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Abstract. This paper studies a set of novel integrated scheduling problems by taking into account the
combinatorial features of various groups, parallel-batching, deteriorating jobs, and time-dependent
setup time simultaneously under the settings of both single-machine and parallel-machine, and the
objective of the studied problems is to minimize the makespan. In order to solve the single-machine
scheduling problem, we first investigate the structural properties on jobs sequencing, jobs batch-
ing, and batches sequencing for the optimal solution, and then develop a scheduling rule. Moreover,
for solving the parallel-machine scheduling problem, we exploit the optimal structural properties
and batching rule, and propose a novel hybrid AIS-VNS algorithm incorporating Artificial Immune
System algorithm (AIS) and Variable Neighbourhood Search (VNS). Extensive computational ex-
periments are conducted to evaluate the performance of the proposed AIS-VNS algorithm, and com-
parison results show that the proposed algorithm performs quite well in terms of both efficiency and
solution quality.

Key words: scheduling, parallel-batching, group scheduling, deterioration, time-dependent setup
time.

1. Introduction

The parallel-batching scheduling models are well-known in many practical applications
of the real-life manufacturing systems. In these models, parallel-batching machines allow
several jobs to be processed simultaneously in a batch, and the processing time of a batch
is equal to the largest processing time of the jobs in that batch (Arroyo and Leung, 2017).
The total size of a batch cannot exceed the capacity of the parallel-batching machine, and

*Corresponding author.



282 B. Liao et al.

all jobs in each batch have the same completion time (Abedi et al., 2015). Recent research
on parallel-batching scheduling problems can be found in Xuan and Tang (2007), Wang
and Tang (2008), Tang and Gong (2009), Tang and Liu (2009), Fan et al. (2012), Hazir
and Kedad-Sidhoum (2014), Liu et al. (2014), Li and Yuan (2014), Jia and Leung (2015),
Li et al. (2015), He et al. (2016), Li et al. (2017), Ham (2017), and Ozturk et al. (2017),
etc.

In many practices, production scheduling problems involve deteriorating jobs, where
a job to be processed later requires longer processing time (Wang and Wang, 2014). As
a practical scheduling problem in a steel plant, the longer an ingot waits until the start
of the preheating processing time, the more time the steel-making process will take to
preheat the ingots (Li et al., 2011). Recently, Yin et al. (2017) addressed the parallel-
machine scheduling problems of deteriorating jobs with potential machine disruptions,
and developed pseudo-polynomial-time solution algorithms and fully polynomial-time
approximation schemes to solve two different cases. Lalla-Ruiz and Voß (2016) investi-
gated the parallel machine scheduling problem with step deteriorating jobs, and proposed
two novel mathematical models based on the Set Partitioning Problem. Tang et al. (2017)
addressed a single-machine scheduling problems with two agents and deteriorating jobs,
and proposed multiple efficient algorithms for certain special cases. More recent papers
considering scheduling jobs with deteriorating jobs include Lu (2016), Yang et al. (2015),
Yue and Wan (2016), Su and Wang (2017), Zhang et al. (2017), Wang and Li (2017), and
Bai et al. (2014).

We have also investigated the serial-batching scheduling problems with deteriorating
jobs in our previous research (Pei et al., 2015a, 2015b, 2017a, 2017b, 2017c, Liu et al.,
2017). There are some key differences among the previous research and this paper: (1) we
focus on parallel-batching scheduling in this paper, while we mainly studied the serial-
batching scheduling in our previous papers; (2) Different from other researchers’ previous
research (Li et al., 2011), various groups are further investigated, and the time-dependent
setup time is required for processing each group and batch; (3) A new deteriorating func-
tion of job processing time is considered for the parallel-batching scheduling, and both
single-machine and parallel-machine cases are studied.

To the best of our knowledge, there is no previous research considering these features
simultaneously. The main contributions of this paper can be summarized as follows:

(1) We study novel integrated scheduling problems by taking into account the combi-
natorial features of various groups, parallel-batching, deteriorating jobs, and time-
dependent setup time simultaneously under the settings of both single-machine and
parallel-machine.

(2) For solving the single-machine scheduling problem, the structural properties on
jobs sequencing in the same and different batches, jobs number argument, and
batches sequencing are first proposed. Then, a scheduling rule is developed to solve
this problem based on these structural properties.

(3) For solving the parallel-machine scheduling problem, we develop a novel hybrid
AIS-VNS algorithm incorporating Artificial Immune System algorithm (AIS) and
Variable Neighbourhood Search (VNS), and the optimal structural properties and
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scheduling rules for the single-machine setting are integrated in this hybrid algo-
rithm.

The remainder of this paper is organized as follows. The notations and problem de-
scription are given in Section 2. The single-machine and parallel-machine scheduling
problems are studied in Sections 3 and 4, respectively. Finally, we conclude the paper
in Section 5.

2. Notation and Problem Description

The notation used throughout this paper is first described in Table 1.
Given a set of N non-preemptively deteriorating jobs to be processed, all jobs are

classified into n groups in advance, and each group contains a certain number of jobs, that
is, Gi = {Ji1, Ji2, . . . , JNi }, i = 1,2, . . . , n. In this paper, we address parallel-batching
scheduling problems of a single and parallel-batching machines respectively, considering
deteriorating jobs and time-dependent setup time based on various groups and minimizing
the makespan as the objective. In the single-machine scheduling problem, all jobs in each
group are batched and processed on a single parallel-batching machine. In the parallel-
machine scheduling, all jobs in each group are first assigned into parallel machines and
then processed on each machine. During the parallel-batching processing, all the jobs

Table 1
The list of the notation.

Notation Definition

n The number of job groups
Gi The job set of group i , i = 1,2, . . . , n

Ni The number of jobs in Gi , i = 1,2, . . . , n

N The total number of jobs, i.e. N = N1 + N2 + · · · + Nn

Jij Job j in Gi , i = 1,2, . . . , n, j = 1,2, . . . ,Ni

pij The normal processing time of Jij , i = 1,2, . . . , n, j = 1,2, . . . ,Ni

b The deteriorating rate of processing jobs
pA

ij
The actual processing time of Jij , j = 1,2, . . . ,Ni , i = 1,2, . . . , n

mi The number of batches in Gi , i = 1,2, . . . , n

bik Batch k in Gi , k = 1,2, . . . ,mi , i = 1,2, . . . , n

Aik The normal processing time of bik , Aik = max{pij : Jij ∈ bik }, k = 1,2, . . . ,mi , i = 1,2, . . . , n

nik The number of jobs in bik , k = 1,2, . . . ,mi , i = 1,2, . . . , n

θb The deteriorating rate of batches’ setup times
θg The deteriorating rate of groups’ setup times

sik
b The setup time of bik , k = 1,2, . . . ,mi , i = 1,2, . . . , n

si
g The setup time of Gi , i = 1,2, . . . , n

c The capacity of the batching machine
S(bik) The starting time of bik , k = 1,2, . . . ,mi , i = 1,2, . . . , n

C(bik) The completion time of bik , k = 1,2, . . . ,mi , i = 1,2, . . . , n

P (bik) The actual processing time of bik , k = 1,2, . . . ,mi , i = 1,2, . . . , n

C(Gi) The completion time of Gi , i = 1,2, . . . , n

P (Gi) The total actual processing time of Gi , i = 1,2, . . . , n

Cmax The makespan
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within a batch are processed simultaneously (Jia et al., 2015), and the completion times
of all jobs are equal to that of their belonged batch. It is also required that the maximum
number of jobs in a batch cannot exceed the capacity of the parallel-batching machine.

In this paper, we further extend the application of Cheng and Ding (2000) and Cheng
et al. (2004) in the parallel-batching scheduling problem combining various groups. If Jij

is scheduled at the time t , then its actual processing time is defined as Cheng and Ding
(2000), Cheng et al. (2004)

pA
ij = pij + bt, j = 1,2, . . . ,Ni, i = 1,2, . . . , n

where pij is the normal processing time of Jij , b > 0 is the deteriorating rate of processing
jobs, and t is the starting time for processing Jij .

Furthermore, the normal processing time of bik is defined as Aik = max{pij : Jij ∈

bik}, k = 1,2, . . . ,mi , i = 1,2, . . . , n. Then, its actual processing time can be obtained by
Aik + bt where t is the starting time for processing bik .

Setup time is required before processing one group or batch, and the setup times of Gi

and bik are defined as follows:

si
g = θgt,

sik
b = θbt

′,

where θg and θb are the deteriorating rates of setup time for batches and groups, and t

and t ′ are the starting time of processing Gi and bik , respectively.
In the remaining sections of the paper, all the problems are denoted by the three-field

notation schema α|β|γ introduced by Graham et al. (1979).

3. Problem 1|p-batch,Gi,p
A
ij = pij + bt|Cmax

In this section, we first focus on the single-machine scheduling case. The completion time
of the makespan is first given, and the structural properties on jobs sequencing in the same
and different batches, jobs number argument, and batches sequencing are proposed. Then,
a scheduling rule is developed to solve this problem.

Lemma 1. For the problem 1|p-batch,Gi,p
A
ij = pij + bt|Cmax, given any schedule π =

(G1,G2, . . . ,Gn) with all groups arriving at time t0 > 0, if the starting time of G1 (f =

1,2, . . . , n) is t0, then the makespan is

Cmax(π) = t0(1 + θg)
n(1 + θb)

∑n
i=1 mi (1 + b)

∑n
i=1 mi

+

n
∑

i=1

(1 + θg)
n−i(1 + θb)

∑n
f =i+1 mi (1 + b)

∑n
f =i+1 mi

×

mi
∑

k=1

(1 + θb)
mi−k(1 + b)mi−kAik. (1)
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Proof. The proof of this lemma can be completed by the mathematical induction. Firstly
for n = 1, it can be derived that

C(G1) = t0(1 + θg)(1 + θb)
m1(1 + b)m1 +

m1
∑

k=1

(1 + θb)
m1−k(1 + b)m1−kA1k.

It can be seen that Eq. (1) holds for n = 1. Suppose that for all 2 6 d 6 n−1, if Eq. (1)
is satisfied, then it can be obtained that

C(Gd ) = t0(1 + θg)
d(1 + θb)

∑d
i=1 mi (1 + b)

∑d
i=1 mi

+

d
∑

i=1

(1 + θg)d−i(1 + θb)
∑d

f =i+1 mi (1 + b)
∑d

f =i+1 mi

×

mi
∑

k=1

(1 + θb)
mi−k(1 + b)mi−kAik.

Then,

C(Gd+1) = C(Gd )(1 + θg)(1 + θb)
md+1(1 + b)md+1

+

md+1
∑

k=1

(1 + θb)
md+1−k(1 + b)md+1−kA(d+1)k

= t0(1 + θg)
d+1(1 + θb)

∑d+1
i=1 mi (1 + b)

∑d+1
i=1 mi

+

d+1
∑

i=1

(1 + θg)
d+1−i(1 + θb)

∑d+1
f =i+1 mi (1 + b)

∑d+1
f =i+1 mi

×

mi
∑

k=1

(1 + θb)
mi−k(1 + b)mi−kAik.

Thus, Eq. (1) still holds for n = d + 1, and it can be also derived that Eq. (1) holds for Gn.
The proof is completed. �

Lemma 2. For the problem 1|p-batch,Gi,p
A
ij = pij + bt|Cmax, all batches in the same

group Gi (i = 1,2, . . . , n) should be sequenced in non-decreasing order of Aik (k =

1,2, . . . ,mi) in the optimal schedule.

Proof. Here we assume that π∗ and π are an optimal schedule and a job sched-
ule, respectively. The difference of these two schedules is the pairwise interchange of
these two batches bdl and bd(l+1) (l = 1,2, . . . ,mi − 1, d = 1,2, . . . , n), that is, π∗ =

(W1, bdl, bd(l+1),W2), π = (W1, bd(l+1), bdl,W2), where bdl ,bd(l+1) ∈ Gd , md > 2. W1

and W2 represent two partial sequences, and W1 or W2 may be empty. It is assumed that
Adl > Ad(l+1).
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We first give the completion time of bv in π∗,

C(bd(l+1)(π
∗)) = t0(1 + θg)

d(1 + θb)
∑d−1

i=1 mi+l+1(1 + b)
∑d−1

i=1 mi+l+1 + (1 + θg)

× (1 + b)l+1
d−1
∑

i=1

(1 + θg)
d−i(1 + θb)

∑d
f =i+1 mi (1 + b)

∑d
f =i+1 mi

×

mi
∑

k=1

(1 + θb)
mi−k(1 + b)mi−kAik

+

l+1
∑

k=1

(1 + θb)
l+1−k(1 + b)l+1−kAdk.

Then, the completion time of bv in π is

C(bdl(π)) = C(bd(l+1)(π
∗))

= t0(1 + θg)
d(1 + θb)

∑d−1
i=1 mi+l+1(1 + b)

∑d−1
i=1 mi+l+1 + (1 + θg)

× (1 + b)l+1
d−1
∑

i=1

(1 + θg)
d−i(1 + θb)

∑d
f =i+1 mi (1 + b)

∑d
f =i+1 mi

×

mi
∑

k=1

(1 + θb)
mi−k(1 + b)mi−kAik +

l+1
∑

k=1

(1 + θb)
l+1−k(1 + b)l+1−kAdk

− (1 + b)Adl − Ad(l+1) + (1 + b)Ad(l+1) + Adl.

Consequently,

C
(

bd(l+1)(π
∗)

)

− C
(

bdl(π)
)

= (1 + b)Adl + Ad(l+1) −
[

(1 + b)Ad(l+1) + Adl

]

= b(Adl − Ad(l+1)).

Since Adl > Ad(l+1), it can be obtained that C(bd(l+1)(π
∗)) > C(bdl(π)), which con-

flicts with the optimal schedule. Hence, it should be Adl 6 Ad(l+1).
The proof is completed. �

Based on Lemma 2, the following properties of the jobs sequencing in the different
batch can be further derived.

Lemma 3. For the problem 1|p-batch,Gi,p
A
ij = pij + bt|Cmax, all jobs in the same

group Gi (i = 1,2, . . . , n) should be sequenced in non-decreasing order of pij (j =

1,2, . . . ,Ni) in the optimal schedule.

The proof is similar to that of Lemma 2, and we omit it.
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Next we derive the properties on the argument of jobs number in all batches from the
same group.

Lemma 4. For the problem 1|p-batch,Gi,p
A
ij = pij +bt|Cmax, it should be nil 6 ni(l+1)

for all batches from a certain group Gi , where i = 1,2, . . . , n, l = 1,2, . . . ,mi − 1.

The proof can be completed based on jobs transferring operations. It is similar to that
of Lemma 2, and we omit it.

Then, the following property on the argument of batches number can be further ob-
tained.

Lemma 5. For the problem 1|p-batch,Gi ,p
A
ij = pij + bt|Cmax, there should be ⌈

Ni

c
⌉

batches and all batches are full of jobs except possibly the first batch for any group Gi in

the optimal schedule, where i = 1,2, . . . , n.

Then, based on Lemmas 2–5, we develop the following optimal jobs batching policy
of each group for the problem 1|p-batch,Gi,p

A
ij = pij + bt|Cmax.

Optimal Policy 1

Step 1. Set i = 1.
Step 2. All jobs are indexed in the non-decreasing order of pij in Gi , j = 1,2, . . . ,Ni ,

and a job list is generated such that pi1 6 pi2 6 · · · 6 piNi
.

Step 3. Place the first Ni − (⌈
Ni
c ⌉ − 1)c jobs in the first batch of Gi .

Step 4. If there are more than c jobs in the job list, then place c jobs in the batch and
iterate. Then, all batches are generated in Gi .

Step 5. If i < n, then set i = i + 1, go to step 2. Otherwise, end.

According to the optimal jobs batching policy of each group, we can further obtain the
following property for the optimal sequencing of each group.

Lemma 6. For the problem 1|p-batch,Gi ,p
A
ij = pij +bt|Cmax, considering two consec-

utive groups Gr and Gr+1, if ρ(Gr ) 6 ρ(Gr+1), where ρ(Gr) =
∑mr

k=1(1+θb)
mr−k(1+b)mr−kArk

(1+θg)(1+θb)
mr (1+b)mr , r = 1,2, . . . , n − 1, then it is optimal to process Gr before

Gr+1.

Proof. Let π∗ and π be an optimal schedule and a job schedule, and their difference is
the pairwise interchange of these two job sets Gr and Gr+1 (r = 1,2, . . . , n − 1), that
is, π∗ = (W1,Gr ,Gr+1,W2), π = (W1,Gr+1,Gr ,W2), where both Gr and Gr+1 may
include one or multiple batches, W1 and W2 represent two partial sequences, and W1 or
W2 may be empty. Here we assume that ρ(Gr) > ρ(Gr+1), i.e.

∑mr

k=1(1 + θb)
mr−k(1 + b)mr−kArk

(1 + θg)(1 + θb)mr (1 + b)mr
>

∑mr+1

k=1 (1 + θb)
mr+1−k(1 + b)mr+1−kA(r+1)k

(1 + θg)(1 + θb)mr+1(1 + b)mr+1
,

and we denote the starting time of processing Gr as T .
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For π∗, the completion time of Gr+1 is

C(Gr+1(π
∗))

=

[

(1 + θg)(1 + θb)
mr (1 + b)mr T +

mr
∑

k=1

(1 + θb)
mr−k(1 + b)mr−kArk

]

× (1 + θg)(1 + θb)
mr+1(1 + b)mr+1 +

mr+1
∑

k=1

(1 + θb)
mr+1−k(1 + b)mr+1−kA(r+1)k.

For π , the completion time of Gr is

C(Gr (π))

=

[

(1 + θg)(1 + θb)
mr+1(1 + b)mr+1T +

mr+1
∑

k=1

(1 + θb)
mr+1−k(1 + b)mr+1−kA(r+1)k

]

×(1 + θg)(1 + θb)
mr (1 + b)mr +

mr
∑

k=1

(1 + θb)
mr−k(1 + b)mr−kArk.

Then,

C(Gr+1(π
∗)) − C(Gr (π))

=

[

(1 + θg)(1 + θb)
mr (1 + b)mr T +

mr
∑

k=1

(1 + θb)
mr−k(1 + b)mr−kArk

]

×(1 + θg)(1 + θb)
mr+1(1 + b)mr+1 +

mr+1
∑

k=1

(1 + θb)
mr+1−k(1 + b)mr+1−kA(r+1)k

−

[

(1 + θg)(1 + θb)
mr+1(1 + b)mr+1T

+

mr+1
∑

k=1

(1 + θb)
mr+1−k(1 + b)mr+1−kA(r+1)k

]

× (1 + θg)(1 + θb)
mr (1 + b)mr −

mr
∑

k=1

(1 + θb)
mr−k(1 + b)mr−kArk

= [(1 + θg)(1 + θb)
mr+1(1 + b)mr+1 − 1]

mr
∑

k=1

(1 + θb)
mr−k(1 + b)mr−kArk

− [(1 + θg)(1 + θb)
mr (1 + b)mr − 1]

mr+1
∑

k=1

(1 + θb)
mr+1−k(1 + b)mr+1−kA(r+1)k.
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Fig. 1. The schemes of the simulation case on a single machine.

Since we have

∑mr

k=1(1 + θb)
mr−k(1 + b)mr−kArk

(1 + θg)(1 + θb)mr (1 + b)mr
>

∑mr+1

k=1 (1 + θb)
mr+1−k(1 + b)mr+1−kA(r+1)k

(1 + θg)(1 + θb)mr+1(1 + b)mr+1
.

Then, it can be derived that

C
(

Gr+1(π
∗)

)

− C
(

Gr (π)
)

.

It conflicts with the optimal schedule. Consequently, the proof is completed. �

Based on the above lemmas and the optimal jobs batching policy, the following Algo-
rithm 1 can be developed to solve the problem 1|p-batch,Gi,p

A
ij = pij + bt|Cmax.

Algorithm 1

Step 1. Execute Optimal Policy 1.

Step 2. Calculate ρ(Gr ) =

∑mr
k=1(1+θb)

mr−k(1+b)mr−kArk

(1+θg)(1+θb)mr (1+b)mr , r = 1,2, . . . , n − 1.

Step 3. Sequence all groups in the non-increasing order of ρ(Gl), i.e. ρ(G1)6 ρ(G2)6

· · ·6 ρ(Gn).

To demonstrate the algorithm 1 for the single-machine problem, a simple simulation

case is given. There exist three groups, with c = 2, θb = 0.1 and θg = 0.1. The related
parameters of the instance are provided in Table 2.

Table 2
The related parameters of the instance

Group (i) 1 2 3

Job (j) 1 2 3 1 2 3 4 1 2 3
pij 0.2 0.1 0.3 0.1 0.3 0.2 0.3 0.2 0.1 0.1

The optimal schedule generated by Algorithm 1 is shown as following figure.

Theorem 1. For the problem 1|p-batch,Gi,p
A
ij = pij + bt|Cmax, and Algorithm 1 can

generate an optimal schedule in O(NlogN) time.
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Proof. An optimal solution can be generated by Algorithm 1 based on Lemmas 1–6 and

Corollary 1. The time complexity of step 1 is at most O(N logN), the time complexity of
step 2 is O(1), and for step 3 the time complexity of obtaining the optimal group sequence
is O(N logN). Since we have n 6 N , the time complexity of Algorithm 1 is at most
O(N logN). �

4. Problem P |p-batch,Gi,p
A
ij = pij + bt|Cmax

Our studied problem P |p-batch,Gi,p
A
ij = pij +bt|Cmax can be simplified to the problem

of Pm||Cmax by relaxing that each parallel-batching machine only processes one job at

a time and there is no deteriorating effect. Since Lenstra et al. (1977) proved that the
problem of Pm||Cmax is NP-hard, then the problem of P |p-batch,Gi ,p

A
ij = pij +bt|Cmax

is also NP-hard. Thus, we put forward an AIS-VNS algorithm to solve it in this section
and furthermore conduct some computational experiments to testify the performance of
the proposed algorithm.

Since Variable Neighbourhood Search (VNS) was first proposed by Mladenović and

Hansen (1997), it has been widely used in solving optimization problems. In Hansen and
Mladenović (2001), they summarized the following observations: (1) A local optimal so-
lution with respect to one neighbourhood structure is not necessary for another. (2) A lo-
cal optimal solution with respect to all neighbourhood structures is the global optimal
solution. (3) Different local optimal solutions with respect to different neighbourhood
structures are relative to each other. The improved VNS algorithms have been put for-
ward in previous works, for example, Wen et al. (2011) extended the search and improved

solution quality through the combination of heuristic algorithm, VNS and genetic algo-
rithm. Duarte et al. (2015) explored the adaptation of the Variable Neighbourhood Search
(VNS) metaheuristic to solve multi-objective combinatorial optimization problems. Sim-
ilarly, Artificial Immune System algorithm (AIS) is also an effective metaheuristic algo-
rithm that has drawn much attention in recent years. Ying and Lin (2014) presents a novel
hybrid AIS to solve the wafer sorting scheduling problem. Different mechanisms such as

the clonal selection theory, the immune response along with its affinity maturation pro-
cess and the immune network hypothesis can be found in Panigrahi et al. (2007), Castro
and Zuben (2000), Komaki et al. (2015), and Hashemipour and Soleimani (2016). This
research improves AIS through the introduction of VNS operators.

4.1. Coding and Encoding

In order to improve efficiency of the algorithm, we divide this problem into three stages:
(1) schedule within each group to minimize the group processing time; (2) assign groups
to machines; (3) sequence the groups on each machine to be processed. The proposed
Optimal Policy 1 can solve the problem in the first stage. Moreover, in the third stage, the
optimal processing sequence is determined by Algorithm 1. Hence, in the second stage,
we use an array of group to represent a solution to our problem. Given a solution X =
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VNS algorithm

Step 1. Define neighbourhood structures Ns(s = 1, . . . , smax).
Step 2. Get initial solution X.
Step 3. Execute the sth Local Search for X to obtain a solution X′.
Step 4. If solution X′ is better than X, then set x = X′’, s = 1 and go to step 3. Otherwise,

set s = s + 1, go to step 5.
Step 5. If s 6 smax, then go to step 3; else, stop the iteration.

{2,1,3,1,3,1}, these six groups are scheduled on three machines. The object suggests

that jobs {2,4,6}, {1}, and {3,5} are assigned to manufacturers 1, 2, and 3, respectively,

and the fitness of X is calculated by Optimal Policy 1 and Algorithm 1.

4.2. Description of VNS Algorithm

In order to improve the efficiency of AIS, the VNS algorithm is applied as local search

strategy to strengthen the optimization ability of the algorithm, the VNS algorithm can be

described as follows (Castro and Zuben, 2000):
In the VNS strategy, three types of local search operators are selected to define the

neighbourhood structures Ns .

Swap operator. Given a solution X, two groups’ positions x and y are selected ran-

domly from the solution. A neighbour of X is obtained by swapping the positions x and y .

The detail of swap operator in the VNS is described as follows:

The detail of swap operator in the VNS

Step 1. Get a solution X.
Step 2. Randomly generating two different numbers x and y from 1 to n.
Step 3. Select two groups’ position x and y from the solution X.
Step 4. Swap the sequence of the positions x and y in X.
Step 5. Generate a neighbour of X.

Mutation operator. Given a solution X, two groups’ positions x and y are selected ran-

domly from the solution. A neighbour of X is obtained by randomly generating a number

from 1 to n in the positions x and y . The detail of mutation operator in the VNS is de-

scribed as follows:

The detail of mutation operator in the VNS

Step 1. Get a solution X.
Step 2. Randomly generating two different numbers x and y from 1 to n.
Step 3. Select two groups’ position x and y from the solution X.
Step 4. Randomly generate a number from 1 to n in the positions x and y, respectively.
Step 5. Generate a neighbour of X.
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Fig. 2. The schemes of swap operator (a), mutation operator (b), and 2-opt operator (c).

2-opt operator. Given a solution X, two groups’ positions x and y are selected randomly

from the solution. A neighbour of X is obtained by reversal of the sequence between x

and y . The detail of 2-opt operator in the VNS is described as follows:

The detail of 2-opt operator in the VNS

Step 1. Get a solution X.
Step 2. Randomly generating two different numbers x and y from 1 to n.
Step 3. Reverse the sequence between the two groups’ position x and y in the solution X.
Step 4. Generate a neighbour of X.

Figure 2 shows the schemes of these three operators.

4.3. The Algorithm Framework of AIS-VNS

A cross operator and a variation operator are applied in AIS-VNS algorithm, X =

{x1, . . . , xi, . . . , xn} and Y = {y1, . . . , yi, . . . , yn} are used to denote two solutions, and

the two operators are defined as follows.

Cross operator

Step 1. Randomly select a groups’ position x from the solution X.
Step 2. Replace the sequence in X before x with the sequence after x in Y .

Variation operator

Step 1. Randomly select a groups’ position x from the solution X.
Step 2. Generating a number from 1 to n in position x.

We improve AIS through the introduction of VNS operators and the algorithm frame-
work of AIS-VNS is described in Table 3. The flow chart of AIS-VNS is also given in
Fig. 3.
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Table 3
The Pseudocode of AIS-VNS.

Pseudocode of AIS-VNS

1. Initialize parameters, including poplong, PR, tmax, CM, pmax and pmin

2. Set it = 0, con = 0, gbest = a large enough positive constant, randomly generate a population
pop = {X1, . . . ,Xl , . . . ,Xpoplong} with poplong antibodies, and each solution includes n elements,
Xl = {xl1, . . . , xli , . . . , xln}

3. While (it 6 tmax)

4. Calculate fitness for each antibody popfit = {fit1, . . . ,fitl, . . . ,fitpoplong}

5. If gbest > min16l6poplong fitl , then
6. Set gbest = min16l6poplong fitl
7. End if
8. For population pop, l = 1 to poplong

9. If pmin <
fitl

gbest < pmax, then

10. Set con = con + 1

11. End if
12. End for
13. If con 6 CM ∗ poplong then
14. For population pop, l = 1 to poplong

15. Set pro =
1/fitl

∑prolong
k=1

1/fitk

16. End for
17. else
18. For population pop, l = 1 to poplong

19. Set pro =
fitl

∑prolong
k=1

fitk

20. End for
21. End if
22. For population pop, l = 1 to poplong

23. Generate a random number rand() in [0,1]

24. If rand()6 PR then
25. Select Xk from pop with probability prok , and perform variation operator for Xk to get Yl

26. Else
27. Select Xe and Xk from pop with probability proe and prok , and perform cross operator for

them to get Yl

28. End if
29. Perform VNS operators to update Yl

30. End for
31. For population pop, l = 1 to poplong

32. Set Xl = Yl

33. End for
34. End while
35. Output gbest

4.4. Computational Experiments and Comparison

In this section, we present computational experiments to evaluate the performance of our

proposed algorithm AIS-VNS, compared with AIS (Castro and Timmis, 2002), VNS (Lei,

2015), and PSO (Ercan, 2008). The test problems were randomly generated based on the

real production in Table 4. Based on the number of machines and groups, 16 instances are
generated in our computational experiments.
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Fig. 3. The flow chart of AIS-VNS.

Table 4
Parameters setting.

Notation Definition Value

n The number of groups 20, 50, 100, 150
M The number of machines 3, 5, 7, 9
θb The deteriorating rate of batches’ setup times 0.01
θg The deteriorating rate of groups’ setup times 0.01
c The capacity of the batching machine 3
Ni The number of jobs in Gi , i = 1,2, . . . , n U [1,6]

pij The normal processing time of Jij , i = 1,2, . . . , n, j = 1,2, . . . ,Ni U [0.1,0.2]

CM The concentration limit in AIS 0.9
PR The variation probability in AIS 0.9
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Table 5
The average objective value (Avg.Obj) and the minimum objective value (Max.Obj) for each algorithm.

n M AIS-VNS AIS VNS PSO

Ave.Obj Max.Obj Ave.Obj Max.Obj Ave.Obj Max.Obj Ave.Obj Max.Obj

20 3 10.571 12.399 10.623 12.518 10.622 12.663 10.742 12.628

20 5 4.683 5.198 4.751 5.248 4.970 5.691 4.805 5.270

20 7 3.289 3.547 3.425 4.065 3.666 4.745 3.441 4.076

20 9 2.570 2.814 2.667 2.880 2.846 3.318 2.746 2.876

50 3 217.085 296.108 220.559 300.668 217.848 301.268 226.132 330.299

50 5 32.665 40.856 33.121 40.914 33.461 48.288 35.945 47.115

50 7 12.561 14.954 12.976 14.931 12.618 15.653 14.409 17.915

50 9 8.137 8.858 8.452 9.115 8.622 10.016 9.529 11.228

100 3 3.490e+4 4.777e+4 3.577e+4 4.815e+4 3.513e+4 4.791e+4 3.774e+4 5.025e+4

100 5 624.447 838.807 639.009 838.911 657.050 1020.680 782.191 1020.226

100 7 109.115 135.965 113.689 140.236 116.997 139.878 133.772 177.172

100 9 43.686 46.131 45.642 51.037 46.434 54.854 61.520 73.883

150 3 4.909e+6 7.376e+6 5.005e+6 7.701e+6 4.918e+6 7.445e+6 5.486e+6 8.058e+6

150 5 1.391e+4 1.889e+4 1..432e+4 1.967e+4 1.419e+4 1.905e+4 2.001e+4 3.147e+4

150 7 899.797 1075.621 959.789 1188.779 1063.756 1475.763 1303.263 2050.683

150 9 244.268 276.081 260.709 302.718 247.808 295.556 321.250 500.599

Table 5 lists the results of the average objective value (Avg.Obj) and the maximum
objective value (Max.Obj) for the problem.

In this experiment, the average of the current optimal solutions for 1 to 400 iterations
is used to plot the convergence curves. The convergence behaviours of each algorithm for
each instance are shown in Fig. 4. (A,B) is used to denote various instances. For example,
the instance with 20 jobs and 3 machines is represented by (20, 3).

All the algorithms were implemented in C++ and run on a Lenovo computer running
Windows 10 with a dual-core CPU Intel i3-3240@3.40 GHz and 4 GB RAM. As can be
observed from Fig. 4, AIS-VNS outperforms all the other three methods across the 16
instances in solution quality and convergence. With respect to solution quality, it is worth
mentioning that proposed algorithm obtains the best solution within 400 iterations for all
the instances. Moreover, AIS-VNS also has better performance than the other algorithms
in the form of convergence speed. Since proposed algorithm can converge to a reasonable
solution before the 50 iterations in many instances, such as instance 1, 7, 10, 11, 12, 13,
14, 15. It is important to remark that all the available results for AIS-VNS are obtained in
reasonable time. For example, per single running time is between 6 and 10 seconds when
the number of jobs is 100. Thus, we can infer that the running time of AIS-VNS does not
exceed 1 second in a single running. Based on the above experimental results and analysis,
we can infer that the proposed AIS-VNS is stable and robust in terms of solution quality
and convergence speed in solving the presented problems.
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(1) Convergence curves for (20, 3) (2) Convergence curves for (20, 5)

(3) Convergence curves for (20, 7) (4) Convergence curves for (20, 9)

(5) Convergence curves for (50, 3) (6) Convergence curves for (50, 5)

Fig. 4. Convergence curves for each instance.

5. Conclusions

In this paper we investigate single and parallel-batching machine scheduling problems
to minimize the makespan, where the combinatorial features of various groups, parallel-
batching, deteriorating jobs, and time-dependent setup time are considered simultane-
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(7) Convergence curves for (50, 7) (8) Convergence curves for (50, 9)

(9) Convergence curves for (100, 3) (10) Convergence curves for (100, 5)

(11) Convergence curves for (100, 7) (12) Convergence curves for (100, 9)

Fig. 5. (Continued).

ously. For the single-machine scheduling problem, we propose the optimal structural prop-
erties and a scheduling rule to solve it. Moreover, a hybrid algorithm incorporating AIS
and VNS algorithms is developed to solve the parallel-machine scheduling problem. The
results of extensive computational experiments show both efficiency and solution quality
of the proposed algorithm, compared with the algorithms of AIS, VNS, and PSO.
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(13) Convergence curves for (150, 3) (14) Convergence curves for (150, 5)

(15) Convergence curves for (150, 7) (16) Convergence curves for (150, 9)

Fig. 6. (Continued).
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