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Abstract. The Autoregressive model-based digital inverse filtering technique is applied in non-
invasive detection of vocal fold paralysis. The vocal tract filter is modelled using variable order
(up to 20) AR model which is adequate to individual characteristics of human vocal properties.
This postulates the more accurate estimation of the glottal flow, disturbances of which are direct
evidence of the vocal fold paralysis.
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1. Introduction

Clinically, vocal fold paralysis (immobility) is detected using invasive techniques like
laryngoscopy,kymography, and others. These techniques mean unpleasant procedure with
the possible traumatic output, the need for expensive clinical equipment.

As an alternative to invasive techniques, acoustic signal analysis-based non-invasive
techniques are explored extensively during the last two decades. Various parametric and
non-parametric analysis techniques were proposed for assessment of vocal fold immobility
type and degree.

In this paper, we present the Autoregressive (AR) model-based digital inverse filter-
ing approach for estimation of the glottal flow. The quality of estimated flow is evaluated
using prediction error which is used as an objective indicator of the vocal fold function-
ality. Experimental analysis of the proposed technique was performed using recordings
of healthy and pathological voices. The results obtained show the ability of the inverse
filtering technique to characterize the quality of the glottal flow and make it possible to
detect the paralysis of the vocal folds.

*Corresponding author.
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2. The Background

2.1. Vocal Fold Paralysis

Voice and speech have very important roles in human social life and professional perfor-
mance. The negative impact of laryngeal nerve injury on voice is well known in thyroid
surgery, but unfortunately, the correlation between them is little studied. The literature
shows that altered voice is a common problem after thyroid surgery. The voice changes
were reported in 25% to almost 90% of patients within the first few weeks after thyroidec-
tomy (Henry et al., 2010). Other studies represent similar numbers (30–87%) (de Pe-
dro Netto et al., 2006; Musholt et al., 2006; Stojadinovic et al., 2002; Page et al., 2007;
Sinagra et al., 2004; Elsheikh et al., 2016). Voice changes can be classified as neural
and non-neural related. The true incidence of recurrent laryngeal nerve injury following
thyroid surgery is probably underrated, as it strongly depends on postoperative laryngeal
examination. According to a systematic review (Jeannon et al., 2009), which included
27 articles and 25,000 patients, the average of temporary incidence of recurrent laryn-
geal nerve after thyroid operation was 9.8% and the incidence of permanent injury of the
same nerve was 2.3%. The rate varied from 26% to 2.3%. The data of 3,605 patients from
5 high-volume centres in France (Lifante et al., 2017) shows similar results: immediate
injury rate was 9.3% (range 3.8–21.8%), permanent rate was 3.1% (0–9.1%). The Scan-
dinavian multicentre audit of 3,660 patients reports postoperative unilateral paresis of the
recurrent laryngeal nerve in 3.9% of cases (Bergenfelz et al., 2008). It is very important
to realize that vocal cord paralysis may occur without any voice changes. Voice could be
normal in case of vocal cord paralysis in up to 28% of cases (Mihai and Randolph, 2009)
or even in more than 50% (Ortega et al., 2009). Majority of endocrine and general sur-
geons agree that pre- and postoperative laryngoscopy should be mandatory in all patients
undergoing thyroid surgery, as it is the most trustworthy method in determining vocal cord
paralysis. Despite reliability of this method, it could be uncomfortable and unpleasant for
the patient, adds extra costs, needs special instruments and trained personal, causes logis-
tic problems (Ortega et al., 2009). Probably computerized acoustic voice analysis could
be used as a screening method to select patients for laryngoscopic examination.

2.2. Acoustic Speech Analysis for Voice Disorders

The idea to apply acoustical analysis of speech for voice disorder detection and evalua-
tion is not new. Similar ideas were proposed 50–60 years ago (Lieberman, 1963; Koike,
1967), and has been studied since now. Various acoustic parameters were proposed and
employed for this purpose. These include but are not limited to perturbations of fundamen-
tal tone (Kasuya et al., 1983), various noise estimation techniques (Yumoto et al., 1982;
Kasuya et al., 1986; Fukazawa et al., 1988), cepstral features (Dejonckere and Wieneke,
1994; Hillenbrand et al., 1994), nonlinear operators and techniques (Cairns et al., 1994;
Giovanni et al., 1999), MFCC features (Dibazar at al., 2002), fractal dimensions (Baljekar
and Patil, 2012; Ali et al., 2016). During the last decade the task of acoustic analysis-based
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detection and evaluation of pathological voices was studied intensively. Vast majority of
studies focus on combining various features without any physiological reasoning. Exten-
sive and summarized reviews on acoustic analysis of pathological voice can be found in
Arroyave et al. (2012), Vaičiukynas et al. (2015), Panek et al. (2015).

The speech signal is generated in two stages. Firstly, the so-called source signal is
induced. The air flow generated by the lung causes the vibration of the vocal folds. This
vibration is called phonation process, and its intensity is described by the fundamental
frequency value. In the next step, the glottal flow is modulated by the voice tract. The
result of this modulation is the speech signal, transmitting information on both the vocal
fold and the voice tract resonant properties. Disorder of vocal folds (paralysis among them)
affects the speech inevitably. The effect depends on dysfunction degree of the folds and
can vary from inaudible changes up to severe changes of voice, for example, it becomes
breathy, harsh, and weak.

Acoustical analysis of the speech signal is considered as an objective evaluation of the
vocal tract functionality rather than perceptual analysis of the speech. Acoustic parameters
represent generative and articulatory properties of the voice and thus could be applied
for pathology detection and evaluation. Different acoustic parameters describe different
stages of the speech signal production, thus should be chosen reasonably. To estimate the
functionality (or immobility) of vocal folds, we have to analyse the glottal flow.

2.3. Inverse Filtering Technique

The most common technique to estimate the glottal flow is to employ source-filter produc-
tion model. This model describes the speech signal as the convolution of the source signal
(glottal flow) and a filter (vocal tract). Both source signal and vocal tract can be modelled
using various joint estimation models or separately, ignoring or considering close phase
of the glottal cycle (Walker and Murphy, 2007; Alku, 2011).

If we consider the glottal flow and the vocal tract as independent, the glottal flow
can be extracted by inverse filtering of the speech signal (Alku, 2011). The inverse filter
eliminates the effect of the vocal tract thus giving the estimate of the glottal flow. The
process of inverse filtering can be simplified using linear modelling of the vocal tract.

Linear modelling has played a very important role in speech analysis domain be-
cause of its mathematical tractability and applicability, spectral estimation properties. For
speech analysis purposes, the linear all-pole filter was applied mostly. Various linear pre-
diction techniques were employed for glottal flow extraction: constrained linear prediction
with reduced distortion of filter frequency response (Alku and Magi, 2009), weighted lin-
ear prediction with temporal weighting of the residual (Airaksinen et al., 2014) and its
stabilized modification (Kafentzis et al., 2011).

All voice pathology detection and inverse filtering studies can be summarized as fol-
lows:

• The prediction model order varies from 8 up to 12 in different studies. The order
number is related with the number of modelled vocal tract formant frequencies, p-th
order model describes p/2 formants. Typically, a fixed order value is used.
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• Vast majority of studies employ complex feature sets for vocal fold paralysis detec-
tion. So far, only small part of them are physiologically motivated, i.e. reflect glottal
flow directly. Most of employed features (like MFCC, PLP) contain redundant infor-
mation like linguistic content, emotional status of the speaker, etc.

• Despite numerous studies, acoustical analysis of vocal pathologies (including paral-
ysis of vocal folds) still remains a challenging task.

In this paper, we present the AR model-based inverse filtering approach for estima-
tion of glottal flow and detection of vocal fold paralysis. A variable order AR model was
employed to model the vocal tract and the glottal flow.

3. The Proposed Method

3.1. The Autoregressive Model-Based Inverse Filtering Model

The glottal flow can be obtained from the voiced speech segments. Considering the source-

filter approach, the speech signal s(t) can be expressed as the convolution of the glottal
flow g(t) and the vocal tract filter h(t)

s(t) = g(t) ∗ h(t). (1)

Here the lip radiation effect (modelled as a first-order differentiating filter) is included in
the vocal tract processing and is not considered separately. Traditionally, the vocal tract is
modelled using an all-pole filter for speech analysis purposes.

If we obtain an estimate of the inverse vocal tract filter ĥ−1(t) and apply it to the
analysed speech signal s(t), we will eliminate the effect of the vocal tract thus obtaining
the estimate of the glottal flow

ĝ(t) = s(t) ∗ ĥ−1(t). (2)

In this study, we applied AR model for the modelling of the vocal tract. The choice
was due to the following reasons:

• The AR model (also known as Linear Predictive Coding model) is an all-pole filter
and had great success in speech applications. The adequacy of the AR model pa-
rameter estimation technique (Kaukėnas, 1983) to the speech signal was shown in
Kaukėnas and Tamulevičius (2016) and Tamulevičius and Kaukėnas (2016).

• The linearity of filter enables us to obtain an inverse version of the filter very easy.
• The chosen parameter estimation technique enables us to obtain a variable model or-

der which is adequate to individual characteristics of human vocal properties. There-
fore, we can expect a more accurate estimation of the glottal flow.

The AR model parameter estimation technique is presented in the next subsection.
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3.2. Estimation of the AR Model

Let us explore the speech signal as the process {St } with zero mean and describe it using
the AR model

M
∑

i=0

aiSt−i = bVt , a0 = 1, t = 1,2, . . . ,N, (3)

where N is the length of the signal St , {Vt , t = 1,2, . . .} is the process of mutually inde-
pendent and normally distributed random variables.

Our task is to estimate the model order M , the parameters {a1, a2, . . . , aM} and b of
the AR model.

From (3) we can obtain

−sM+1 = a1sM + a2sM−1 + · · · + aMs1 + bvM+1,

−sM+2 = a1sM+1 + a2sM + · · · + aMs2 + bvM+2, (4)

...

−sN = a1sN−1 + a2sN−2 + · · · + aMsN−M + bvN ,

If we denote

Y ′ = (−sM+1,−sM+2, . . . ,−sN ),

X′
1

= (sM , sM+1, . . . , sN−1),

X′
2

= (sM−1, sM , . . . , sN−2),

...

X′
M = (s1, s2, . . . , sN−M ),

X = (X1,X2, . . . ,XM),

A′ = (a1, a2, . . . , aM),

V ′ = (VM+1,VM+2, . . . , VN ),

we get the following expression of the AR model

Y = X · A + bV. (5)

The equation is solved using the recurrent evaluation approach (Kaukėnas, 1983). The
Efroymson matrix is composed

E =





R(M × M) T ′(M × 1) I (M × M)

T (1 × M) I (1 × 1) O(1 × M)

−I (M × M) O(M × 1) O(M × M)



 , (6)
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where R is the cross-correlation matrix of Xi and Xj , i, j = 1, . . . ,M; T is the cross-
correlation vector of Y and Xi , i = 1, . . . ,M; O denotes zero vectors and matrices, and
I is a unit matrix.

Each new sequence Xi is included during the recurrent modification of the Efroymson
matrix

E′(i, j) = E(i, j)/E(i, i), j = 1,2, . . . ,2M + 1, (7)

E′(k, l) = E(k, l) −
E(k, i)E(i, l)

E(i, i)
, k, l = 1,2, . . . ,2M + 1, l 6= i. (8)

E(i, j) denotes the Efroymson matrix before including Xi , E(i, j)′ is an updated version
of the Efroymson matrix with included Xi .

Finally, the model parameter ai is estimated

âi = E(i,M + 1)

√

(Y ′Y )/(X′
iXi), i = 1,2, . . . ,M. (9)

The estimate of b2 is obtained as follows

b̂2 = E(M + 1,M + 1)(Y ′Y )/(N0 − M). (10)

The model order estimation task is solved by comparing M1 and M2 order models.
Usually, the estimated variances of prediction error b̂2

M1
and b̂2

M2
are compared. The fol-

lowing estimator for the model order was formulated in Kaukėnas (1983)

M̂i =







i, if
( b̂2

i −b̂2

i−1

b̂2

i

)

(N0 − i) > Fcr (1,N − i),

0, otherwise,
(11)

M̂ = max
i

{M̂i}, i = 1, . . . ,Mmax,

where Fcr (1,N − i) is the quantile of Fisher distribution with 1 and (N − i) degrees of
freedom; b̂2

0
is the estimate of variance, i.e. b̂2

0
= D̂, D̂ is the estimated variance of the

process. Mmax is the maximum model order value, it is based on empirical knowledge of
the signal.

In this study, we have chosen Mmax = 20 for the vocal tract model. The filter with
order up to 20th will model up to 10 resonant frequencies (formants), which is completely
sufficient for description of speaker’s individual articulation (vocal tract) properties.

For the modelling of the glottal flow we have chosen Mmax = 200. The decision is
based on the results obtained in Tamulevičius and Kaukėnas (2017), where description of
individual speakers qualities demanded AR model order up to 170.

The quality of the estimated glottal flow was assessed on the basis of the ratio of es-
timated squared prediction error and estimated signal variance b̂2/D̂. The value of b̂2/D̂

indicates the relative part of the unmodelled signal: the higher ratio value we obtain,
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the higher signal prediction error is. Therefore, we can expect a low b̂2/D̂ value for normal
glottal flow and high values for pathological voices (with paralysis).

In this study, we will express this ratio in percentage and call it the estimated error of
glottal flow. We think that for healthy and normal voices this ratio will approach towards
zero level, and for pathological voices, it will converge to 100% (in case of full paralysis
or dysfunction of vocal folds).

3.3. Inverse Filtering of the Speech Signal

In this subsection we will present the algorithm of the inverse filtering of the speech signal
and estimation of the glottal flow quality.

Step 1. The vocal tract filter h(t) is modelled using AR model: the estimates of model
order M (11) and parameters {a1, a2, . . . , aM , b} (9)–(10) are obtained with Mmax =

20.
Step 2. The estimate of inverse filter ĥ−1(t) is constructed and the estimate of the glot-

tal flow is obtained

ĝt =

M
∑

i=0

aiSt−i, t = 1,2, . . . ,N.

Step 3. The AR model order M ′ and parameter estimates {a′
1
, a′

2
, . . . , a′

M ′ , b
′} are ob-

tained for the glotal flow ĝ(t) with M ′
max

= 200. The quality of the ĝ(t) is assessed
by value b̂′2/D̂′.

4. Experimental Analysis

4.1. Experimental Data

For experimental analysis of the proposed method, records of two voice types were col-
lected.

Starting in 2016, patients scheduled for thyroidectomyand included in the study (study
launched in Vilnius University Faculty of Medicine Institute of Clinical Medicine Clin-
ics of Gastroenterology, Nephrourology and Surgery in cooperation with the Institute of
Data Science and Digital Technologies) were selected for voice recording and vocal folds
movement evaluation before and after the operation. Vilnius regional Biomedical research
committee permission No. 158200-15-819-331 has been given in 2015.12.08. The inter-
val comparison of sequential voice recording was matched against change in vocal folds
movement. The vocal folds function was assessed by a laryngoscopy in each case before
and after thyroidectomy procedure.

A prospective trial was launched in March 2016 and finished in May 2017. 112 patients
with known thyroid pathology were prospectively enrolled in this study. All 112 patients
were operated on in Vilnius University Hospital Santaros Klinikos. The study protocol
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included voice recording and laryngeal exam in all patients preoperatively and postopera-
tively by a qualified ENT specialist. 6 cases of temporary vocal cord palsy were diagnosed
on postoperative examination (5.4% injury rate per patient and 3% per nerve at risk). No
cases of permanent or bilateral vocal cord palsy were recognized postoperatively.

All the patient voices were recorded using headset microphones in a clinician’s room
environment. There were 4 recording sessions organized: one day before surgery, one day,
2 weeks, and 4 months after surgery.

The control group consisted of healthy people with no complaints or throat/mouth
surgery procedures in last 3 months. The voices of 10 female and 10 male speakers were
recorded using voice recorder with an external microphone in a silent room environment.

All the recorded persons were asked to pronounce vowel [a] in a sustained manner
for 3–4 seconds. This vowel is characterized by a minimal lip restriction during radia-
tion phase and a fully expressed phonation level. Besides, vowel [a] is common for most
languages, what makes it universal for comparison purposes.

4.2. Case Analysis

For analysis of pathological and healthy voices, we have selected two voices for inverse
filtering procedure and estimation of glottal flow. The estimated signal of glottal flow and
its spectral density function were analysed to estimate the qualities of the pathological and
healthy voices.

Figure 1 presents the results obtained for the healthy female’s voice. The estimated
order of the vocal tract filter was 11 (i.e. the vocal tract had 6 resonant frequency values).
The estimated glottal flow can be evaluated as periodic and normal (Fig. 1(b)). Spectral
density function (Fig. 1(c)) is also periodic, the harmonic components are vivid through
the entire frequency range of the signal.

The results of pathological male voice analysis are given in Fig. 2. Here we can see the
distorted waveform of the utterance (Fig. 2(a)). The vocal tract was modelled by 20-th
order model which means ten resonant frequencies of the tract. The estimated glottal
(Fig. 2(b)) flow is noisy with no sign of periodicity (what is characteristic for the vo-
calized vowel). The spectral density (Fig. 2(c)) of the flow is noise-like, here we can see
only 4–5 harmonic components. This is the evidence of vocal fold immobility which can
be the result of the vocal fold paralysis.

Similar results were obtained for all pathological voices: non-periodicity of the esti-
mated glottal flow, noise-like spectral density function. The degree of non-periodicity was
different for the individual voices. This difference may be with individual characteristics
of the voices and require a more detailed study with larger datasets.

4.3. Experimental Results

First of all, we evaluated the error level of glottal flow for healthy and pathological voices.
The averaged results are given in Fig. 3.

We can see the clear difference between healthy and pathological voices. The patients’
voices (before thyroidectomy surgery) have at 50% higher error level than healthy ones.
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(a)

(b)

(c)

Fig. 1. The healthy voice: (a) the waveform of the vowel [a]; (b) the estimated glottal flow; (c) the spectral
density of the glottal flow (AR model-based spectral density is given in solid line, Fourier transform-based
spectral density is given in dotted line).

The thyroidectomy procedure with the output of the immobility of the vocal folds in-
creased the error level by 15–50% (by 2–3 times in comparison with healthy voices).
Therefore, the prediction error level of the glottal flow enables us to identify the case of
vocal fold paralysis.

Nevertheless, the amount of analysed data is not sufficient to make statistically rea-
soned conclusions and to propose some global criteria for detection of vocal fold paral-
ysis. The main reason is the scattering of the results because of individual properties of
the persons’ voice. Every person is characterized by his own inherent qualities of glottal
flow, so the output of the surgery (which is also very characteristic to person) should be
estimated individually, taking into account these qualities. To illustrate this statement the
data about the status of 3 patient’s vocal folds is given in Fig. 4.

Comments in Fig. 4:

Female #1. This patient has been diagnosed with paralysis of the vocal folds after thy-
roidectomy surgery. Only a partial recovery of folds mobility has been stated after
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(a)

(b)

(c)

Fig. 2. The pathological voice: (a) the waveform of the vowel [a]; (b) the estimated glottal flow; (c) the spectral
density of the glottal flow (AR model-based spectral density is given in solid line, Fourier transform-based
spectral density is given in dotted line).

Fig. 3. The estimated error level of glottal flow for different voices.
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Fig. 4. The change of estimated vocal fold status for 3 patients.

4 months. In Fig. 4 we can see only slightly improving status of vocal folds (solid
line).

Female #2. In this case, we also can see the change of folds mobility after surgery
(paralysis was diagnosed). However, after two weeks the status of the folds had im-
proved significantly and became much better than before the surgery and remained
unchanged after 4 months (dashed line). The dynamics of the glottal flow quality is
given in Fig. 5. There we can see the obvious improvement of the glottal flow quality.
The glottal flow after thyroidectomy has become noisy and non-periodic (Fig. 5 (b)).
After two weeks the flow was more stable and periodic (Fig. 5 (c)) even compared
with preoperative status (Fig. 5 (a)).

Male #1. This patient’s data show the drastic change of vocal fold status (dotted line).
The estimated error level of the glottal flow had increased almost 4 times. So far,
the monitoring of this patient has not yet been completed, so there is no data on the
current state of this patient’s vocal folds.

It is obvious that glottal flow prediction error-based estimation of the vocal fold func-
tionality should be performed individually. As we can see in Fig. 4, the preoperative and
postoperative status of vocal folds were different for patients, and the recovery process
is also individual. Therefore, this assessment can be implemented as monitoring the dy-
namics of vocal fold functionality for screening examination method to select patients
for laryngoscopic procedure. Relative change of the glottal flow prediction error reflects
changes in glottal flow. For application purposes, the change should be parametrized.

5. Conclusion

The formulated vocal fold mobility assessment technique and the experimental results
obtained can be summarized as follows:

• The Autoregressive model-based digital inverse filtering technique is presented for
estimation of the glottal flow. The novelty of the proposed method is the objec-
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(a)

(b)

(c)

Fig. 5. Dynamics of the glottal flow for patient Female #2.

tive and adequate selection of a variable model order, which enables us to obtain
a more accurate evaluation of individual articulation properties than a fixed-order
modelling. This postulates the more accurate estimation of the glottal flow, distur-
bances of which are direct evidence of the vocal fold paralysis.

• The glottal flow differs for healthy and pathological voices. AR modelling of the
glottal flow gives at least 50% higher prediction error level for pathological voices
(before the thyroidectomy procedure). The surgery procedure increases this differ-
ence 2–3 times. Nevertheless, the results were obtained for 20 healthy and 6 patho-
logical voices. Therefore, statistical significance of the results is not high.

• Prediction error-based global and universal glottal flow assessment criteria for paral-
ysis detection cannot be formulated so far. The voice production system is very spe-
cific to each speaker, the impact of the surgery is also very specific. Thus mobility
of the vocal folds should be estimated individually, taking into account individual
qualities, comparing preoperative and postoperative voice qualities. The employed
AR model parameter estimation technique is capable of describing these individ-
ual properties and using of a prediction error to monitor the dynamics of vocal fold
functionality before and after thyroidectomy procedure.



Inverse Filtering for Detection of Paralysis 103

References

Airaksinen, M., Raitio, T., Story, D., and Alku, P. (2014). Quasi closed phase glottal inverse filtering analysis with
weighted linear prediction. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(3),
596–607.

Ali, Z., Elamvazuthi, I., Alsulaiman, M. (2016). Detection of voice pathology using fractal dimension in mul-
tiresolution analysis of normal and disordered speech signals. Journal of Medical Systems, 40(20).

Alku, P., Magi, C. (2009). Closed phase covariance analysis based on constrained linear prediction for glottal
inverse filtering. The Journal of the Acoustical Society of America, 125(5), 3289–3305.

Alku, P. (2011). Glottal inverse filtering analysis of human voice production – a review of estimation and
parametrization methods of the glottal excitation and their applications. Sadhana, 36(5), 623–650.

Arroyave, R.O., Bonilla, F.V., Trejos, D.T. (2012). Acoustic analysis and non linear dynamics applied to voice
pathology detection: a review. Recent Patents on Signal Processing, 2(2), 96–107.

Baljekar, P.N., Patil, H.A. (2012). A comparison of waveform fractal dimension techniques for voice pathology
classification. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 4461–4464.
Bergenfelz, A., Jansson, S., Kristoffersson, A., Mårtensson, H., Reihnér, E., Wallin, G., Lausen, I. (2008). Com-

plications to thyroid surgery: results as reported in a database from a multicenter audit comprising 3660
patients. Langenbeck’s Archives of Surgery, 393(5), 667–673.

Cairns, D.A., Hansen, J.H.L., Riski, J.E. (1994). Detection of hypernasal speech using a nonlinear operator. In:
Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society, pp. 253–254.

Dejonckere, P., Wieneke, G.H. (1994). Spectral, cepstral and aperiodicity characteristics of pathological voice
before and after phonosurgical treatment. Clinical Linguistics & Phonetics, 8(2), 161–169.

Dibazar, A.A., Narayanan, S., Berger, T.W. (2002). Feature analysis for automatic detection of pathological
speech. In: Proceedings of the Second Joint EMBS/BMES Conference, Houston, USA, October 23–26, 2002,
pp. 182–183.

Elsheikh, E., Quriba, A.S, El-Anwar, M.W. (2016). Voice changes after late recurrent laryngeal nerve identifi-
cation thyroidectomy. Journal of Voice, 30(6), 762.e1–762.e9.

Fukazawa, T., el-Assuooty, A., Honjo, I. (1988). A new index for evaluation of the turbulent noise in pathological
voice. Journal of Acoustical Society of America, 83(3), 1189–1193.

Giovanni, A., Ouaknine, M., Triglia, J.M. (1999). Determination of largest Lyapunov exponents of vocal signal:
application to unilateral laryngeal paralysis. Journal of Voice, 13(3), 341–354.

Henry, L., Helou, L., Solomon, N., Howard, R.S., Gurevich-Uvena, J., Coppit, G., Stojadinovic, A. (2010).
Functional voice outcomes after thyroidectomy: an assessment of the Dysphonia Severity Index (DSI) after
thyroidectomy. Surgery, 147(6), 861–870.

Hillenbrand, J., Cleveland, R.A., Erickson, R.L. (1994). Acoustic correlates of breathy vocal quality. Journal of

Speech and Hearing Research, 37(4), 769–777.
Jeannon, J.P., Orabi, A.A, Bruch, G.A., Abdalsalam, H.A, Simo, R. (2009). Diagnosis of recurrent laryngeal

nerve palsy after thyroidectomy: a systematic review. International Journal of Clinical Practice, 63(4), 624–
629.

Kafentzis, G.P., Stylianou, Y., Alku, P. (2011). Glottal inverse filtering using stabilised weighted linear predic-
tion. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5408–
5411.

Kasuya, H., Kobayashi, Y., Kobayashi, T., Ebihara, S. (1983). Characteristics of pitch period and amplitude
perturbations in pathologic voice. In: Proceedings of International Conference on Acoustics, Speech, and

Signal Processing ICASSP, pp. 1372–1375.
Kasuya, H., Ogawa, S., Mashima, K., Ebihara, S. (1986). Normalized noise energy as an acoustic measure to

evaluate pahologic voice. Journal of Acoustical Society of America, 80(5), 1329–1334.
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