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Abstract. The recent introduction of whole-slide scanning systems enabled accumulation of high-
quality pathology images into large collections, thus opening new perspectives in cancer research, as
well as new analysis challenges. Automated identification of tumour tissue in the whole-slide image
enables further use of developed grading systems that classify tumour cell abnormalities and predict
tumour developments. In this article, we describe several possibilities to achieve epithelium-stroma
classification of tumour tissues in digital pathology images by employing annotated superpixels to
train machine learning algorithms. We emphasize that annotating superpixels rather than manually
outlining tissue classes in raw images is less time consuming, and more effective way of producing
ground truth for computational pathology pipelines. In our approach feature space for supervised
learning is created from tissue class assigned superpixels by extracting colour and texture param-
eters, and applying dimensionality reduction methods. Alternatively, to train convolutional neural
network, labelled superpixels are used to generate square image patches by moving fixed size win-
dow around each superpixel centroid. The proposed method simplifies the process of ground truth
data collection and should minimize the time spent by a skilled expert to perform manual anno-
tation of whole-slide images. We evaluate our method on a private data set of colorectal cancer
images. Obtained results confirm that a method produces accurate reference data suitable for the
use of different machine learning based classification algorithms.

Key words: tumour, whole-slide image, machine learning, superpixel, ground truth, colour and
texture features, convolutional neural network.

1. Introduction

Most often solid tumour cancers are diagnosed by medical pathologist visually inspect-
ing tissue slides. Pathology slides contain important features – spatial information of
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tumour cell morphology and tumour microenvironment that can’t be captured by other
routinely used diagnostic methods. Precise quantification of parameters such as lengths,
surface areas, object counts, perimeter, and distance to nearest neighbour is often re-
quired. Based on these observations multiple tumour grading systems that classify tu-
mour cell abnormalities and predict tumour developments are available (Lakhani et al.,
2012). Confirmation of disease presence, outcome prediction, and choice of therapy ex-
plicitly rely on information present in pathology slides. Better cancer diagnostics and
advance in treatment evolve with increasing understanding of cancer biology and are
driven by research. Visual analysis of pathology tissue slide is time-consuming, and
high-level expertise is demanding procedure since pathologist has to recognize sub-
tle changes in cell and tissue patterns. The recent introduction of whole-slide imag-
ing systems, active development of computer vision field greatly changed pathology
analysis. Because of the constant discovery of new tumour tissue biomarkers, there is
a substantial interest in advanced computational pathology algorithms that would ac-
complish highly specific tasks of research. Digitized pathology slides (whole-slide im-
ages or WSIs) are commonly subjected to computational pathology pipelines to pre-
cisely detect, classify, quantify, and segment multiple types of histological objects. Tech-
nology has already been shown to be useful for diagnostic tasks effectively discrimi-
nating malignant tissue from premalignant, detecting metastasis (Bejnordi et al., 2016;
Litjens et al., 2016), and grading tumours (Ertosun and Rubin, 2015).

Qualitative and quantitative analysis of histology objects in a typical pathology image
is a complex task that most simply may be viewed as consisting of image segmentation
step, feature measurement, and machine learning based classification of segmented im-
age primitives. The latter can be subdivided into traditional (e.g. decision tree learning,
support vector machines) and deep learning methods (convolutional neural networks or
CNNs). Both approaches as an input take large amounts of labelled data to learn features
with the certain degree of interpretability (such as texture or colour) and adapt model
parameters according to the distance between the produced and the desired outputs. Fi-
nally, predictions on new instances of the same data type have to be made. One of the first
computational tasks and a common intermediate goal in comprehensive pathology image
analysis is a classification of malignant (or tumour) tissue into epithelium and stromal
compartments. The reasoning behind this specific task is that it helps to build a picture of
where and to what extent a particular cancer biomarker is present in the tissue. Modern
methods of prognostic and predictive stratification of cancer patients evaluate biomarker
positive cells distributions in each tissue compartment (McLaughlin et al., 2016; Dunne
et al., 2017). Also, for certain types of cancer, tumour epithelium-stroma ratio alone is
recognized as the independent prognostic indicator (Panayiotou et al., 2015). The very
recent rise of cancer immunotherapy research also requires precise tumour microenvi-
ronment compartmentalization algorithms to identify further, and analyse tumour tissue
infiltrating immune cells that are known to kill cancer cells (Emens, 2017).

In this paper, we focus on epithelium-stroma classification of tumour tissue. Classifi-
cation is performed on superpixels, but more importantly, we effectively employ super-
pixels to collect ground truth data. We review related works on tumour epithelium-stroma
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classification in Section 2 and specifically highlight difficulties of current state-of-the-art
methods in obtaining ground truth data. In Section 3 we describe the data. In Section 4 we
present ways superpixels were processed to be suitable for application in machine learn-
ing experiments. Section 4 also describes machine learning approaches that were applied
in our study. Section 5 presents experimental results and comparative analysis. Section 6
concludes the paper.

2. Related Work

The majority of publications in the field are focused on breast or prostate cancers.
Multiple works (Ahammer et al., 2009; Linder et al., 2012; Bianconi et al., 2015;
Bunyak et al., 2015; Sethi et al., 2016; Nava et al., 2016) explore traditional machine
learning methods to achieve classification based on handcrafted features extracted from
pathology images. In these studies, local binary patterns, Gabor filters, Haralick texture,
Tshebichef moments, and colour/intensity parameters were used to build feature space.
Feature extraction for epithelium-stroma classification is performed on segmented image
primitives. Pathology image segmentation is performed by employing rectangular image
blocks (Ahammer et al., 2009), overlapping square patches (Linder et al., 2012), multi-
resolution square image blocks (Bianconi et al., 2015), various superpixel approaches –
Normalized Cut, Simple Linear Iterative Clustering, Hierarchical Fuzzy C-Means, and
also Multiresolution Superpixels (Bunyak et al., 2015; Sethi et al., 2016). For several re-
cent years, solutions for epithelium-stroma classification problem were evolving towards
increasing number and complexity of features extracted. Sethi et al. (2016) reports the
use of Wndchrm (originally by Shamir et al., 2008) software to build 93 features space
to discriminate between epithelium and stroma compartments of prostate cancer tumours.
As described in the same study, Wndchrm can automatically extract between 1000 and
3000 predefined image features. In a slightly different tumour classification task, relating
to normal-malignant breast cancer tissue classification Bejnordi et al. (2016) describes
256 handcrafted features extracted per superpixel.

Recently, methods employed to classify tumour tissue shifted from traditional machine
learning approaches to deep convolutional neural networks (Huang et al., 2015; Sethi et

al., 2016; Litjens et al., 2016; Xu et al., 2016) – an approach that doesn’t require supervised
feature extraction, but rather relies on end-to-end feature learning from small, square, fixed
size, overlapping image patches.

Both traditional and deep learning classification approaches require labelled data,
whether to build training data sets or evaluate classifier performance by comparing al-
gorithm predictions to human output. Nearly all published methods are to some extent
limited by complicated annotation of WSIs since they rely on pixel-level ground truth
images. Annotating pathology images is extremely labour intensive task involving man-
ual delineation of tumour compartments. Skilled experts are not always available for the
time needed to perform precise pixel-level annotations. Major obstacles arising from this
reason are – lack of precision due to hast, or due to lower magnification images used;
incorrect annotations (both false positives and false negatives). This problem is well out-
lined in Cruz-Roa et al. (2014). Authors reached 79% accuracy with handcrafted features
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and classical machine learning approaches, and 84% accuracy with deep learning model.
Authors also identify the reason of misclassification to be mainly due to the pathologist’s
not detailed annotations. The process of generating ground truth data is clearly neglected
in research papers. Only scarce descriptions are often given, commonly referring manual
work done by a skilled specialist. In the paper of Ahammer et al. (2009) class labels were
assigned per single field of view area at 400× magnification (768 × 589 pixels). Linder
et al. (2012) only describes that annotation was carried out by one of the researchers and
verified by a pathologist. Bianconi et al. (2015) states the use of histologically-verified,
well-defined various size and resolution images. As deep classification algorithms require
significantly larger data sets to efficiently train, it can be noted that with increasing use of
latter methods ground truth data mining draws more attention. Sethi et al. (2016) refers
commercial software used to delineate regions serving as ground truth for both training
and testing classifiers. Authors also deal with “impractically tedious” annotation of entire
images. Bunyak et al. (2015) indicates that the process is also subjective because of the
variance either in judgment or in expert dexterity. Authors developed KolamGT software
to assist expert annotations. Very recent paper by Huang et al. (2015) highlights the prob-
lem early in the abstract, and the research is focused on taking advantage of using unlabel
data in a training data set via transfer learning.

As a common task epithelium-stroma classification is often fine-tuned to adapt to
highly specific end-goals of comprehensive pathology research. Whether a new, unex-
plored cancer type is concerned, or emerging biological tumour properties need to be
evaluated in the field it holds capacity for developing new algorithms to precisely classify
tumour tissue.

3. Description of Data Sets

3.1. Whole-Slide Images

The method presented in this paper not only employs superpixels, and superpixel derived
square image patches classification by different machine learning algorithms but also uses
superpixels to annotate ground truth in highest magnification images. Our goal was to
show that annotated superpixels retain enough annotation precision, and carry enough
colour and texture information to achieve classification accuracy comparable to the results
reported by other teams. To demonstrate our approach we have used 3 WSIs of hema-
toxylin and eosin stained colorectal cancer tissues (see Fig. 1). Specimens were produced
in the National Center of Pathology, Lithuania. Tumour-containing zones were manually
marked by a pathologist on a tissue slides directly prior to scanning. Digital images were
captured using the Aperio ScanScope XT Slide Scanner (Aperio Technologies, Vista, CA,
USA) under 20× objective magnification.

3.2. Superpixels

From each tumour zone in WSIs 284 RGB tiles of 1000 × 2000 pixels from highest magni-
fication layers were manually selected for analysis. Consecutively each tile was segmented
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Fig. 1. Top row. Macro-scale annotated WSIs. Tiles selected for analysis are shown inside tumour containing
areas marked by a pathologist. Bottom row. A single segmented tile is representing 1000 × 2000 pixels region
in a WSI.

using Simple Linear Iterative Clustering (SLIC) algorithm (Achanta et al., 2012) into ap-
proximately 350 superpixels (see bottom row in Fig. 1).

Segmented tiles with boundaries between resulting superpixels highlighted were sub-
jected to micro-scale annotation by the pathologist. Annotation was performed by assign-
ing each superpixel to the tumour (epithelium), stroma or background classes. The whole
process of tissue annotation was strictly limited to superpixel selection and label assign-
ment. No manual outlining/boundary drawing was required. A total of 70997 superpixels
were assigned whether tumour (epithelium) or stroma class. Background (or otherwise
called “glass”) is non-informative part of WSI, so it was removed from all data sets. All
superpixels mainly representing background could be effectively filtered by mean and dis-
persion of pixel values in a green colour channel of a superpixel (background superpixels
identified with mean pixel value greater than 190, and standard deviation less than 30 in
a green colour channel). Also, any multi-class or no-class assigned superpixels were ex-
cluded, and remaining superpixels were used to construct 4 data sets (see Table 1). Equal
class proportions were maintained in training and validation subsets, and the testing subset
was composed to represent real-life data composition (i.e. disbalanced). “General” data
set was produced by combining all superpixels from all smaller data sets.
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Table 1
Data sets of superpixels.

Data No. of Training subset Validation subset Testing subset

sets tiles Tumour Stroma Tumour Stroma Tumour Stroma

Sample1 125 10000 10000 750 750 9416 1205
Sample2 125 10000 10000 750 750 533 8699
Sample3 34 2200 2200 150 150 3269 175
General 284 28000 28000 2000 2000 7068 3929

3.3. Colour Descriptors

For each 2D superpixel (e.g. a grayscale superpixel) two statistics were calculated – mean
and standard deviation of the pixel value. For a 3D superpixel (e.g. an RGB superpixel)
we calculated eight statistics – mean and standard deviation of the pixel value for each
colour channel separately and also per RGB superpixel.

3.4. Texture Descriptors

The texture of a 2D superpixel (e.g. a grayscale superpixel) has been measured by cal-
culating spatial gray-level co-occurrence matrix for four directions, or 13 directions for a
3D superpixel (e.g. an RGB superpixel) and 1px displacement vector. From each of the
resulting co-occurrence matrices we calculated 13 parameters as follows: angular second
moment, contrast, correlation, sum of squares, inverse difference moment, sum average,
sum variance, sum entropy, entropy, difference variance, difference entropy, information
measure of correlation 1, and information measure of correlation 2 (originally described
in Haralick, 1979). For each parameter mean value was obtained from all directions, thus
resulting in final 13 descriptors.

3.5. Dimensionality Reduction and Feature Space

Each data set prepared according to experimental conditions (described in more detail in
subsection 4.3) was subjected to principal component analysis (PCA). For further use of
colour and texture descriptors in classification tasks factor analysis (FA) was performed.
Number of components to be obtained in FA was selected from PCA results and was
defined as a number of components explaining more than 99% of the variance in particular
data set. Resulting factor scores were normalized to have zero mean and unit variance
per data set per component. Normalized factor scores resulting from colour descriptors
are referred here as “colour features”. Similarly, normalized factor scores resulting from
texture descriptors are referred as “texture features”. We produced “combined features”
by combining colour and texture descriptors and applying similar factorization procedure.
Normalized factor scores (features) were used as an input data for classification using
traditional machine learning approaches (look in Section 4.1).
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Fig. 2. Tumour-class patches selection for CNN training.

Table 2
Data set used to train CNN classifier.

Tumour class Stroma class

Training subset 40000 40000
Validation subset 25000 5000
Testing subset 26000 6000

3.6. Image Patches

Annotated superpixels from “Sample1” data set were used to generate patches for CNN
based classifier training. Five overlapping 72 × 72 pixels RGB patches were selected in the
original image around each superpixel mass centre by shifting the frame in each direction
by 15 pixels (Fig. 2 and Table 2).

Training subset for CNN was built with equal proportions of “Tumour” and “Stroma”
classes (Table 2).

4. Methodology

4.1. Traditional Machine Learning Models

Since background containing superpixels were removed from all data sets (described
in 3.2), thus epithelium-stroma classification problem can be defined as two-class. Sup-
port Vector Machines (SVM), Random Decision Forest (RDF) and Multilayer Perceptron
(MLP) as implemented by the scikit-learn Python package (Pedregosa et al., 2011) as
well as Deep Learning (DL) algorithm implemented by the TensorFlow Python package
(Abadi et al., 2016) were employed to solve classification problem.
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C-Support Vector Classification algorithm (also called type 1 classification SVM) with
Radial Basis Function kernel (RBF, an implementation in scikit-learn Python package as-
sumes gamma parameter is equal to 1/number of features) was used (Cortes and Vapnik,
1995; Pedregosa et al., 2011). With SVM classification is achieved by constructing hy-
perplane in multidimensional space to separate instances of different classes. Error mini-
mization is employed in an iterative algorithm to find optimal hyperplane. Nonlinear clas-
sification is achieved by using kernel functions of which RBF is the most common choice
(Chang et al., 2010).

A Random decision forest classifier is a perturb-and-combine technique specifically
designed for classification trees (Breiman, 2001). The principle is based on randomiza-
tion – a bootstrap sample is drawn from a training set to build each of the trees, and the
split on the node is chosen as best split among a random subset of the features. A predictor
of RDF can be selected in a voting procedure or by averaging individual tree probabilistic
predictions. Methods that use averaging are known to have relatively high variance due
to feature subsetting at the base-level. Thus, after classification with RDF, a separate cal-
ibration of predicted probabilities was performed as post-processing using the sigmoid
method and validation data sets (disjoint data used for training and calibration). In an
RDF classifier, we empirically selected 25 estimators (base-level trees) and defined the
maximum number of features to be used with an individual tree to be integer square root
of a total number of features. The nodes were expanded until all leaves had at least two
samples. All the input samples had equal weight.

A multilayer perceptron is a feedforward (a network whose neurons are connected
only in a forward manner to form layers) neural network that is trained by backpropaga-
tion (Rumelhart et al., 1986). Neurons in the network consist of the linear combiner and
an activation function. In our model rectifier activation function was used – a function
whose output is equal to the input if the input is positive, otherwise, the output is set to
0. Our network was constituted of one input layer containing inputs corresponding to the
features in the data set, of two hidden layers with 1000 and 40 neurons respectively, and of
an output layer corresponding to our two classes, “epithelium” and “stroma”. A number of
neurons in hidden layers was selected empirically. We have tested network performance
while increasing number of neurons in both hidden layers from 100 and 10 up to 1000
and 40 respectively. Classifier performance was stable among all tested architectures with
a mean variation of AUC being less than 0.0003. Connections between layers are defined
by weights assigned in a learning process, and each neuron in a layer is connected to
every neuron in the next layer. In a training phase, an output of the network (a probabil-
ity matrix instead of discrete predictions) in an iterative manner is compared to ground
truth labels of the input data, and a cross-entropy loss is computed as a negative log-
likelihood of a classifier. The model uses limited-memory Broyden–Fletcher–Goldfarb–
Shanno (LBFGS) method to optimize log-loss function with respect to the network param-
eters. LBFGS is an optimizer in the family of quasi-Newton methods (Malouf, 2002). The
training phase is ended if the log-loss is not improving by at least a predefined amount (in
our case 0.0001) for two consecutive iterations, or when a predefined number of iterations
(in our case 200) had been reached.
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Deep learning neural network here should be understood similarly to MLP – it is a
feedforward neural network with multiple hidden layers between the input and output lay-
ers that is trained by backpropagation. The basic difference between DL and MLP used
in our study is that DL network is constructed of more hidden layers with more neurons.
We constructed DL network with three fully-connected layers (with the corresponding
number of neurons – 1024, 512, 128). Neurons in the DL network use rectifier activa-
tion function (the same as in MLP). Between the last hidden layer and an output layer,
we added a dropout layer. Dropout is a regularization technique for reducing overfitting
in the model, by omitting specified proportion (50% in our case) of random neurons out-
put. An output layer has two neurons that use softmax activation function – a function that
given a vector outputs a probability distribution over all possible outcomes (in our case 2 –
corresponding to two tissue classes). A number of neurons in all three hidden layers was
selected empirically. We have tested network performance while increasing number of
neurons in hidden layers from 1024, 512 and 128 up to 5120, 2560 and 640 respectively.
Classifier performance was stable among all tested architectures with a mean variation of
AUC being less than 0.002, which allowed us to select network architecture with the low-
est time needed for computation. Log-loss of the model is computed as described in MLP.
The network is trained using Adam (adaptive moment estimation, Kingma and Ba (2015)
method with adjusted learning rate (0.000001) to minimize cross-entropy loss function.

4.2. Deep Convolutional Neural Network Model

Convolutional neural networks are a variation of deep learning neural networks. They are
designed to process data that is given as arrays. Thus a local connectivity pattern and
weight-sharing between neurons of adjacent layers become possible. Every convolutional
layer of a CNN transforms one volume of activations to another through a differentiable
function. Thus, neurons in a layer are only connected to a small region of the layer before
it through a set of weights (a filter) and are distributed along the depth of an array. In the
filtering operation filter is slid over an array with a fixed size stride. Filtering inside a layer
is a discrete convolution. Thus the spatial output decreases with each layer. To reduce the
number of parameters in the network pooling operation is employed. Pooling combines the
outputs of a group of neurons in one layer into a single neuron in the next layer. The dense
layer or fully-connected layer is similar to a hidden layer of an MLP or DL. We constructed
a simple convolutional neural network to classify image patches prepared as described in
Section 3.6. The model used was originally proposed in Litjens et al. (2016). We applied
slight modifications to the original model. Our model consists of four convolutional layers
(conv2d-1, conv2d-2, conv2d-3, conv2d-4), one densely connected layer (dense-1) and an
output layer. We adjust filter sizes and strides to accept 72 × 72 pixel patches, we added
batch normalization layers after each conv2d layer, the number of fully-connected layers
was reduced to two (including the output layer). Adam method with adjusted learning
rate (0.000001) was used to minimize cross-entropy loss function. The network’s width
(number of neurons in hidden layers) was optimized empirically (see Table 5 for results),
and the model was built using the TensorFlow implementation in Python (Abadi et al.,
2016).
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Table 3
Number of components retained in FA.

Colour features Texture features Combined features

Experiment 1 4 8 8
Experiment 2 4 8 8
Experiment 3 2 8 8

4.3. Description of Experiments

Three experimental designs were considered regarding how superpixels were processed
before feature extraction. In each experiment descriptors calculated for each superpixel
were combined to form an array in which rows correspond to superpixels and columns to
descriptors. Dimensionality reduction was applied to each data set as described in Sec-
tion 3.5. Table 3 summarizes the output of dimensionality reduction.

Experiment 1. Superpixels in each data set were linearized (thus, superpixel shape infor-
mation was lost), keeping the three colour channels. In this experimental design 4 colour
features, 8 texture features, and 8 combined features were extracted (as described in Sec-
tions 3.3, 3.4 and 3.5) for every superpixel in all data sets (data sets as described in Table
1), and stored in a matrix with the shape of 20 columns, and number of rows corresponding
to the numbers of superpixels per particular data set.

Experiment 2. Superpixels in each data set were bound in a rectangle minimum bound-
ing box, keeping the three colour channels. Pixels inside bounding box, but outside the
superpixel area were assigned zero values in each colour channel. Extracted features are
the same as in Experiment 1, and are stored similarly.

Experiment 3. Superpixels in each data set were bound in a rectangle minimum bounding
box. We assign zero values to the pixels inside bounding box, but outside the superpixel
area, and convert bound superpixels to grayscale. We have chosen a colour-to-grayscale
transformation that retains Luminance of the original image. A detailed review of colour-
to-grayscale transformations frequently used in computer vision is given in Kanan and
Cottrell (2012). Authors emphasize that Luminance is considered a good choice for texture
recognition. Eight texture features were extracted as in previous designs. Two colour de-
scriptors were extracted from grayscale images – mean pixel value and standard deviation
per bound superpixel. Eight combined features were extracted as described in Section 3.5.

4.4. Classifier Performance Metrics

Classifier prediction typically is a numeric value on a continuous scale. A class label is
produced by comparing a prediction (or a score) against a threshold value. To study the
output of a binary classifier receiver operating characteristic (ROC) curves are often used
(Fawcett, 2006). ROC curves are created by plotting the true positive rate against the false
positive rate at a range of threshold values. After training the classifiers on a Training



Machine Learning Based Classification of Tumour Tissue 85

subset, the Testing subset was used to measure each classifier performance by calculating
the area under the receiver operating characteristic curve (AUC). Ten iterations were used
to train and test the classifiers each time randomly assigning the data to the Training and
Testing subsets with exactly the same proportions of class labels. Mean AUC and the
variance (standard deviation) of AUC were calculated for each of the classifiers.

5. Results

5.1. Results of Classification Using Traditional Machine Learning Approaches

To demonstrate that in the process of ground truth annotation in extremely large WSIs
careful, precise, and time-expensive manual outlining of tissue classes can be effectively
replaced with simple procedure of annotating automatically generated precise and infor-
mative superpixels we attempted classification of all superpixels resulting from three ex-
periments described in 4.3 by the four classifiers described in 4.1. The whole workflow
can be summarized as follows:

1. Selected regions inside pathologist macro-annotated WSIs were segmented into su-
perpixels (see Fig. 1).

2. Superpixels were visualized in the WSIs and subjected to pathologist micro-
annotation.

3. Superpixels were processed using three techniques (Experiments 1, 2 and 3), and
subjected to colour and texture feature extraction (see Sections 3.3, 3.4, and 3.5).

4. Classification using all methods described in 4.1 was attempted on colour features
and texture features resulting from Experiments 1, 2, and 3.

5. Classifiers performance was compared with regard to the way superpixels were pro-
cessed, and the features used to build feature space.

We have tested different types of features to be used in classification task, as well as
several ways to extract them from superpixels. A general overview of superpixel classi-
fication results is presented in Table 4. Results for Experiment 3 differ from the first two
quite substantially. For this experimental design test, AUC achieved were lowest (maxi-
mum AUC 0.9443), while with other strategies highest AUC values were above 0.97.

Results for experimental designs 1 and 2 can be reviewed together since they show
little difference. Under these experimental conditions classifier performance as measured
by area under the ROC curve is ranging from 0.9095 up to 0.9772 in single sample data
sets, with SVM being the most accurate classifier. The highest test accuracy achieved on
“General” data set was 0.9668 by MLP classifier. Contrary to what was expected, classi-
fier performance is minimally affected by the data set size. Classification accuracies on
“Sample 3” data set are comparable to the results of larger data sets (e.g. “Sample 1” data
set is nearly four-fold larger than “Sample 3”). With smallest data set best classification
results were produced by SVM classifier (AUC = 0.9554). No clear tendency towards the
type of features extracted could be seen under the conditions of Experiments 1 and 2 for all
data sets. In general, it was quite unexpected to find that features extracted from linearized
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Table 4
Classifier performance results given as mean AUC and standard deviation (sd) of AUC acquired in 10

repetitions.

Data set Features RDF sd RDF SVM sd SVM MLP sd MLP DL sd DL

General Colour 0.9569 0.0018 0.9611 0.0025 0.9668 0.0024 0.9608 0.0020
Combined 0.9577 0.0025 0.9613 0.0027 0.9660 0.0026 0.9580 0.0034
Texture 0.9367 0.0022 0.9498 0.0022 0.9591 0.0034 0.9397 0.0062

E
xp

er
im

en
t1 Sample 1 Colour 0.9420 0.0061 0.9504 0.0042 0.9476 0.0036 0.9532 0.0070

Combined 0.9584 0.0051 0.9664 0.0036 0.9500 0.0038 0.9647 0.0058
Texture 0.9301 0.0036 0.9401 0.0052 0.9281 0.0035 0.9357 0.0037

Sample 2 Colour 0.9640 0.0055 0.9688 0.0030 0.9703 0.0034 0.9697 0.0183
Combined 0.9728 0.0060 0.9772 0.0024 0.9684 0.0044 0.9744 0.0140
Texture 0.9642 0.0055 0.9732 0.0027 0.9714 0.0041 0.9673 0.0205

Sample 3 Colour 0.9421 0.0062 0.9425 0.0062 0.9222 0.0068 0.9376 0.0070
Combined 0.9461 0.0094 0.9554 0.0051 0.9300 0.0055 0.9430 0.0106
Texture 0.9343 0.0081 0.9431 0.0052 0.9341 0.0080 0.9272 0.0090

General Colour 0.9466 0.0023 0.9515 0.0014 0.9577 0.0031 0.9556 0.0026
Combined 0.9533 0.0022 0.9620 0.0024 0.9666 0.0026 0.9575 0.0019
Texture 0.9385 0.0035 0.9488 0.0021 0.9542 0.0031 0.9449 0.0040

E
xp

er
im

en
t2 Sample 1 Colour 0.9453 0.0046 0.9534 0.0040 0.9526 0.0050 0.9535 0.0049

Combined 0.9413 0.0044 0.9505 0.0045 0.9387 0.0043 0.9480 0.0042
Texture 0.9095 0.0051 0.9265 0.0035 0.9107 0.0060 0.9105 0.0055

Sample 2 Colour 0.9609 0.0049 0.9695 0.0042 0.9683 0.0034 0.9701 0.0114
Combined 0.9725 0.0058 0.9769 0.0025 0.9713 0.0039 0.9764 0.0148
Texture 0.9548 0.0077 0.9620 0.0029 0.9586 0.0040 0.9629 0.0145

Sample 3 Colour 0.9343 0.0057 0.9441 0.0073 0.9217 0.0071 0.9320 0.0060
Combined 0.9473 0.0067 0.9534 0.0066 0.9333 0.0051 0.9392 0.0080
Texture 0.9427 0.0055 0.9483 0.0048 0.9282 0.0049 0.9345 0.0070

General Colour 0.7083 0.0027 0.7817 0.0023 0.7967 0.0029 0.7967 0.0030
Combined 0.8553 0.0036 0.8688 0.0033 0.8765 0.0056 0.8694 0.0043
Texture 0.8694 0.0033 0.8861 0.0033 0.8885 0.0034 0.8777 0.0039

E
xp

er
im

en
t3 Sample 1 Colour 0.5533 0.0050 0.6457 0.0069 0.6507 0.0094 0.6507 0.0042

Combined 0.7748 0.0042 0.7958 0.0060 0.7614 0.0079 0.7923 0.0053
Texture 0.7984 0.0032 0.8160 0.0052 0.7884 0.0054 0.8049 0.0062

Sample 2 Colour 0.7991 0.0040 0.8466 0.0039 0.8586 0.0036 0.8575 0.0125
Combined 0.9267 0.0094 0.9268 0.0021 0.9258 0.0061 0.9261 0.0133
Texture 0.9257 0.0084 0.9351 0.0019 0.9275 0.0036 0.9273 0.0222

Sample 3 Colour 0.7690 0.0092 0.8588 0.0059 0.8639 0.0147 0.8668 0.0107
Combined 0.9317 0.0061 0.9366 0.0048 0.9146 0.0043 0.9322 0.0068
Texture 0.9371 0.0062 0.9443 0.0043 0.9140 0.0041 0.9321 0.0074

superpixels were equally informative as the ones extracted from two-dimensional RGB su-
perpixels. This finding is in good concordance with the fact that pixel colour information
extracted from two-dimensional RGB superpixels alone allows classification accuracies
very close to highest test accuracies achieved in this study. Keeping in mind that texture
context is only meaningful for two or more dimensional arrays and the fact that the second
dimension in linearized superpixels is that of the three colour channels, features extracted
from pixel value co-occurrence matrixes of linearized superpixels reflect both colour and
texture information. Therefore, we acknowledge that features here referred to as “texture”
features in the context of linear superpixels are somewhat ambiguous.

The effect of type of features extracted on classification accuracy is more obvious
under “Experiment 3” conditions. In the process of pathology tissue slide production, of-
ten complicated procedures involving manual human work are applied. Some amount of
variation in slide staining quality was expected. Bearing that fact in mind, in order to re-
duce expected inter-slide colour variability gray-scaled superpixels experimental design
was considered. Surprisingly extracted colour features proved to be exclusively valuable
for tumour tissue classification. Under generalization conditions, gray-scaled superpixels
could not be effectively classified by any method tested (AUC < 0.9). Obviously, gray-
scaled superpixels carry less colour information. Therefore, colour features alone allow
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Table 5
Parameters of tested CNN models. Each row represents separate model configuration.

Model Number of neurons in hidden layers Performance metrics

No. conv2d-1 conv2d-2 conv2d-3 conv2d-4 dense-1 Mean AUC sdAUC

1 32 32 64 64 384 0.9704 0.0007
2 32 32 64 64 1024 0.9667 0.0005
3 64 64 128 128 384 0.9726 0.0004
4 64 64 128 128 1024 0.9687 0.0008
5 96 96 192 192 384 0.9745 0.0003

6 96 96 192 192 1024 0.9721 0.0003

less accurate classification than texture features (in certain cases less than 0.6, see Ta-
ble 4). Maximum AUC achieved with colour and texture features in single sample data
sets was 0.8668 and 0.9443 respectively. Best performance on “General” data set was ob-
served with MLP and texture features (AUC = 0.8885), which is substantially lower when
compared to the best results of other experimental strategies.

Both colour and texture features, as well as superpixel linearization approach, were
suitable to achieve good classification results with most machine learning methods used
(AUC > 0.95). We achieved most effective performance under generalization conditions
with MLP on combined texture and colour features (AUC = 0.9668). Our results align
well with results published by other groups using traditional machine learning approaches
AUC 0.97–0.99 (Linder et al., 2012); AUC = 0.9847 (Nava et al., 2016) both targeting
colorectal cancer, and AUC = 0.977 (Sethi et al., 2015) on prostate cancer images.

5.2. Results of Classification Using Convolutional Neural Network

To demonstrate that annotated superpixels can also be effectively employed to build reli-
able ground truth data sets for experiments involving deep convolutional neural networks
we attempted a classification of image patches (prepared as described in Section 3.6) using
a CNN described in Section 4.2. The workflow can be summarized as follows:

1. Selected regions inside pathologist macro-annotated WSIs were segmented into su-
perpixels (see Fig. 1).

2. Superpixels were visualized in the WSIs and subjected to pathologist micro-
annotation.

3. Five overlapping 72 × 72 pixels RGB patches were selected in the original image
around each annotated superpixel mass centre by shifting the frame in each direction
by 15 pixels (please refer to Fig. 2 and Section 3.6).

4. Classification using CNN described in Section 4.2 was performed.
5. Classifier performance was evaluated.
6. A set of model parameters was tested to select best performing architecture (see

Table 5).

We applied convolutional neural network approach to a limited data set, with no pos-
sibility to test for generalization. CNN model was tested on the set of patches generated
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from “Sample 1”, and reached maximum AUC = 0.9745. This is slightly higher accuracy
than maximum AUC = 0.9664 achieved with SVM on combined colour and texture fea-
tures extracted from superpixels of the same sample. Our results are comparable to results
achieved by other groups on different types of cancer – breast cancer (AUC = 0.9316 in
Xu et al., 2016), and prostate cancer (AUC = 0.965 in Sethi et al., 2016, and AUC = 0.99
in Litjens et al., 2016).

6. Conclusions

The use of superpixels in tumour tissue classification task is not a new approach. It has
been widely applied by many authors before (Bunyak et al., 2015; Sethi et al., 2016). In
this paper, we propose a method that allows annotating superpixels rather than manually
outlining tissue compartments in raw images. Using this approach we were able to produce
accurate reference data, and minimize the most effort-intensive part of digital pathology
workflow. We demonstrate that ground truth obtained from annotated superpixels can be
used to train traditional machine learning based classifiers. We have also tested the ways
to process superpixels and extract a set of colour and texture based handcrafted features to
achieve high tumour tissue classification accuracy. Finally, by using annotated superpixel
centroids, we produced a data set of tumour tissue image patches that allowed us to train
deep convolutional neural networks to achieve similar performance regarding classifica-
tion accuracy as the state-of-the-art methods.
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