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Abstract. The new nonlocal delayed feedback controller is used to control the production of drugs
in a simple bioreactor. This bioreactor is based on the enzymatic conversion of substrate into the
required product. The dynamics of this device is described by a system of two nonstationary nonlin-
ear diffusion-reaction equations. The control loop defines the changes of the substrate concentration
delivered into the bioreactor at the external boundary of the bioreactor depending on the difference
of measurements of the produced drug delivered into the body and the flux of the drug prescribed
by a doctor in accordance with the therapeutic protocol. The system of PDEs is solved by using the
finite difference method, the control loop parameters are defined from the analysis of stationary lin-
earized equations. The stability of the algorithm for the inverse boundary condition is investigated.
Results of computational experiments are presented and analysed.
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1. Introduction

Mathematical problems of biological systems are attracting a lot of attention from special-
ists in many fields. In this paper, from mathematical point of view we restrict to models
described by non-stationary and non-linear diffusion–reaction equations. The dynamics
of their solutions can be very complicated, the interaction of different physical processes
can lead to development of spatial and temporal patterns and instabilities (Murray, 2002).

The delayed feedback control mechanism is used in many technological applications
(Pyragas, 2006; Novičenko, 2015). The recent developments of this technique for opti-
mal control of processes in smart bioreactors is one of the most interesting new theo-
retical and computational challenges (Ivanauskas et al., 2017; Kok Kiong et al., 1999;
Yordanova and Ichtev, 2017). Our main aim is to propose a new feedback control algo-
rithm for advanced bioreactors by using nonlocal formulations of the control functionals.
This method enables automatic adaptation of rates of produced drugs to the treatment pro-
cedures specified by medical doctors. Such a technology gives a very convenient, flexible
and robust tool for patients. The analysis is based on virtual simulation of real physical
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processes and demonstrates a potential of virtual mathematical modelling technique in
biomedicine applications.

The rest of this paper is organized as follows. In Section 2 a system of two nonstationary
nonlinear diffusion-reaction equations is formulated. This model describes the dynamics
of the substrate S (prodrug) and the product P (drug). The three classical boundary con-
ditions (two for P and one for S) are specified at the boundary of domain. The last fourth
boundary condition defines the flux of P at x = 0. Thus a nonclassical combination of
boundary conditions is used. The inverse problem is formulated to find the equivalent
boundary condition for the substrate function S(X, t).

In Section 3 the proportional nonlocal controller is proposed in a control loop of the
delayed feedback system. The parameters of control function are defined by solving the
stationary (limit) system of equations, when the nonlinear interaction term is linearized
around some constant value. At the boundary of domain, both the substrate value S(X, t)

and the flux DSS′
x(X, t) can be used in the control loop. In addition, the total amount of

the produced drug can be controlled by the proposed feedback control algorithm.
The finite volume method is used to approximate the diffusion process in Section 4.

The second order symmetrical difference scheme is applied. The time derivatives and re-
action terms are approximated by the symmetrical Euler method. The predictor-corrector
method is applied to linearize the obtained discrete nonlinear substrate equation.

In Section 5 results of computational experiments are presented. First it is investigated
how accurately the unknown boundary condition is recovered by the proposed control
loop, when the test functions of the product flux are computed apriori by using some
smooth boundary conditions of the substrate. The stability of the algorithm with respect to
perturbations of the given drug flux is investigated. Next, two test problems are solved for
different known treatment protocols. In both cases the produced drug rates are very close
to the required fluxes of the drug. Also, the robustness of the proposed control method
is investigated, when the parameters of bioreactors are perturbed. Final conclusions are
presented in Section 6.

2. Mathematical Models

In this paper, we consider a simple model used to simulate dynamics of various bioreactors
(Hillen and Painter, 2009). It is based on a system of two equations:

∂S

∂t
= DS

∂2S

∂x2
− V S

KM + S
, (x, t) ∈ D = {0 < x < X, 0 < t 6 T },

∂P

∂t
= DP

∂2P

∂x2
+ V S

KM + S
, (1)

where t and x are time and space variables, S(x, t) and P(x, t) are real valued functions.
S defines the concentration of the substrate of the enzyme and P is the concentration
of a product. This type of bioreactors is interesting for medical applications, since the
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enzymatic reaction converts a substrate of the enzyme S (which is a prodrug material) into
the active drug P . Such technology can be considered as a smart technology producing
the drug on demand. In the presented model the reaction conversation is described as
the most simple Michaelis-Menten process. An extended review of models on nonlinear
reactions in bioreactors is given in Murray (2003), Čiegis and Bugajev (2012), a very
good practical user guide on such models is presented in Hillen and Painter (2009). We
note that this model is also considered in paper Ivanauskas et al. (2017). The enzyme is
uniformly distributed in the reactor, and the substrate S diffuses in the bioreactor with the
diffusion coefficient DS . The product of the reaction P diffuses inside the bioreactor with
the diffusion coefficient DP .

It is interesting also to consider more complicated bio-reaction processes (Hillen and
Painter, 2009). The second simplification of the presented model is due to the fact that a
transport process is described only by the diffusion. For many bioreactors the convection
process also significantly influences the behaviour of the devices. Such extensions of the
model will be considered in the next paper.

In order to define a full mathematical model we formulate initial conditions

S(x,0) = 0, P (x,0) = 0, 0 6 x 6 X (2)

and three boundary conditions:

P(0, t) = 0, DP
∂P

∂x
(X, t) = 0, t > 0,

DS
∂S

∂x
(0, t) = 0. (3)

The last boundary condition specifies the flux of P at the boundary x = 0:

DP
∂P

∂x
(0, t) = Q(t), 0 < t 6 T , (4)

where Q(t) defines the flux of the drug prescribed by a doctor in accordance with the
therapeutic protocol.

Such a combination of boundary conditions is not defining a classical well-posed
boundary value problem. In order to use such bioreactors in real life applications, we
propose to find the equivalent boundary condition for the substrate function

S(X, t) = s(t), (5)

where s(t) is unknown function. Then for S we get a well-posed non-stationary boundary
value problem.

In general the inverse problems belong to the class of ill-posed problems (Aster et
al., 2012). A more flexible for applications mathematical model is obtained if for s(t) we
consider the variational problem (Tikhonov and Arsenin, 1977): find s(t) such that

∣

∣

∣

∣

DP
∂Ps

∂x
(0) − Q

∣

∣

∣

∣

= min
s̃∈W

∣

∣

∣

∣

DP
∂Ps̃

∂x
(0) − Q

∣

∣

∣

∣

, (6)
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where W defines a feasible set of boundary conditions and Ps defines a product function,
when s(t) is used as a boundary condition in (5). In the next section we investigate the
stability of the obtained inverse problem and show that it can be treated as a well-posed
model with a bounded stiffness constant.

The additional boundary condition (5) defines a concentration of the substrate at the
boundary of the bioreactor x = X. Depending on technological requirements, it is pos-
sible also to consider the boundary condition when the incoming flux of the substrate
concentration is specified

DS
∂S

∂x
(X, t) = q(t). (7)

Again we get a well-posed initial-boundary value problem for S, if the function q(t) is
given. For the system of equations (1)–(4) this function should be obtained by solving the
inverse problem.

3. The Delayed Feedback Control Loop

In this section we use the delayed feedback control loop technology (controllers) to achieve
the desired regime of drug production (Kok Kiong et al., 1999). Instead of solving directly
the inverse problem for the boundary condition (5) (or (7)) we consider the approach
based on the nonlocal delayed feedback control method. Our aim is to select some efficient
manipulated variable and to formulate an equivalent well-posed boundary value problem
in order to produce the required flux of drugs at the boundary x = 0. Thus we are interested
to develop a dynamic control system based on proportional delayed feedback controllers.

A classical proportional–integral–derivative controller (PID controller) is used in pa-
per (Ivanauskas et al., 2017). The authors have attempted to minimize the error over the
drug production by adjustment of a control variable S(X, t) to a new value determined by
a weighted sum:

S(X, t) = Kpe(t) + Ki

∫ t

0

e(s) ds + Kd
de(t)

dt
, (8)

where e(t) = Q(t)−QR(t) is the difference between a desired amount of produced drugs
Q(t) and a measured process variable QR(t). Kp , Ki and Kd denote non-negative coef-
ficients for the proportional, integral, and derivative terms of the error. The selection of
S(X,d) as a control variable seems quite questionable in this model. The stability analysis
of the proposed PID controller is not presented in Ivanauskas et al. (2017) and optimal
values of coefficients Kp , Ki and Kd are selected experimentally.

Our approach to construct the proportional controller is based on the following ideas.
The reformulated initial boundary value problem (1)–(3), (5) defines a system of two
parabolic type equations. Since for the reaction term we have the estimate

d

dS

(

S

KM + S

)

= KM

(KM + S)2
> 0
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and due to the maximum principle valid for the parabolic problems, the flux of function P

at x = 0 depends monotonically on the boundary value s of the substrate concentration S.
We are interested to control a so-called steady-state error. Thus the asymptotic anal-

ysis of stationary (limit) system of equations is done and the nonlinear interaction term
is linearized around some constant value of S. Due to the maximum principle it is rec-
ommended to linearize this term around a zero value of S. The following system of two
linear differential equations for functions S̃(x) and P̃ (x) is considered:

−DS S̃′′ + V

K
S̃ = 0, 0 < x < X, (9)

S̃′(0) = 0, S̃(X) = A,

−DP P̃ ′′ = V

K
S̃, 0 < x < X, (10)

P̃ (0) = 0, P̃ ′(X) = 0.

The solution of problem (9) is given by

S̃(x) = A
eλx + e−λx

eλX + e−λX
, λ =

√

V/(KDS).

Substituting it into (10) and integrating we get the flux of P̃ at x = 0:

DP P̃ ′(0) = µA, µ =
√

V DS√
K

eλX − e−λX

eλX + e−λX
. (11)

Using this information a simple definition of the proportional controller algorithm is
obtained. In order to follow the dynamics of drug flux prescribed by a doctor, the required
supply of the substrate into the bioreactor is defined as:

S(X, t) = 1

µ
Q(t). (12)

For most applied bioreactors the estimate λX ≪ 1 is satisfied. Then we can derive the
following estimate of the control parameter

µ ≈
√

V DS√
K

λX = V X

K
.

This information gives a possibility for bio-engineers to select optimal parameters of ap-
plied bioreactors.

3.1. The Control Algorithm Based on the Boundary Value of Substrate S

The smart bioreactors have a possibility to perform the electrochemical monitoring of the
enzymatic reaction. Let us assume that we can measure the concentration of the produced
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drug flux QR(t). Then the delayed feedback control loop can be used to regulate the sub-
strate supply. In order to define the boundary condition at the time moment t we can apply
one iteration of the boundary value error correction and also include the information on a
change of Q(t) values over time:

S(X, t) = S(X, t − τ ) + 1

µ

(

Q(t − τ ) − QR(t − τ )
)

+ 1

µ

(

Q(t) − Q(t − τ )
)

= S(X, t − τ ) +
1

µ

(

Q(t) − QR(t − τ )
)

,

where τ defines a time step. The obtained control algorithm can be considered as a repre-
sentative of delayed feedback control algorithms (Pyragas, 2006; Novičenko, 2015). Such
algorithms are often used in practical computations, but in order to guarantee the stability
of the control technique the parameter µ should be adapted to the behaviour of the system
and it is not sufficient to consider the solution of a stationary nonlinear system.

In many cases it is important also to control the total amount of the drug produced
during the bioreaction. This additional objective function can be included into the control
algorithm by adding the correction into the definition of function Q(t):

Q̃(t) = Q(t) +
(∫ t−τ

0

Q(s) ds −
∫ t−τ

0

QR(s) ds

)

/

(T + T0 − t), t − τ < t 6 T .

(13)

In this algorithm the surplus/deficit of the produced drug is distributed uniformly over
time and compensated dynamically during the prolonged remaining working time of the
bioreactor. Here τ defines a time step of the numerical integration algorithms. It should
not be interpreted as a time delay of the system reaction to the changes of the boundary
condition (5). In the following sections we investigate such a delay in more details.

3.2. The Control Algorithm Based on the Flux of Substrate S

Let us consider the second case of boundary conditions used in the control system

S̃′(0) = 0, DS S̃′(X) = B. (14)

The solution of problem (9) with these boundary conditions is given by

S̃(x) = Bγ
eλx + e−λx

eλX − e−λX
, γ =

√

K/(V DS).

Substituting it into (10) and integrating we get the flux of P̃ at x = 0:

DP P̃ ′(0) = βB, β = K

V
. (15)
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In the control loop, the boundary condition at the time moment t is defined as

DS
∂S(X, t)

∂x
= 1

β
Q̃(t). (16)

3.3. Approximation of the Flux of P

We consider Taylor series expansion of function P at point x = 0:

P(x, t) = P(0, t) +
∂P

∂x
(0, t) x +

1

2

∂2P

∂x2
(θ, t) x2, 0 6 θ 6 x.

Integrating this equation in the interval (a, b), 0 < a < b < X, and using the boundary
condition P(0, t) = 0, we get the estimate

∂P

∂x
(0, t) = 2

b2 − a2

∫ b

a

P(x, t) dx + ∂2P

∂x2
(θ, t)

b2 + ab + a2

3(a + b)
.

Thus for b ≪ 1, the flux of P at x = 0 can be approximated by the integral term:

DP
∂P

∂x
(0, t) ≈ 2DP

b2 − a2

∫ b

a

P(x, t) dx. (17)

As it follows from the Taylor series expansion, the approximation error can be estimated
as

∣

∣

∣

∣

DP
∂P

∂x
(0, t) − 2DP

b2 − a2

∫ b

a

P(x, t) dx

∣

∣

∣

∣

6 Cb,

where

C = DP max
06x6b

∣

∣

∣

∣

∂2P

∂x2

∣

∣

∣

∣

.

This error should be taken into account when the interval (a, b) is selected to construct
the bioreactor.

As an example we present errors e(a, b) obtained for approximation of the flux of
P(x) = ex − 1 at point x = 0, when P ′(0) = 1:

e(0.01,0.02) = 0.0078, e(0.01,0.05) = 0.0174, e(0.01,0.1) = 0.0345,

e(0.01,0.2) = 0.0703, e(0.1,0.15) = 0.0661, e(0.1,0.2) = 0.0821.
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4. Finite Volume Scheme

In this section we consider the discrete approximation of the problem (1). Let �t be a
t-grid

�t =
{

tn: tn = tn−1 + τ, n = 1, . . . ,N, tN = T
}

,

where τ is the discretization step. Also we introduce a uniform spatial grid

�x = {xj : xj = xj−1 + h, j = 1, . . . , J − 1}, x0 = 0, xJ = X.

We consider numerical approximation Un
j to the exact solution values of function

U(xj , t
n) at the grid points (xj , t

n).
For functions defined on the grid �x × �t we introduce the backward difference quo-

tient and the averaging operator with respect to t and two difference operators with respect
to x:

∂t̄U
n
j =

Un
j − Un−1

j

τ
, U

n−1/2
j = 1

2

(

Un
j + Un−1

j

)

,

∂xUn
j :=

Un
j − Un

j−1

h
, AhUn

j :=
1

h

(

∂xU
n
j+1 − ∂xUn

j

)

.

We approximate the differential problem (1)–(4) by the symmetrical Euler discrete
scheme

∂t̄S
n
j = DSAhS

n−1/2
j −

V S
n−1/2
j

KM + S
n−1/2
j

, xj ∈ �x, (18)

−DS∂xS
n−1/2
1 +h

2

(

∂t̄S
n
0 +

V S
n−1/2
0

KM+S
n−1/2
0

)

=0,

Sn
J = 1

µ

[

Q(tn) +
(

∫ tn−1

0

Q(s)ds −
n−1
∑

m=1

Qm
Rhτ

)

/

(

T + T0 − tn−1
)

]

, (19)

∂t̄P
n
j = DP AhP

n−1/2
j +

V S
n−1/2
j

KM + S
n−1/2
j

, xj ∈ �x, (20)

P n
0 = 0, DP ∂xP

n−1/2
J + h

2

(

∂t̄P
n
J −

V S
n−1/2
J

KM+S
n−1/2
J

)

= 0,

where QRh defines a measured value of the product. The proposed discrete model includes
the dynamic control condition (19).

The nonlinear boundary value problem (18) is linearized by using the predictor – cor-
rector technique. The approximation error is of order two with respect to time and space,
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i.e. it is bounded by C(τ 2 + h2). It follows from Hundsdorfer and Verwer (2003), Čiegis
and Tumanova (2010) that for the standard boundary conditions the scheme (18)–(20) is
also convergent of order two in the L∞ norm.

Next we consider in more details the boundary condition (19). If function QRh is
defined as a direct discrete approximation of the flux of P(x, t) at x = 0, then

Qn−1
Rh = DP ∂xP n−1

1 . (21)

If the flux is approximated using integral formula (17), then applying the trapezoidal
quadrature formula we get the product flux approximation:

Qn−1
Rh = Sn−1

Rh , (22)

where

Sn−1
Rh = 2DP

b2 − a2

jb
∑

j=ja

cjP
n−1
j h, xja = a, xjb = b,

cj =
{

1/2, j = ja, jb,

1, ja < j < jb.

Both boundary conditions with approximations (21) and (22) are nonlocal conditions.
Since the nonlocal terms are approximated on (n − 1)-th level, the standard factorization
algorithm is used to solve the obtained systems of linear equations (see, e.g. Leonavičienė
et al., 2016 for more details on discrete approximations of problems with nonlocal bound-
ary conditions). The stability analysis of the dynamical process will be considered in the
next section.

The accuracy of the proposed control algorithm depends on the accuracy of approxi-
mation (22). It was shown above that the approximation error of this formula and quadra-
ture formula is bounded by C(h2 + b). The discretization error can be controlled by se-
lecting a sufficiently small space grid step h. The error due to approximation of the flux
by the integral formula is bounded by Cb. This error will make a small perturbation of the
real flux of the produced drug, since the control technique depends on the approximate
flux value SRh.

5. Results and Discussion

In this section we present results of some computational experiments. The model constants
are selected as in (Ivanauskas et al., 2017):

V = 1.1 × 10−3 molm−3 s−1, KM = 2 × 10−1 molm−3,

DS = 5 × 10−6 m2 s−1, DP = 5 × 10−6 m2 s−1, X = 1 × 10−3 m.
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Fig. 1. Product (P ) molar flow rate at x = 0, when for the boundary condition (23) is applied for the substrate (S).

Our aim is to validate the new control scheme and to compare the most simple control
algorithm with a more complicated control scheme, which includes the dynamic compen-
sation control.

The results of computational experiments have shown that the control quality of bound-
ary condition (16) is the same as of (13). Thus we have restricted to presenting results only
for the condition (13).

First we illustrate the important fact that the drug production process reacts with a
fixed delay to the changes of the substrate boundary condition (5). In Fig. 1 the dynamics
of product P molar flow rate at x = 0 is shown (a scale factor 108 is used) when the
boundary condition for the substrate S is a stepwise function (a scale factor 103 is used):

S(X, t) =
{

0, t < 0.5;
5, t > 0.5.

(23)

Such scaling of S and P functions is used in presentation of results in all computational
examples.

It follows from the presented results that the response of the product flow rate to the
stepwise change of the substrate concentration is delayed approximately 0.25 seconds.

Next we give a brief theoretical justification of the obtained result. and restrict to dif-
ferential case of models. One general technique to analyse the stability for non-stationary
differential problems is to apply the eigenvalue criterion for the space depending opera-
tors. Thus we solve the eigenvalue problem

−DS
d2U

dx2
+ V

K
U = λU, 0 < x < X,

DS
dU

dx
= 0, U(X) = 0.
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The eigenvalues of this problem are given by

λn = DS

(

π/2 + πn

X

)2

+ V

K
.

The delay time of the biosystem is defined by the smallest eigenvalue

λ0 = DS

(

π

2X

)2

+
V

K

and λ0 depends on the length of the bioreactor as 1/X2 for the given typical values of
parameters.

The influence of time delay to the stability and efficiency of the control algorithm will
be much more important when a convection transport mechanism is included into the
mathematical model. Such models will be investigated in a separate paper.

Remark 1. One important recommendation follows, that the treatment procedures de-
fined by doctors should follow smooth changes of the drug concentration.

5.1. Inverse Reconstruction of the Boundary Condition

In this section we consider the accuracy of the proposed delayed feedback control algo-
rithm. We use this algorithm to reconstruct two typical in real-world applications boundary
conditions for the substrate S. The first one defines a piecewise linear function

s1(t) =



























4.75t/0.25, t < 0.25;
5 − t, 0.25 6 t < 1.5;
2 + t, 1.5 6 t < 3;
5 − 4(t − 3), 3 6 t < 3.5;
3, t > 3.5.

(24)

The second test boundary condition is defined as

s2(t) =
{

4t/0.25, t < 0.25;
4 exp

(

− (t − 0.25)/2
)

, t > 0.25.
(25)

Then the direct problem (1)–(3), (5) is solved and the fluxes of produced drug Q1(t)

and Q2(t) are computed. The numerical approximations of these functions are computed
using the discrete scheme (18), (20) and the boundary condition Sn

J = sn
1,2. Functions

Q1(t) and Q2(t) are shown in Fig. 2.
Then the feedback control algorithm (12) is applied to reconstruct boundary conditions

s1(t) and s2(t). The control parameter 1/µ = 181.88 is computed from formula (11). The
reconstructed functions sR1(t) and sR2(t) are shown in Fig. 3.

The main conclusion from these results is that reconstructed boundary conditions are
approximating the exact boundary conditions sufficiently accurately. It is also clearly seen
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Fig. 2. The fluxes of the produced drug for the specified boundary conditions (24) and (25): a) Q1(t), b) Q2(t).
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Fig. 3. Reconstructed boundary conditions sR1(t) and sR2(t): black colour denotes reconstructed solution and
red colour denotes the exact boundary condition.

that the proposed dynamical control of total amount of produced drugs influences the
control procedure.

5.1.1. Sensitivity of the Inverse Reconstruction Procedure to Perturbations of Q(t)

In general the inverse problems belong to the class of ill-posed problems (Aster et al.,
2012). Yet, for the given mathematical model the obtained above theoretical stability es-
timates of the stationary solutions show that well-posedness of the proposed feedback
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Fig. 4. Reconstructed drug fluxes QR2 for perturbed exact fluxes with different perturbation levels of the random
noise generator: a) η = 0.001, b) η = 0.002.

control algorithm can be expected. We also note that the obtained system of two nonlinear
PDEs with the prescribed four classical boundary conditions defines a stable mathematical
model. Thus the discrete scheme is stable with respect to approximation errors.

In order to test the sensitivity of the inverse reconstruction procedure with respect
to perturbations of the function Q(t) we have perturbed exact functions Q(t) using the
random number noise. Here our aim is not to regularize the control algorithm by using
some averagingor smoothing procedure, but to test if the error of reconstructed flux QR(t)

is not increasing essentially due to perturbations of the data.
In Fig. 4, the reconstructed drug fluxes QR2(t) are presented for two different pertur-

bation levels η = 0.001 and η = 0.002. It follows from the presented results that the level
of the noise is not increased for the reconstructed drug fluxes QR .

5.1.2. Stability Analysis of the Control Scheme
In this section we have investigated the stability of the control algorithm. The standard
test is to analyse the reaction of the controlled function QR(t) to the step change of Q(t):

Q(0) = 0, Q(t) = 0.025, t > 0.

In Fig. 5, the reconstructed drug flux QR(t) is presented. It is clear that it reaches the sta-
tionary solution fast and the amplitudes of oscillations are quite well damped. The over-
shoot of the solution is due to attempt of the control procedure to keep the specified total
amount of the product.
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Fig. 5. Reconstructed drug flux QR for the benchmark monitoring step function Q(t).
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Fig. 6. Application of the proportional control algorithm: a) piecewise linear treatment protocol, red colour
function defines the theoretical treatment function Q(t), black colour function defines the produced drug rate
QR(t), b) exponential treatment protocol.

5.2. Feedback Control of Different Treatment Protocols

In this section the proposed feedback control algorithm is applied for two different treat-
ment protocols, when a short-time treatment process is considered.

The first protocol uses the piecewise linear changes of the drug flow over time, i.e.
Q1(t) is a scaled version of (24). In Fig. 6(a) the results are presented when the pro-
portional control algorithm (12)–(13) is used to define the substrate supply rate. Control
parameter 1/µ = 181.88 is computed from formula (11). The produced drug rate is quite
close to the required treatment protocol.

The second treatment protocol defines the drug flow which changes exponentially over
time. In Fig. 6(b) the results are presented when the proportional control algorithm (12) is
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applied. It follows that the produced drug rate is quite accurate for the proportional control
algorithm, and the obtained experimental function QR(t) is again adjusted to the required
total amount of drugs specified by medical doctor.

5.2.1. Robustness of the Control Method
Robustness of the proposed feedback control method is investigated experimentally. We
tested the accuracy of the proposed control algorithm for a fixed value of the control
parameter µ and different parameters of the model which are distributed within some
compact set. Using the maximum principle which is valid for the given mathematical
model we propose to use the maximum value of the control parameter µ computed for
the given set of parameters. In computational experiments we have fixed the the control
parameter 1/µ = 181.88 and used it for different values of V ∈ [0.0005,0.0011] and
KM ∈ [0.2,0.3]. The obtained results have proved that in all cases the produced drug rate
QR(t) was close to the required treatment protocol Q(t).

6. Conclusions

In this paper we have proposed a new delayed feedback control algorithm for a mathemat-
ical model which describes the drug delivery system. The system simulates the enzyme-
containing bioreactor and the prodrug is converted into an active drug during the reac-
tion. The finite volume method is used to approximate the given nonstationary reaction-
diffusion equations. It approximates the system of partial differential equations with the
second order in space and time.

The proposed delayed feedback control algorithm is based on solution of two inverse
boundary condition problems. The stability of this algorithm is investigated for the case of
the stationary solution. This analysis enables us to formulate all parameters of the control
algorithm. Results of computational experiments show that the proposed control algorithm
is accurate and robust.

Two drug treatment protocols, linear stepwise and exponential, are used to investigate
the efficiency of the inverse control algorithm. It is proved that the produced drug flows
approximate both investigated treatment protocols with high accuracy. Thus the proposed
feedback control algorithm can be recommended to be used in medical practices.

Acknowledgements. Authors would like to thank Prof. J. Janno for fruitful discussions
on ill-posedness of the obtained inverse problems.
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