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Abstract. The rules of classification of the group of N independent ob-
servations into one of k£ normal populations are considered. In the case when.
parameters are not known, Bayes estimators of the discriminant scores are sug-
gested. .
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1. Introduction. In the standard 'classiﬁc_at_ion problem one
wishes to assign. an individual to one of & populations on the basis
of a vector r of cbhserved characteristics for that individual.

" Abusev and Lumelsky (1980, 1987) were taking into conside-
ration the problem of classification not a single observation but the
group X, = {%1,,' :.,::ONO} of No independent observatiors. Such
problems arise in a medical and technical diagnostic, in particular
in epidemiology and quality control. '

In this paper we construct the rules of classification of the
group Xo = {Zo1,-..,Zon,} Of Np independent observations into
one of k¥ normal populations N,(p;,Ei), i = 1,...,k. These rules
are based on knowledge of the discriminants scores In [¢; fi(Zo, Ao)],
where f;(Fo,Ao) is the density function of the joint dxstnbutlon of
the sufficient statistics S

o Neo «  Ne -
Zo=Ng') zoj,  Ao= D (Zoj — Zo)(zoj — To)',
. i=1 3

j=1
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and ¢; is the ptior probability that the classnfymg sample Xo was
drawn from thei-th populatlon, t=1,...,k

This knowledge is usually una,vallable. Recently the author
(Krzysko, 1991) constructed the unique minimum variance unbi-
ased estimators of the discriminant scores.

In this paper we propose Bayes estimators of these functions.
In a.ddltxon, some propertles of these estlmators are 1nvest1gated

2. The classification rules. The determlnant of a matrlx
A is denoted by |A], A > 0 means that 4 is a positive definite
matrix, By X ~ N,(p, L), we mean that X is.a random vector with
a p-dimensional normal distribution whose density is denoted by

np(2 | 1,5) = (2m) § |21 F exp {--(z - Wy - u)}, £>0. (1)

By A ~ W,(v,£) we mean that 4 is a random p x P symmetrlc
matrix having a Wishart distribution whose density is denoted by

wp(41v.5) =2 ¥ 15 ()iF fria)]

X @)
x exp{ - Etr(AE'l)},
for v 2 pand ¥ > 0, where
=1’ L .
L=+ J[rft-56G-1] ®)

j=1

is the multivariate gamma function.
Under condition that the sample Xo = {zo1,...,%on,} Was
drawn from Np(u;, Z;) we have :

Zo ~ Np(ps, N5 E5), Ag ~ Wp(No ~ 1,Z)),

and the density function of the joint distribution of the sufficient
statistics (Zo, Ao) has the following form:

fi(Bo.Ao) = (x~ 27 NeNo) I 1(%(1% - 1) 2] 5 |40 o2 (4)
v spf = 5 [Mo(Bo - mYETA @0 - ) + tr(405TH)] ],
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for No—p=120, 4050, S;i>0andi=1,...,k
The sample Xo = {zo1,..,%on,} is assigned to that population
for which its discriminant score (see, e.g., Rao, 1965, p.488) °

'“i(-’fo‘;koj =qi;fs'(:50:A0) IR | L (5)

is the h)ghest where g; is the prior proba.blhty that the cla.s51fymg
sample X, was drawn from the i-th popula.tlon and the density
f,(zo,Ao) is given by (4),i=1,...,k. :
- Such a rule is shown to minimize the Bayes nsk :
Taking the na.tura.l loganthm of ¢; f,(zo,Ao) and omlttmg the
factor

(x=127 Mo Ng) ¥ st (-—(No = 1)) 40 ¥

common to all i, we see that the equivalent dlscrlmmant score (5)
for the i-th population is

ui(Zo, Ao) = —lNo [A_,?(Eo) +In S|+ N;‘tr(AOE;‘ 1)] +Ing, (6)

involving the megn u; and the covariance matrix }:‘ of the i-th
population, wherlf-

A'z(-‘b‘o) = (Zo — ) I H(To — mi)s i=1,...,k (M

The function (6) is quadtatxc in %o and may be called a quadratic
discriminant score.

The sample X, is assigned to that population for which the
quadratic discriminant score has the highest value.

If the populations do not differ in the covariance matrices,
then the sample X, is assigned to that population for which its
discriminant score

| 65(50,‘Ao)=15ﬁ(fo,Ao) o (8)

is the hlghest where the dens1ty fi(Zo, Ao) is given by (4) with
=Xi=1,...,k
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. Taking the natural logarithm of ¢; f;(To, Ao) and omitting the
terms common to all i, we see that the equivalent discriminant score
for the i-th population may be written

- e 1,
ei{To) = No [;42 %o~ 5;42 lui] +ng, 9)

which is linear in 7 and may be called a linear discriminant score.
We see that the classification rules are based on knowledge of
the discriminant scores (6) or (9).
Since this knowledge is usually unavailable it is necessary to
estimate these functions.

3. The estimators of the quadratic discriminant scores.
We shall now treat the case-in which we have a sample from each of
k normal populations and we wish to use that information in clas-
sifying another sample as coming from one of the ¢ populations.
Suppose that we have a sample z;;,zs,...,zin, from Np(pi,X;),
where Ny —p—1 2 0, i = 1,...,k Clearly, our best estimate of
piis T; = }3—. E‘:V:l z;; and of £; is S; defined by S; = EI:I-A;, where
A= Zﬁil(zij - ';E,-)(z;j —-%),i=1,...,k

We substitute these estimates for.the parameters in (6) to ob-
tain

~ N )
i@, 4) = — 32 [DP(@0) + In|8i] + Ny 'tr(40S7 )] +Ingi,  (10)
where -
Di(Zo) = (Fo — %:)'S; H(Fo — %), i=1,...,k (11)

It is easy to show that (10) is a consistent, but biased (asymp-
totically unbiased) estimator of the quadratic discriminant sco-
re (6).

Recently the author (Krzysko, 1991) proved the following the-
orem. : :

Theorem 1. For N;—p—2 > 0, the unique minimum variance
unbiased estimator of the quadratic discriminant score (6) which
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debends on the complete sufficient statistic (Z;S;) is given by

1. [Ni-p-2
%7(Z0, 40) = -5 Mo [-—',T,,—”—I—-D.?(fo) +1n]8;]
A
‘ yNi—-p-2 -

1.8 " F < -1 12

+N0. N,-l .tr(AQS: ) ) ( )
» 1 . _ N; -1

=2 w[3 (N —m)] - pN7t +pln ]+ln‘1i’

n=1
where D}(Z,) is given by (11),i=1,...,k, and

we) = T2

is the psi (digamma) function (see Abramowitz and Stegun, 1965,
p-258). '

We shall now consider the Bayes estimator of the quadratic
discriminant score given by the formula (6).

For a given z the function u;(z) is a function of the unknown
Jparameters y;, &;, { = 1,...,k. Until now the parameters y;, I;,
i=1,...,k were freated as fixed. In the Bayesian approach they
will be treated a¢ random variables which distributions reflect the
subjective persorial belief in the probable values. Assume that be-
fore any observation has been made on X our belief in the values
of the parameters §; = (p;, Z] 1) is represented by the density of a
prior distribution I(§;),i=1,... k.

Sometimes it is easier to use the improper prior densities
(f &) ds; = o0). Such distributions can be considered if only

/ U6 f(z | &) dé: < oo,

i.e., the postéridr distribution is defined.

We will consider the prior distribution that is worked out from
the Jeffreys invariance rule (see Jeffreys, 1961, p.179). The rule
assumes that the pa@metegs & = (ui, 27 1) are independent, ..e.,

Lpi, 571) = Li(pi)l2(71)
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and that
aw) « 7@, 6EY) « J7EDE,

where J (i), J(Z7!) are the information matrices for p; and E;*
while o is the sign of proportionality.

The elements J,, of the information matrix J are given by
the formula

_ 81n f(z | &) B
TImn = E( 36:m 08 s mn=1...,p.

Assume that X ~ N(p;,%;), i =1,...,k. Then
Li=Inf(z | i, I7Y) = %miz;l[ - -12-(2—;1;)’2;'1(2—;4.-)+C

for some constant C. ‘
First suppose that £;! is fixed. Then

-g% = —%(22;1,1; - 25712)

and

8L; \ _ 1y e . _
—-E(W)—-—E(—Ei )—25 _const, 1—1,...,k.

Hence the information matrix is constant and the prior density of
ui is ‘
£3(p;) o const.

Now assume that p; is fixed. Writing L; in the form
1 1 -
L; =v—2-ln =Y - -2-tr(z -z - w)YEt+C

and using the formulas (see for instance Press, 1972, p.41)

4
dx

Bd?tr(A'X) =A for p X ¢ matrix A and ¢ X p matrix X .

IX]=]x|x"! for any nonsingular matrix X,



354 , Bayes estimators

we get
B%L;i#% .__(,_,,,)(z wY,  i=1,...,k
I I7!= (%), then
e

and ‘
IT7EY] « B, i=1,.0k

Hence the prior density of the matrix I;! satisfies the condition
241
67 x B, i=1,...,k

Finally, if y4; and Z; are a priori independent, the prior density
implied by the Jeffrys argument is

5 o ET, i=1,.. 0k (13)

If the quadraticioss function is used, then the Bayes estimator
of the discriminart score is the expected value of that function with
respect to the Jo[mt posterior distribution of the parameters whlch
occur in it (see e.q. Ferguson, 1967, p.46).

The random vector z; has the normal distribution
Np(p;,N:lE;) and the matrix A; has the Wishart distribution
Wy (N; — 1,L;). Since 7; and A; are independently distributed, then
the density of the joint distribution of (Z;, 4;) is

- —: Ny
f(?i,Ai | i, ZF ) |4, =7 =7
X exp{ - —tr271 [Ai + Ni(Zi - pi)(Ti - u;)’]}

which upon combmmg with the assumed joint prior density (13)
yields '

y(ﬁg,z.'llfe,Ae) D e

-t AL (T — VT - ..’1
xexp{ 2t7‘2,~ [A3+Ni(z1 l‘x\,’iw ﬂz)]J
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as the joint posterior density for y; and £7%,i=1,...,k.

Hence, conditional on !, y; ~ N,(Z;, N, 'E;). Also, margi-
nally 71 ~ Wp(N; — 1, (N; — 1)-187!). Now, the evaluation of
Efui(Zq, Ac) | Fo, Ao] may be most conveniently obtained by taking
conditional and then unconditional expectations, viz.,

— A= N -
E[u;(xo, ‘Ao; l zo,Ao] —--—E-Ez-z{Ep,[A2(£o) ' E —In ]Z‘. l‘
1 1= .
+ FtrAos; |Z0, Ao} +In g, i=1,....k
This requires the evaluation of terms such as E(in|B|) where
B ~ W,(v,9). Enis and Geisser (1970) showed that

2R

SN
E(n|Bl) = ) ¥[5(+1-j)] +mmf20l.
j=1 -

Now, it is well known that if the p-vector X is distributed as
Np(6,9) then Y = (X —a)~1(X —a) is distributed as x%(8,p) where
B = (6—a)Q" (6 - a) and x*(B,p) denotes the random variable hav-
ing the noncentral x? distribution with p degrees of freedom and
noncentrality parameter 8.

Moreover, EY = E[x*8,p)] = 8 + p. Also, it is easy to show
that if B ~ W,(v,Q) then for any nonnull vector of real constants
o' = (ay,...,ap), Y = $BS « y2 = (0, v). Hence, Efa’Bd) = va'Qa.

Since 7! ~ W,[N; — 1,(N; — 1)~15;1], we obtain

E[1n|2,-1|] In|S; 11+§:{¢ [5(N: = )] +In2(¥ - )=},

Further, i ~ Np(Z;, N7 1E;) conditional on £, thus
Bgr{ B, [A}(F0) | 57, %0] | %o, 4o}
= By {N71(8: +) | %o, Ao} = (Fo — 7:)'S; (Fo — %) + PN L.

Hence
E{ui(Zo, Ao) | Fo, Ao)

, ..
= a"(Zo, Ao) - 2-1N0{pN,.-1 -3y [%(N,- ~ )] +pln 2N — 1)}
j=1 ,

¥

= 5 (Zo, Ao),
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where (%o, Ao) is given by (10).
This proves the following theorem.

Theorem 2. If the density function of the joint prior distri-
bution of the parameters (y;,2;!) is a Jeffreys (1961) function of
the form (13), then for N;—p—2>0

?7(,-3)(50, Ao) =ﬁ§1)(50, Ag) =271 Np

?
1
-1 ; “1(N; -
x {o; - 2 9lg N )] + P2 O } (9
is the Bayes estimator of the quadratic discriminant score (6).

REMARK 1. Since for large z the function ¢(z) is asymptotically
equal to Inz + o(1), it is clear that

hm {pln? YN; -1) - Zz/; =(N; —-J)} 0

j+1

and ﬁgs)(io,Ao) is a consistent estimator of the quadratic discrimi-
nant score (6).

REMARK 2. If'the sample sizes are equal, then the.classiﬁcation
of a given sample Xg by the estimators (10), (12) and (14), gives
the same result.

4. The estimétors of the linear discriminant scores. Let
us assume that &) = ... = ; = L. Then we define S by

1
S=yot
‘where
B
A=3"A, N= EN and N~k-p=-1>0.

i=1 i=1

We substitute the estlmators (%:,8) for the para.meters in (9 to
obtain & o

éfl)(i‘o)‘_zNo(EfS“'fo %E{S -1z, ;)+ln9i, i=1,...,k (15)



M. Krzysko - 357

It is easy to show that & )(a:o) is a consistent but biased (asymp—
totically unbiased) estlmator of the linear discriminant score (9).

Theorem 3. (Krzysko, 1991). For N —k —p—1> 0, the unique
minimum variance unbiased estimator of the linear discriminant
score (9) which depends on the complete sufficient statistic (%;, S)
is given by

s I

N—-k N

1—1,...,k. (16)

We shall now consider the Bayes estimator of the linear dis-
criminant score.

The linear discriminant score (9) is the function of the un-
known parameters (u;,27), i=1,...,k.

Suppose that the density function of the joint prior distribution
of the parameters (u;,£71) is Jeffreys (1961) function of the form

(= eS|, i=1,...,k (17)

The random vector Z; has the normal distribution Np(p:, N1 E;)
and the matrix A has the Wishart distribution W,(N — k, Z). Since
Z; and A are independently distributed, then the density of the
joint distribution of (z;, A) is

Nk— -1 _.:__-li

FELA#TTY) o« |A T
XCXP{_""[E“ (A + Ni(Z; - lh)(z: Hi) ]}

=

which upon combining with the assumed joint prior density (17)
yields '

9l B 7 A) o AP o
, 1 ) i |
X exXp { - -2't1' [2'1 (A + Ni(.‘B;‘ — lli)(:t; - ,",)l)] }

as the joint posterior density for g; and £-!, i = 1,...,k. Hence,
conditional on £, y; ~ N,(5;, N 1E).
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Also, marginally o
B A Wy (N =k, (N —B)7157).

Now, the evaluation of E[e;(Zo) | To] may be most conveniently ob-
tained by taking conditional and then unconditional expectations,
viz.,
e\ — N, = 1 1 =1 1=
Elei(Zo) | To] =~ -—29-E2-1{Em [(Fo — )Y (Fo — ps) | T, %] | a:o}
+Ing, | i=1,...,k
By a similar argument as in the proof of Theorem 2 we have
=y PN 3
E[ei(Zo) | Zo] = &7(0) - 37 = &%),
where &{1(z,) is given by (15),i=1,...,k.

Thls proves the following theorem.

Theorem 4. If the density function of the joint prior distri-
bution of the parameters (u;,Z7!) is a Jeffreys (1961) function of
the form (17), thezﬁ for N-k-p-1>0

)(xo) = No(:c Sz, - -2- S”l'f, - 5[—\}—) +1Ing¢q; (18)-

is the Bayes estimator of the linear diccriminant score (9).
REMARK 3. It is easily seen that & )(xo) is a consistent estima-
tor of the linear discriminant score (9)

-REMARK 1. If the sample sizes are equal, then the classification
of a given sample X, by the estlmators (15), (16) and (18) gives
the s- ne result.
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