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Abstract. A relevant challenge introduced by decentralized installations of photo-voltaic systems is

the mismatch between green energy production and the load curve for domestic use. We advanced

an ICT solution that maximizes the self-consumption by an intelligent scheduling of appliances.

The predictive approach is complemented with a reactive one to minimize the short term effects

due to prediction errors and to unforeseen loads. Using real measures, we demonstrated that such

errors can be compensated modulating the usage of continuously running devices such as fridges and

heat-pumps. Linear programming is used to dynamically compute in real-time the optimal control

of these devices.
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1. Introduction

Renewable electricity generation is progressively improving in EU countries. In partic-

ular, investments in photo-voltaic (PV) systems for self-consumption are getting larger

and at the end of 2012 Germany and Italy were the top two countries in terms of cu-

mulative installed solar PV capacity with 32 Gigawatts (GW) and 17 GW, respectively

(Brown, 2013). The European Union solar photo-voltaic market picked up in 2015 after

three successive years of decline. It registered 3% growth over the twelve-month period,

by installing 7226 MW, which took Europe’s installed capacity to date to 94.6 GW. The

global market soared by comparison, gaining 25% year-on-year and connecting at least

50 GW, which took global PV capacity past the 227-GW mark (EuroObserver, 2016).

Many incentive schemes allowed for attractive returns for the consumer during the

past years, but nowadays and in the future only PV self-consumption provides significant

benefits, which directly impacts capability to meet ambitious climate protection and en-

ergy policy targets. In fact, the European Union has established binding renewable energy

targets with the goal of having the entire EU derive 20% of total energy consumption
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from renewable sources by 2020 and self-consumption can provide significant impetus to

meet this target. The self-consumption of solar energy refers to the proportion of energy

which is used directly in the building where a photo-voltaic (PV) system is located. It is

calculated as the ratio of directly consumed energy to generated energy.

But to improve the efficiency of energy management it is necessary to develop, im-

plement, and evaluate novel energy management concepts and strategies. The increasing

of such a decentralized production of green energy is affecting the current energy man-

agement scheme both at the grid and at the user level. In fact, the integration of energy

production systems such as PV (photo-voltaic) systems is changing residential buildings

from passive energy consumers to active prosumers (producer/consumer). At grid level

the amount of energy that is not consumed locally must be transported to the next con-

sumer or stored somewhere. These energy flows introduce transfers peeks and energy loss

along the lines, which must be addressed by greater investment at grid infrastructure level.

Many issues are related to the fact that the amount of consumed electricity and produc-

tion by photo-voltaic systems vary over the course of the day, from season to season and

depending on the weather conditions. Users may not have the opportunity to switch-on

their appliances when the PV is producing because they do not know when or because

they are outside or simply because they do not need those appliances at that time. For this

reason there is no alignment along the day between production and consumption. At the

user level, this limits the optimal utilization of green energy and affects the budget spent.

In fact, the feed-in tariff is lower than what people pay for the purchase of electricity. That

means it is not convenient for the prosumer to sell energy to the General Companies.

A battery storage inside each household could appear a trivial solution, but the cost

of these battery systems, and the environmental effects due to the disposal issues, is a

deterrent so a self-adaptation mechanism is needed.

The CoSSMic project2 proposed an intelligent scheduling of user’s consumptions

within a neighbourhood in order to exploit the flexibility of a community of collaborating

users which are available to share their energy and to adapt their behaviours. The main

goal was to enable the collaboration among households in a way that the energy produced

by PV plants are consumed by the neighbour that is able to do it. An autonomic system,

implemented by software agents, was able to shift in time the loads in each neighbourhood,

according to users’ constraints and preferences, so that the use of renewable energy is op-

timized. Appliances (refrigerators, washing machines, driers, dishwashers, water heaters,

air conditioners) equipped with intelligent controllers are represented by software agents

negotiating energy exchanges according to availability, demand, user’s preferences and

constraints. The energy negotiation between agents will return rewards to local produc-

ers.

To obtain the maximization of self consumption, a predictive approach was consid-

ered, but prediction of PV production and learning of consuming profiles are affected by

many errors. Prediction is affected by limited accuracy and precision of weather forecast.

Consumption of appliances can depend on environmental conditions and not all devices

can be monitored and controlled independently.

2http://www.cossmic.eu.
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Task scheduling

Fig. 1. Power profiles.

The original contribution of this paper is a hybrid approach that complements the

CoSSMic predictive schedule with a reactive solution to compensate the prediction error

on PV production. We aim at controlling continuously running appliances such as water

heaters, heat pumps and air conditioners, in order to increase self-consumption of single

households without compromising the collaborative strategy and the global optimum at

neighbourhood level. The computation of the optimal set of control signals is formulated

as a linear optimization problem and the solution has been implemented by an open source

solver for mixed integer linear programming. We also demonstrate, using real data which

have been collected from 12 German trials, the feasibility and the improvement by the

reactive correction when freezers, fridges, heat pumps, air conditioners are interrupted

under different constraints.

Problem stated and background is summarized in Section 2. Related work is discussed

in Section 3. Section 4 describes the CoSSMic prediction solution. In Section 5 we intro-

duce real trials and related studies that have been used to profile energy sources, con-

suming devices and user habits. Section 6 formulates the modelling approach. A proof of

concepts is defined in Section 7 and some preliminary performance analysis are discussed

in Section 7.4. Finally conclusion is due.

2. Problem Statement

Our goal is the improvement of self-consumption by a smart scheduling that shifts the con-

suming loads to match the production profile in order to maximize the self-consumption,

that will also minimize the amount of energy reversed into the grid, while satisfying user’s

constraints. The problem we address is the optimal distributed schedule of appliances in

order to align energy consumption to PV production during the day. Exploiting the users’

flexibility, the problem is to find the best start time of consuming appliances.

In Fig. 1, the power profiles of different devices are shown. In particular, the blue series

represent the power production of a solar panel during the day. Red series represent the av-

erage power consumption of a household during the day. Consumer1 (C1) and Consumer2
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Energy quotas before scheduling

(a) Self-consumption without scheduling

Energy quotas after scheduling

(b) Self-consumption with scheduling

Fig. 2. Energy quotas before and after task scheduling.

(C2) represent the power consumed by two different appliances. They can be shifted by

the scheduler within the time-window defined by the user. In Fig. 2 the yellow area above

the average consumption represents the current power that was not used by the household

and flowed to the grid. The blue area represents the self-consumed energy. A limited im-

provement of the self consumption is observed in Fig. 2(b) when the power profiles are

shifted toward the peak of PV production.

Even if the improvement does not result very relevant we must consider that in a micro-

grid there will be many devices and other PV plants. The new schedule has moved the

consumption in a time slot where the probability of consuming green energy from neigh-

bours is higher. The red peek over the yellow area could contribute to improve the self-

consumption of the neighbourhood, meanwhile the reduced consumption at the end of the

day will surely reduce the needs of dirty energy, so providing green energy to other ap-

pliances. Within the same neighbourhood a benefit would be also a reduced energy flow

between different sections of the power grid.
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3. Related Work

Much effort has been spent on the investigation about the self-consumption of local gener-

ated electricity and the related optimization. Castillo-Cagigal et al. (2011) present, using

simulated and real experiments, the effects of storage and Active Demand-Side Manage-

ment (ADSM) in a house equipped with Photo-Voltaic (PV) generation and grid connec-

tion. The objective is the self-consumption maximization, reducing the use of the grid

and supplying the highest amount of demanded electrical energy from the local sources.

Results have shown the house electrical energy balances in daily and yearly studies, ac-

tivating and deactivating the ADSM system and modifying the battery capacity. The use

of both techniques increases the energy management considerably and allows the imple-

mentation of different electric behaviours in order to achieve a specific energy objective.

But the number of possible cycles and calendar life makes the utilization of storages ex-

pensive and not environment-friendly (Mulder et al., 2010). In Matallanas et al. (2011)

self-consumption possibilities of the local electricity generated in a grid connected to low

voltage PV system are analysed. This contribution focuses on theoretical and simulated

studies of the energy flows and exchanges that take place within the system and the in-

fluence that Demand-Side Management and storage systems have. EPOS (Pournaras et

al., 2008) is a self-adaptation mechanism developed to aggregate energy plans devised by

TCA software agents, to minimize fluctuations in demand, acquiring stability, minimizing

oscillations in a global energy network. Self-optimization emerges through coordination

of plans by agents. For self-adaptation, EPOS combines the effects of convergence in

the cumulative plans over the tree overlay and the memory of previous plans. Mohamed

and Mohammed (2013) propose an effective algorithm for optimizing distribution system

operation in a smart grid, from cost and system stability points of view, that aims at con-

trolling the power available from different sources. They try to satisfy the load demand at

the lowest cost while giving the highest priority to renewable energy sources. In case of

deficiency in the power, a fuzzy system was proposed to control the sharing of the power

between the grid and the battery system so using storage as a buffer for the predicted

large loads to increase the stability of the system and reduce voltage dips. Chabaud et al.

(2013) focus on a multi-criteria approach for energy resources management in buildings

equipped with energy production and storage systems. This approach takes into account

the way the building and the electricity grid interact. The aim of the strategy is to improve

energy self-consumption while minimizing the negative impact of the local production on

the electricity grid. Energy and economic criteria are proposed to evaluate the strategy.

A software is used to model the thermal behaviour of a single-story house, inhabited by

four persons and equipped with photo-voltaic solar panels, a vertical-axis windmill and

batteries for electricity storage. The results obtained in simulation prove that it is pos-

sible to design in an optimal way the systems and find interesting configurations. Silva

et al. (2012) propose a short-term energy resource management methodology for smart

grids where short-term scheduling is used to reschedule the previously obtained schedule

taking advantage of the better accuracy of short-term wind forecasting in order to obtain

more efficient resource scheduling solutions. The used optimization is based on a Genetic
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Algorithm (GA) and the feasibility of the obtained solution is technically validated using

realistic power system simulation. In Mohsenian-Rad et al. (2010), the use of optimization

algorithms to achieve end-consumer energy management has been explored. A powerful

convex optimization (linear programming) technique was proposed to schedule the power

of individual appliances. Nevertheless, it is not suitable for all appliances in practice be-

cause some appliances have a fixed power consumption pattern, which means that once

the appliance is scheduled for operation, it has to operate according to its own power con-

sumption pattern until the task is finished. The power consumption during the operation

of the appliance is not under the control of the optimizer, so only the starting time can

be optimized. A conceptual Mixed-Integer Linear Programming (MILP) model, showing

typical trade-offs in energy planning is presented in Moret et al. (2016). Authors demon-

strate that, in the uncertain domain, investing in more efficient and renewable technologies

can be economically optimal.

4. The CoSSMic Predictive Solution

CoSSMic (Collaborating Smart Solar-powered Micro-grids - FP7-SMARTCITIES-2013)

is an ICT European project that aims at fostering a higher rate for self-consumption of

decentralized renewable energy production by innovative autonomic systems for man-

agement and control of power micro-grids on users’ behalf. CoSSMic research partners

are Stiftelsen Sintef, International Solar Energy Research Center Konstanz (ISC), Second

University of Naples, Norges Teknisk-NaturvitenskapeligeUniversitet, University of Oslo,

Sunny Solartechnik, Boukje.com Consulting. City of Konstanz in Germany and province

of Caserta in Italy are project partners themselves and provided trial sites for experimental

activities and validation of results.

The CoSSMic Architecture is described in Amato et al. (2014a) and Amato et al.

(2014c). The CoSSMic Multi Agent System (MAS) is in charge of implementing a dis-

tributed task scheduler within the conceptual architecture of CoSSMic, using energy ne-

gotiation and shifting the loads (when it is possible) to minimize the energy exchange be-

tween the neighbour and the public power grid, as it is described in Amato et al. (2014b).

Ideally, the pool is at the zero level when the energy production within the neighbourhood

matches the consumption, and there is no exchange of energy with the grid.

The system provides also functionalities for the management of devices, like electric

cars, allowing to switch them on/off by an interactive control or automatically, according

to preferences and constraints set by user. For example, the system must allow the user

to specify earliest and latest start time for appliance, charging policy for energy storages,

etc. Autonomy and proactivity of software agents will allow for the automation of power

management, while still leaving the user in control through the setting of simple param-

eters such as earliest and latest start time of appliances, as it is detailed in Amato et al.

(2015).

Consuming profiles of appliances are predicted using a continuous learning algorithm

that exploits monitoring information. PV production is based on the weather forecast data
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provided by third party services and PV plant configuration. Weather forecast service

provides environmental parameters such as irradiation, temperature and humidity, over a

time horizon of 8 hours.

The optimal schedule is computed by a one-to-one negotiation between consumer

agents and producer agents. Consumer agents ask for the best starting time of their ap-

pliances according to a defined time-window and an energy profile. The producer agent

returns the best starting time, if it has enough energy to satisfy the request. If there are not

producers that can provide Green Energy, then the appliance consumes from the grid at

the latest start time.

In our case the main issues are related to the complexity and the accuracy of the pre-

diction model for the PV production and to the uncertainty about the weather forecast

prediction. Moreover, the behaviour of consuming appliances can change each day ac-

cording to a number of parameters. Let us consider the external temperature in the case

of a refrigerator and an air conditioner, or the user’s needs for the electric cars or for the

oven. They will affect both the starting time, the power profile and the amount of energy

consumed by each appliance. Moreover, violations of the planned usage or simply some

failures can occur.

In any case the system cannot predict in advance short term system fluctuations caused

by system dynamics or component transients. For these reasons the utilization of a reactive

approach for short term corrections is mandatory. To improve the CoSSMic predictive

model, here we propose a complementary approach consisting in the reactive control of

some devices which can be switched-off or switched-on without affecting their correct

behaviour.

In the case of a reactive solution the main issues are related to how fast the power

produced and consumed by PV plants and appliances can change. In fact, we should be

able to evaluate the current availability of energy in real-time and we must suppose that

such information can be used to take a decision for the future. This means that the system

must be able to collect data and to process them in a time slot that is so short that the

measured power can be supposed constant.

The decentralized solution of CoSSMic, that is based on a distributed negotiation be-

tween software agents running in different households, could not satisfy real time con-

straints of the reactive approach. It would be neither feasible nor scalable. For this reason

we will apply the reactive corrections only locally, at household level.

5. Power Profiles

Before addressing the resolution of the problem it is necessary to classify different devices

according to the power required for the operating cycle; frequency of use on a daily basis;

type and duration of the operating cycle. We identified the following classes at the begin-

ning of the CoSSMic project. Related work provided power profiles. For example, load

profiles of major household appliances in the U.S are available at www.ari.vt.edu/research-

data/. They include two clothes washers, two clothes dryers, two air conditioners, an elec-

tric water heater, an electric oven, a dishwasher, and two refrigerators. Their electrical
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power consumption data are provided in one-second or one-minute intervals. Data are

represented as an ordered list of samples. The data were gathered from two houses in

Virginia and Maryland in 2012.

5.1. Consuming Appliances

Consuming appliances can be usually programmed by the user according to different op-

tions. For example, a washing machine can provide different programs for delicates or

common clothes. Each of these different programs could be characterized by a different

power profile. A planned execution of a program is called here a task. The consuming

profile is called here a load. Some kinds of tasks will be characterized by single run work-

loads if they cannot be interrupted from their start to the end. Other kinds of tasks have

a continuous execution such as a freezer. However, in this case they will be described by

a periodic load, in fact the behaviour of the task can be described by a number of cycles

whose duration and distance will depend on the setting point chosen by the user, such as

the temperature in this case.

Appliances may have several different power consumption profiles associated: for ex-

ample, appliances like fridges are automatic operated and the switch times have a uniform

distribution for the whole day while appliances like washing machines can be switched-

on during the whole day. So, according to their main particularities that influence their

individual power demand, it is possible to identify two categories of devices:

• Single Running Devices. They are switched on by the user (for example, washing

machines) and work for a fixed duration. They cannot be interrupted.

• Continuously Running Devices. They have a periodic working pattern, roughly in-

dependent of the actions of the user (such as a refrigerator or a freezer).

5.1.1. Single Running Devices

Single Running Devices have a power demand that may vary according to the working

mode and between machines. So the load curve of those kinds of appliances is very depen-

dent on the time of use and on the way (intensity of functioning) appliances are used. So

we model the energy profile with a single load. In Fig. 3, the load profile of two dishwash-

ers (Kenmore 665.13242K900and a dishwasher monitored in the CoSSMic project) and a

clothes washer (LG WM2016CW) are shown. The dishwasher Kenmore 665.13242K900

operated for about 105 minutes. It has three main operating cycles: wash, rinse and dry.

For this kind of appliance, such as for an oven, we cannot interrupt the program.

As shown in Fig. 3, the first 50 minutes are associated with the wash cycle. The rinse

cycle follows from minutes 50 to 80. Then, the last is the dry cycle. ISC CoSSMic partner

provided the metered profile of a general dishwasher observed during preliminary testing

activities related to monitoring of CoSSMic trials using the technologies developed by

the project. The clothes washer (LG WM2016CW) operated for about 60 minutes. It has

three cycles of operation: wash, rinse, and spin. The washer starts its wash cycle by filling

in the water during the first 1/1.5 minutes. The spray rinse cycle follows the wash cycle.

During this cycle, the washer also spins at different speeds. Then, the last cycle is spun.
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Consuming profiles

Single run

Fig. 3. Single running profiles.

Consuming profiles

Periodic run

Fig. 4. Continuously running profiles.

5.1.2. Continuously Running Devices

Continuously running devices have a cyclical pattern, roughly independent of the actions

of the user. So we model the energy profile by different loads. They could be scheduled

independently, but without an open interface each load can be just delayed disconnecting

the power. Figure 4 illustrates operating characteristics of a wall air conditioner (AC unit

LG LW1212 ER) and a 50-gallon electric water heather (WH unit E52-50R-045DV). The

wall AC unit operates for 12 hours from (when the wall AC unit was manually started)

to (shortly after the unit was manually switched-off between hours 11 and 12). The one-

second measurement indicates that the wall AC unit consumes between 1.10 and 1.25 kW

when the compressor was ON. At the beginning, the compressor operates for over three

hours to bring the room temperature down to its set point. The length of compressor op-

eration depends on ambient temperature as compared to the AC temperature set point. It

can be seen that during compressor OFF durations, the AC fan (measured at 120–150 W)

switches ON and OFF several times to circulate the air in the house. The average AC fan

ON time is 30 seconds, and OFF time is 2.5 minutes. The electric WH unit was monitored
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for 14 hours from 6 A.M. to 10 P.M. The WH consumes approximately constant power at

about 4.5 kW during its operation. The 50-gallon WH unit is ON after about five minutes

of hot water usage from a combination of showers, dish washing at a kitchen sink and

clothes washing by a washing machine. WH operations at around 6 A.M., 7 P.M., and

10 P.M. were due to hot water usage in the kitchen sink; and WH operations at around

6:30 A.M., 8:30 A.M., 8 P.M., and 8:30 P.M. were from showers. The 50-gallon WH unit

also operates once in a while to maintain the water temperature in the tank even without

hot water consumption. This happened at about 2 P.M. in this case. For this particular case,

WH operation duration is approximately six minutes to maintain the water temperature

inside the tank. For other uses, the WH operation duration can range from three minutes

to 15 minutes. This can vary, depending on the amount (and duration) of hot water drawn,

hot water temperature set point, and the water inlet temperature.

5.2. Photo-Voltaic Power Profiles

Different approaches exist for predicting energy production by PV plants. A lot of re-

sources can be exploited. Average values can be extracted by user’s electricity bills, but

they provide just monthly reports. Such data can be matched with historical data of solar

radiation, available at,3 to estimate their daily energy production. On-line archives of mea-

sured production are available at the solarlog4 website. It provides on-line web access to

the information about plants and to their real-time monitoring measures. It is possible to

visualize the power measured with a sampling period of 5 minutes, but also the archived

data are available.

Simulation approach uses weather forecast and PV plant information to predict PV

profiles, whereas the statistical approach relies primarily on past data to train models, with

little or no reliance on weather forecast and PV plant configuration as described in Pelland

et al. (2013). In any case the accuracy of the PV production forecasting is influenced by

the variability of the actual meteorological conditions. To predict the energy production

of a power plant we used the software solution developed by the CoSSMic project and

available at bitbucket website5 using data provided by Deutscher Wetterdienst (DWD)

provider. Updates are received at 00:00, 06:00, 12:00, 18:00 of each day and cover a time

horizon of eight hours.

In Fig. 5 we compare the predicted power profile (green-line) and the real production

(blue-line) of a PV plant that can provide 3 KW peek in a CoSSMic household, measured

on October 15
th 2016. It can be observed how the prediction error over-estimates and

under-estimates the real production in different time-intervals.

5.3. Power Mismatching

The lack of alignment between consuming profiles and production also depends

on the time the users usually start their appliances. Results from an Italian study

3http://www.meteopiateda.it/dati-climatici/reports-annuali/radiazione-solare.html.
4http://www.solar-log.it/.
5https://bitbucket.org/cossmic/pvprediction.
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Fig. 5. Power prediction and real production for a PV plant in a household of the CoSSMic German trial.

(http://www.eerg.it/) provide information about global energy consumption deriving from

the monitoring of the consumption of electricity for a period of 6 consecutive months, in

10 houses. The load curve represents the trend of power demand over time. It has been

traced by calculating, for each of the 144 intervals in which was divided the day, first the

average consumption for each of the devices (for the whole measurement campaign) and

then the overall average compared to all devices of the same category. Thus, the resulting

load curve tends to have values of power very low when compared to the nominal power

of the considered devices. This depends on the fact that devices are not used simultane-

ously by all users. The study provides the average daily consumption of a category of

user device (e.g. washing machine) in kWh. It is the average daily consumption measured

throughout the duration of the measurement campaign for all the devices in its class. In

Fig. 6, the average consumption of two appliances is shown. We can observe that a time

shift of just single running devices toward the peak of production allows for a significant

increase of self-consumption.

6. Problem Modelling

The problem presented in the previous section is formulated here as a scheduling problem.

The goal is to plan the time when appliances will be switched on or off, to use as much

PV energy as possible during the period of production, according to user’s constraints and

preferences.

The predictive scheduling is addressed for the full neighbourhood. We defined devi a

smart device with sensing and switching capability. It can produce, or consume energy.
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Average consumption

Fig. 6. Average consumption of a clothes-washer ad a dishwasher.

A storage will be represented by a couple of devices, a consumer and a producer. Of course

not every device can be equipped with such kind of capability or can be controlled by an

autonomic system. In fact, the usage of computer desktops or televisions will depend only

on the user’s will. Moreover, devices which do not absorb a relevant amount of energy

or which are simply not equipped with controlling capability will be included in a back-

ground load.

Let us introduce also the following definition:

• Csri is the power profile consumed by a single running appliance i in the neighbour-

hood.

• Prj is the power profile produced by the PV plant j in the neighbourhood.

• EST i is the earliest start time for the device i .

• LST i is the latest start time for the device j .

• AST i is the assigned start time from PV plant j to the consuming appliance i .

The objective is the maximization of daily self-consumption of the all neighbourhood

that corresponds to the minimization expressed in Eq. (1).

{AST i ∀ i = 1 . . .n} :
min

(
∣

∣

∫ t1
t0

∑

j (P rj (t) −
∑

i Csri(AST i, t)) dt
∣

∣

)

EST i 6 AST i 6 LST i .
(1)

The set of assigned start times represents the task schedule that minimizes the total

energy absorbed from the grid. The background load will include continuously running

devices and will be split in different chunk, which correspond to single run devices whose

run cannot be shifted (EST==LST). They are used to take into account the actual available

PV energy. We do not provide additional details about the implementation, but the reader

can refer to Amato et al. (2014a).
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begin

Parameter : = String,

Constraint : = Number,

Operator : = < eq | lt | gt | ge | le >,

Device ID : = Integer,

Penalty : = [0,1]

end

Fig. 7. Definition of constraints, rules and parameters.

6.1. Reactive Correction

Reactive correction has been modelled as a linear optimization problem. As we cannot

modify the start time of single running devices without affecting the global schedule, we

aim at switching-on or switching-off the continuously running appliances to compensate

the prediction error in each household.

Let us introduce also the following definition:

• Prod(t1, t2) is the measured energy produced by PV plant in the time interval [t1, t2].

• Pred(t,t2) is the predicted energy produced by PV plant in the time interval [t1, t2].

• Ccrk is the average power consumed by the continuously running appliance k during

the active period, computed from its profile.

• xk is the control switch for the device k. It is 1 if it needs to switch-on or 0 if it needs

to switch-off the device.

Assuming that within a time slot 1t the power measure does not change the reactive

correction becomes a linear problem within each interval 1t . The minimization of our

objective function becomes:

{x(k) ∀k = 1 . . .m} :

min

( m
∑

k=1

(xkCcrk1t ) + Prod
(

(l − 1)1t , l1t

)

− Pred
(

(l − 1)1t , l1t

)

)

xk ∈ [0,1]. (2)

Eq. (2) represents an Integer Linear Problem, whose solution is searched in [0,1]m.

A new problem is solved periodically after every 1 seconds. In particular, each element

xk of the solution represents a variable that corresponds a preference status of the related

device (1-> on and 0->off).

We also allow for the definition of additional constraints, which can be set by the user

on parameters of any devices. For example, in the case of the air conditioner the user can

set the lowest or highest temperature by a friendly interface. These rules are modelled as

logical conditions depending on which the status of each smart device will be set on or

off. A constraint can be modelled as shown in Fig. 7.

It is possible to set that a given parameter of that device can be less than or equal to

a specific value. When the logical condition is false the correspondent penalty must be

applied translating the rule into a constraint of the linear problem.
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{ c o n s t r a i n t :

{ p a r a m e t e r : t e m p e r a t u r e ,

o p e r a t o r : l e ,

d e v i c e I D : 1 ,

v a l u e : 16 ,

p e n a l t y : 0 . 5 }

}

{ c o n s t r a i n t :

{ p a r a m e t e r : SoC ,

d e v i c e I D : 2 ,

o p e r a t o r : ge ,

v a l u e : 4 KWh,

p e n a l t y : 1}

}

Fig. 8. Constrains examples.

In Fig. 8(a), a first example shows how the temperature, measured by an environmental

sensor, is used to define a constrains for the air conditioner (deviceID:1). If the temperature

of the air conditioner is greater than 16 degrees, the dynamically generated constraint will

be x1 > 0.5.

In the second example (Fig. 8(b)), we consider a car whose status of charge (SoC) must

be always above a certain threshold. In this case it is mandatory that the car must be put in

charge when the energy level is less equal to 4 KWh. The inequality of the linear problem

will be x2 > 1, that means the device cannot be switched off.

7. Experimental Results

We introduce here the increment of self-consumption in the neighbourhood by the CoSS-

Mic scheduler and demonstrate the improvement due to the reactive switching of contin-

uously running devices, when the production is different from prediction.

We evaluated the utilization of a linear solver for the resolution of the reactive for-

mulation introduced in Section 6.1, starting from the evaluation results of the CoSSMic

project and using the data collected from trials. We used lpsolve software,6 which is a free

Mixed Integer Linear Programming (MILP) solver. lpsolve is a free (see LGPL for the

GNU lesser general public license) linear (mixed integer) programming solver based on

the revised simplex method and the branch-and-bound method for the integers.

7.1. Energy Data

In order to evaluate the improvement in terms of energy management we used the data

available at the end of the CoSSMic project. The CoSSMic platform has been deployed

at two different trials sites, in province of Caserta (Italy) and in city of Konstanz (Ger-

many). In all installations the CoSSMic platform has been executed on Raspberry P2B or

on Raspberry P3, using respectively the Linux distribution Raspbian Wheezy or Jessie.

Delays and bureaucratic constraints limited the installation in province of Caserta to one

private building, three public schools and a public swimming pool. Also, the kind and the

number of metering devices were limited. In particular, 4Noks7 smart meters were cho-

sen to make the new installations compliant with already available infrastructures. A smart

6http://cran.r-project.org/web/packages/lpSolve/index.html.
7http://4noks.it.
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Table 1

Summary of trials results.

Trial-id Devices From To #days #hours

ce01 2 Oct 20, 2016 Jan 11, 2017 1 18

ce02 4 Oct 17, 2016 Jan 27, 2017 738 17

ce03 3 Oct 26, 2016 Jan 11, 2017 145 13

ce04 2 Oct 19, 2016 Jan 11, 2017 96 6

kn01 3 October 13, 2015 February 8, 2017 1012 14

kn03 6 October 29, 2015 February 9, 2017 1707 14

kn04 20 October 13, 2015 February 8, 2017 8802 14

kn05 1 October 3, 2015 October 17, 2016 368 13

kn06 1 October 21, 2016 January 17, 2017 43 6

kn07 6 April 22, 2015 February 8, 2017 3332 11

kn08 5 April 1, 2015 February 8, 2017 2079 8

kn09 8 December 11, 2014 February 8, 2017 3959 13

kn10 9 October 3, 2015 February 8, 2017 4277 14

kn11 4 October 26, 2015 February 8, 2017 1768 12

kn012 7 October 24, 2015 February 8, 2017 2350 10

meter and a smart plug were installed in the private house and two or three smart meters

were installed in each public building to measure consumptions. Such devices commu-

nicate via a zigbee to a wi-fi gateway that allows for reading data of each meter using a

Modbus protocol over TCP. The energy production by photo-voltaic plants was measured

by using the web interface of the inverters, which were equipped with a network inter-

face. The CoSSMic installations in Konstanz were under the responsibility of ISC (In-

ternational Solar Energy Research Center Konstanz). Trials are more heterogeneous and

include a greater number of devices and buildings. Trials include 4 industries, 2 schools

and 6 private houses, for a total of 12 trials. Being the city of Konstanz both a partner

of the project and the Energy Distribution Service Operator it has been easier to read, by

a wired connection via RS485 protocol, the energy consumption and production using

the electric meter already installed in each select building. Moreover, ISC installed other

wireless UHF smart-plug and additional smart meters to measure energy consumption of

laboratories, different kinds of appliances such as washing machines, e-cars, dishwashers,

heat pumps and also factory plants.

In Table 1 a summary of trials information is provided. We collected data for more

than one year in Konstanz and for a much more limited period in province of Caserta.

The first column shows the trials id, while the second column contains the number of

installed meters. Then we have the starting date and the last date of the observation period.

Finally, we have the sum of monitored days and hours for each trial. They are not equals

to the duration of the observation period multiplied for the number of devices because

of downtime, voluntary disconnection of power grid in the school during nights and in

weekends, because some devices have been installed later or because of other kind of

system failures or of maintenance issues.
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(a) kn09 time-series (b) kn10 time-series

Fig. 9. Original time-series of kn09 and kn10.

7.2. Scheduling Single-Run Devices

In Fig. 9 we show the different time series of two trials (kn09 and kn10) of CoSSMic

project at Konstanz (Germany), measured on October 15th 2016. We can see power gen-

erated by PV, consumption of e-cars, single run, periodic run devices and total consumed

power.

Using the CoSSMic simulator described at Amato et al. (2018) we found a global

schedule that improved the original one, improving self-consumption of the whole neigh-

bourhood. In particular, in Fig. 10(a) and (b) the original schedule of single run devices

are shown. In Fig. 10(c) and (d) the starting time of single run devices change according

to the optimal schedule computed by the simulator. We also show the difference between

the prediction of production, which is used to compute the schedule, and the measured

production.

In Table 2, the schedule results and the expected improvement in terms of self-

consumption of the full neighbourhood, are shown. First of all we observe that even if

the optimization algorithm provides a global improvement by an optimal schedule, on

the other side the optimum does not correspond to the maximization of self-consumption

of every single household. In our experiments the worst and the best case for a single

household were about 2 KWh below or above the original value, in favour of the common

benefit.

In particular, we will focus on two households, kn09 and kn10, which experienced on

October 15th 2016 a limited decrease of their own self-consumption.

Table 2 only shows the theoretical results of the algorithm, because the scheduler is

aware about predictions. The real value of self-consumption can be computed only at the

end of the day, on the basis of the measured production of PV energy. As it is shown in

Table 3, because of the under-estimation of energy production we observe a greater value,

but the scheduler was not able to look for the real optimum.

The prediction model over-estimated the production for kn09 and under-estimated it

for kn10. At the end of the day the prediction error on the total production is 3% for
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(a) Original schedule on kn09 (b) Original schedule on kn10

(c) Optimal schedule on kn09 (d) Optimal schedule on kn10

Fig. 10. Optimal schedule by CoSSMic of single run devices on kn09 and kn10.

Table 2

Simulation results.

Trial-id Consumption Prediction Self-static Self-schedule

Neighbourhood 96.05 KWh 48.34 KWh 29.5% 34.57%

kn09 16.48 KWh 6.957 KWh 46% 45%

kn10 24.7 KWh 14.24 KWh 32% 31%

kn09 and 35% for kn10. These numbers are relevant to estimate how much energy it were

possible to self-consume in theory, however the real issue is related to the cumulative error,

because the self-consumption must be computed as an instantaneous exchange of power.

Estimating the prediction error every 5 minutes and computing the cumulative error, the

results is 34% prediction error for kn10 and 35% for kn09.

It is straightforward to observe that it is impossible to predict the power profile with

enough precision, that is why a different approach must be used to compensate power

fluctuations.
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Table 3

Measured results.

Trial-id Consumption Production Self-static Self-schedule

Neighbourhood 96.05 KWh 57.92 KWh 26.8% 33.18%

kn09 16.480 KWh 6.760 KWh 62.6% 59%

kn10 24.7 KWh 21.85 KWh 30.25% 29.8%

7.3. Switching Continuously-Run Devices

Even if a prediction error is detected at the household at run-time, single run devices,

whose schedule depends on a distributed policy, cannot be shifted according to local crite-

ria. On the other side the control of continuously run-devices, which have been considered

background loads, can be used to compensate the error of prediction.

During the day the error of prediction can switch between an over-estimation or an

under-estimation, according to the current weather conditions (clouds, fluctuations of hu-

midity, temperature).

It is necessary to periodically adapt the usage of devices for: (a) reducing the consump-

tion when a lack of energy is estimated with respect to the prediction, or (b) consuming

more energy when a surplus of production is noticed in the last time-window. However,

we should not annoy the users changing smoothly the common behaviour of their devices.

In order to check the error and switch the devices according to it, we set the duration

of a time-window equal to 5 minutes. The linear optimization computes a control vector

every 5 minutes if the prediction error is not equal to zero. The elements of the vector are

real numbers in [0,1], which are 0 when the device should be switched-on and are 1 when

it needs all its power to compensate the error.

For experimental purpose, in order to limit the deviation between the original time-

series of power samples and the new one, we also set a maximum difference between the

energy that would be used by the uncontrolled device and the energy used by the controlled

behaviour for each device. This constraint will avoid that the user could be annoyed by

changes to the environment when behaviours of devices differ too much from the desired

one.

In Fig. 11 the original time series and the controlled one for the heat pump in kn10

are shown. The device is forced to consume when the production is greater than the pre-

diction, but only if the cumulative consumed energy is less than the threshold, or if we

previously switched-off the device consuming less than working as usual. In this case we

set 10% as the maximum deviation between the original behaviour and the modified one.

In particular, we plotted the production and prediction time-series, the original consumed

power and the controlled one. The last two charts of Fig. 11 provide details about the orig-

inal power samples lost by switching off the heat pump, and the added ones by switching

on the device in case of PV energy availability.

The simulation allows us to estimate the energy deviation with a better precision, using

the original measures and an average profile. In the real case we will have the real con-

sumption, but we miss the original time-series. In that case we can estimate the energy

deviation observing the behaviour of the device controller. In fact, the controller will wait
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Fig. 11. Original and controlled power consumption of heat pump in kn10.

for a longer period before to switch-off the device, until the target temperature is reached,

and it will delay the next switch-on if it had been forced to work before.

In Fig. 12 the original time-series and the controlled one for the Fridge in kn09 are

shown. The same consideration we did for the previous figure is still valid. We must ob-

serve that in both cases additional settings could be offered to the user. For example, it

could prefer to compensate only over-estimation accepting just the option of saving en-

ergy. On the other hand it could prefer to switch-off the device just in a time-window

during the day.

Different constraints on the energydeviation can be set for positive and negative values.

All these different configurations will be investigated in future work. Here only the energy

deviation constraint is set. Increasing its value, it is possible to estimate how much self-

consumption can be improved if more flexibility is added.

In Table 4 we have the changed consumption in KWh when the continuously run-

ning devices are controlled and different constraint values are set as maximum deviation

(40%,30%,20%,10%).

In the case of kn09 the original high value of self-consumption, and the limited pre-

diction error does not provide much room for improvement. Moreover, the controller re-

duces the final consumption in order to compensate the error. In the case of kn10, the

opposite situation, produces an increase of consumption and a relevant improvement of

self-consumption.

7.4. Performance Evaluation

For the performance test we used a Java interface of lpsolve that uses native code. The

system used for the experiments is equipped with 2.67 GHz i5 processor, 4GB of memory
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Fig. 12. Original and controlled power consumption of fridge in kn09.

Table 4

Local improvement due to continuously running devices.

Trial-id Original KWh New KWh Error (%) Self-cons (%)

kn09 4.032 3.68/3.34/3.05/2.82 3 58.39/58.1/57.71/56.7

kn10 10.97 13.38/13.15/12.34/11.76 35 38/40/38/36

amount and Windows 7 operating system.

We fixed the number of devices and increased the number of constraints, varying in a

random way the penalty in [0,1]. Then, we repeated the measures increasing the number

of devices. In each experiment the linear optimization has been computed 150 times, in

order to compute the average value. Because of the overhead of the Java Just in time

compiler, the first iteration will take much more time than the following ones. For this

reason, to better estimate the average duration of an iteration, we filtered the first value of

the time-series.

The graph in Fig. 13 shows that when the number of constraints increases (keeping

fixed the number of devices) the time spent to resolve the problem changes slightly. In fact,

when there are 8 devices the difference between the maximum value (with 8 constraints)

and the minimum value (with 1 constraint) is 4.2 ms; for 16 devices is 13 ms and for 32

devices is 91 ms. It means that the number of constraints does not affect the performances

of the algorithm.

Instead, we can see that the time grows up when the number of devices increases. This

behaviour is even more evident if we see the graph in Fig. 14 in which the number of

constraints is fixed and the number of devices varies. In particular we can see that the

time is directly proportional to the number of devices. The time varies from about 297 ms

in case of 8 devices to more than 1 s in case of 32 devices.
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Fig. 13. Performance evaluation by varying the number of constraints.

Fig. 14. Performance evaluation by varying the number of devices.

Table 5

Mean time and standard deviation.

Mean time (ms) Standard deviation (ms)

8 Devices 296.94 49.44

16 Devices 548.37 64.71

32 Devices 1084.34 116.38

Table 5 shows the mean time and the standard deviation for each experiment. We can

see that the average time increases linearly with the number of devices. Up to 16 devices

the time to solve the problem is very small, but with 32 devices it starts to become signif-

icant, even if real time reaction is still feasible with a polling period of 5 minutes.
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8. Conclusion

Smart management of energy demand is the key for improving self-consumption in smart

grids. In fact PV plants do not always produce the energy at the time it is needed. CoSS-

Mic is an ICT European project that aims at fostering a higher rate for self-consumption of

decentralized renewable energy production by connecting up to household appliances and

scheduling when to switch them on, according to users’ constraints and preferences, to use

as much PV energy as possible during the period of production. In CoSSMic project, and

in related work, prediction of PV production is based on the weather forecast data provided

by weather service and on consuming profiles, which are built using a continuous learning

algorithm that uses monitoring information. The objective is the planning of an optimal

collaborative schedule of energy workloads within a neighbourhood.However, complexity

of prediction of energy production and unforeseen causes of consumption may affect the

planned strategy for smart energy management. To address in real time such unpredictable

events we proposed here a reactive approach for short term corrections to complement the

CoSSMic predictive model. We presented an original formulation of the problem and, af-

ter some preliminary hypothesis, its resolution using techniques for linear optimization.

Simulation results were presented to demonstrate the feasibility of the approach in terms

of performance to manage short terms for recovering energy mismatch which affect the

planned optimal schedule. Improvement in terms of self-consumption are also estimated

using original measures collected by the project trials integrating both predictive and re-

active techniques. Those encouraging results can be used also to reduce the dimension of

an energy storage that could filter and compensate all power fluctuations.
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