(Ai,Ak) =









0.500 0.100 0.115 0.100

0.900 0.500 0.500 0.856

0.885 0.500 0.500 0.794

0.900 0.144 0.206 0.500









.

Step 5: Calculate the positive flow and negative flow of each alternatives: Ai (i =

1,2,3,4) based on formula (15)–(16), we have

ϕ+(Ai) = (0.815,2.756,2.68,1.75),

ϕ−(Ai) = (3.185,1.244,1.32,2.25).
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Table 3

Comparing the methods.

Method by Methods Final result Ranking

Gou and Xu

(2016)

PL-TOPSIS

(w = (0.2,0.1,0.7)T )

CI(A1) = −3.752, CI(A2) = 0,

CI(A3) = −0.566, CI(A4) = −2.618

A2 ≻ A3 ≻ A4 ≻ A1

Gou and Xu

(2016)

PL-TOPSIS

(w = (0.298,0.377,0.325)T )

CI(A1) = −0.818,CI(A2) = −0.117,

CI(A3) = −0.125,CI(A4) = −1.094

A2 ≻ A3 ≻ A1 ≻ A4

Proposed

method

PL-PROMETHEEII

(w = (0.2,0.1,0.7)T )

ϕ(A1) = −2.37, ϕ(A2) = 1.511

ϕ(A3) = 1.359, ϕ(A4) = −0.5

A2 ≻ A3 ≻ A4 ≻ A1

Proposed

method

PL-PROMETHEEII

(w = (0.298,0.377,0.325)T )

ϕ(A1) = −0.732, ϕ(A2) = 0.767

ϕ(A3) = 0.727, ϕ(A4) = −0.763

A2 ≻ A3 ≻ A1 ≻ A4

Step 6: Calculate net flow of each Ai (i = 1,2,3,4) based on formula (17), we have

ϕ(Ai) = (−2.37,1.511,1.359,−0.5).

Step 4: Rank the alternatives.

According to the value of ϕ(Ai), the ranking is A2 ≻ A3 ≻ A4 ≻ A1.

4.2. Discussion

In this part, we discuss the effectiveness and advantages of our proposed method.

First of all, we will verify the effectiveness of the methods. The weights of our pro-

posed method w = (0.298,0.377,0.325)T are calculated by the method of maximiz-

ing deviations, but the method proposed by Gou and Xu (2016) used the given weights

ω = (0.2,0.1,0.7)T . In order to eliminate this difference and make the contrast clearer,

our proposed method will also use the given weights ω = (0.2,0.1,0.7)T to re-calculate

this example, and we also re-calculate the method of Gou and Xu (2016), it is used for

comparison with our proposed method with w = (0.298,0.377,0.325)T .

Different weights with the different methods and the comparison results can be seen

as follows.

From Table 3, we can find that (1) under the given weights ω = (0.2,0.1,0.7)T , the

PL-PROMETHEE II method and the PL-TOPSIS method have the same ranking results;

(2) under the weights w = (0.298,0.377,0.325)T , the PL-PROMETHEE II method and

the PL-TOPSIS method also have the same ranking results; (3) under the different weights,

the method will have the same best and second choices. So the method proposed in this

paper is effective and feasible.

Secondly, we will show the advantage of the proposed method. Here, we will prove this

from two aspects. The one is that our proposed method used the PROMETHEE method

and the improved possibility degree formula. The improved possibility degree formula

takes into account all the data, so it avoids the loss of information,provides a more accurate

and convenient way to calculate the possibility degree; the last one is that we combine

the PLTSs with the PROMETHEE method. The PLTs can express DMs thoughts more

flexibly and accurately. Because the PLTSs allow the DMs to provide more than one LT

with probability, the PLTs are more suitable to solve the practical problems.



The PROMTHEE II Method Based on Probabilistic Linguistic Information 315

Table 4

Comparing with the methods for different possibility degrees.

Method by Methods Net flow ϕ(Ai ) Ranking

Bai et al. (2017) PL-PROMETHEEII

(w = (0.2,0.1,0.7)T )

ϕ(A1) = −2.371, ϕ(A2) = 0.167

ϕ(A3) = 1.753, ϕ(A4) = 0.451

A3 ≻ A4 ≻ A2 ≻ A1

Bai et al. (2017) PL-PROMETHEEII

(w = (0.298,0.377,0.325)T )

ϕ(A1) = −0.732, ϕ(A2) = 0.037

ϕ(A3) = 1.013, ϕ(A4) = −0.319

A3 ≻ A2 ≻ A4 ≻ A1

Proposed method PL-PROMETHEEII

(w = (0.2,0.1,0.7)T )

ϕ(A1) = −2.37, ϕ(A2) = 1.511

ϕ(A3) = 1.359, ϕ(A4) = −0.5

A2 ≻ A3 ≻ A4 ≻ A1

Proposed method PL-PROMETHEEII

(w = (0.298,0.377,0.325)T )

ϕ(A1) = −0.732, ϕ(A2) = 0.767

ϕ(A3) = 0.727, ϕ(A4) = −0.763

A2 ≻ A3 ≻ A1 ≻ A4

1. The advantage from the improved possibility degree formula.

Here we use the same method and different possibility formula to make comparison,

at the same time, we take the weight into consideration, so we also set two weights for

comparison, and the comparison results are shown in the Table 4.

From Table 4, we can find that (1) under the given weights ω = (0.2,0.1,0.7)T , the

proposed method in this paper and the method proposed by Bai et al. (2017) have the

different ranking results; (2) under the weights w = (0.298,0.377,0.325)T , the proposed

method in this paper and the method proposed by Bai et al. (2017) have the different

ranking results; (3) under the different weights, the methods also have the different re-

sults. From the Example 1, we can find that there are more than one PLT with only one

PLE, but Bai et al. (2017) proposed the possibility degree formula cannot be calculated,

it doesn’t take account of this situation. So, the results from the method (Bai et al., 2017)

are inconsistent with the reality because it only considers the maximum and minimum

values, ignores the medium PLEs information, and results in the loss of information and

the deviation from the final result. The possibility degree formula proposed in this paper

can overcome the shortcomings existing in the method proposed by Bai et al. (2017). So,

the proposed method can produce a good solution to this problem.

To make it clear, we will explain it in the following details.

Compared with the possibility degree formula proposed by Bai et al. (2017), the im-

proved possibility degree formula proposed in this paper has more advantages. Firstly, we

can explain the existing weaknesses in the method of Bai et al. (2017). The first one is that

when the PLTs only have one LT, this formula cannot give a correct result. The second

one is that when the two PLTs have the same upper bound and lower bound (also have the

same probability), this formula will lose the data information. However, the improved pos-

sibility degree formula proposed in this paper solved the weaknesses and further reduced

the loss of information, improved the accuracy of final results.

2. The advantage from the PLTs.

The PLTs are extended from the HFLs, and based property of the HFLs that all terms

have equal importance degree or weight, we can change the HFLs into the form of PLTs.

It can be expressed as that all possible linguistic terms in HFLTs have same possibilities.

Here, we change the PLTs in Example 1 into the HFLs shown in Table 5 and Table 6.
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Table 5

The decision matrix with HFL-PLTDs for Example 1.

C1 C2 C3

A1 {s0(0.5), s1(0.5)} {s2(1)} {s−1(0.5), s0(0.5)}

A2 {s2(0.5), s3(0.5)} {s0(1)} {s1(0.33), s2(0.33), s3(0.33)}

A3 {s1(1)} {s1(0.5), s2(0.5)} {s2(0.5), s3(0.5)}

A4 {s2(0.5), s3(0.5)} {s−2(0.25), s−1(0.25), s0(0.25), s1(0.25)} {s1(1)}

Table 6

The normalized decision matrix with HFL-PLTDs for Example 1.

C1 C2 C3

A1 {s0(0), s0(0), s0(0.5), s1(0.5)} {s2(0), s2(0), s2(0), s2(1)} {s−1(0), s−1(0), s−1(0.5), s0(0.5)}

A2 {s2(0), s2(0), s2(0.5), s3(0.5)} {s0(0), s0(0), s0(0), s0(1)} {s1(0), s1(0.33), s2(0.33), s3(0.33)}

A3 {s1(0), s1(0), s1(0), s1(1)} {s1(0), s1(0), s1(0.5), s2(0.5)} {s2(0), s2(0), s2(0.5), s3(0.5)}

A4 {s2(0), s2(0), s2(0.5), s3(0.5)} {s−2(0.25), s−1(0.25), s0(0.25), s1(0.25)} {s1(0), s1(0), s1(0), s1(1)}

Table 7

Ranking results by different methods with HFL-PLTDs for Example 1.

Method by Methods Expected values E(Li) Ranking

Extended method HFLR-PROMETHEEII

(w = (0.2,0.1,0.7)T )

ϕ(A1) = −2.377, ϕ(A2) = 0.795

ϕ(A3) = 1.458, ϕ(A4) = 0.124

A3 ≻ A2 ≻ A4 ≻ A1

Proposed method PL-PROMETHEEII

(w = (0.2,0.1,0.7)T )

ϕ(A1) = −2.370, ϕ(A2) = 1.511

ϕ(A3) = 1.359, ϕ(A4) = −0.500

A2 ≻ A3 ≻ A4 ≻ A1

Then we used the same method and same weight to get the ranking results shown in

Table 7.

From Table 7, we can find that there are the different ranking results by using two meth-

ods. The two methods are using the same weight, and same PROMETHEE II method, they

just use the different LTs. Because of the all of the HFLs terms have equal probability, it

seem that it ignores the effect of the probability. In the face of practical problems, probabil-

ity has a great effect. So, the PLTs have better advantages to deal with practical problems

and are more effective than HFLs.

5. Conclusion

The PLTSs can reflect different importance degrees or weights of all possible LTs, so they

can more fully express the linguistic fuzzy information, and now some MADM methods

have been extended to process the PLTSs. In addition, the PROMETHEE II method is

the simple and flexible total ranking method, and its flexibility is manifested in its use

of different preference functions. In this paper, we proposed the improved possibility de-

gree formula, and applied it to the preference function. Further, we proposed the PL-

PROMETHEE II method. Finally, we use the examples to show that this method is more

flexible and general to solve the MAGDM problems with the PLI than the existing meth-

ods.
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In further research, it is necessary to use the proposed method to solve some real deci-

sion making problems, or the proposed method is extended to some new fuzzy information

and to the consensus models and heterogeneous models or models under incomplete pref-

erences (Capuano et al., 2017; Liu et al., 2017a; Zhao et al., 2017).
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