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Abstract. The heliostat field of Solar Central Receiver Systems takes up to 50% of the initial invest-
ment and can cause up to 40% of energetic loss in operation. Hence, it must be carefully optimized.
Design procedures usually rely on particular heliostat distribution models. In this work, optimiza-
tion of the promising biomimetic distribution model is studied. Two stochastic population-based
optimizers are applied to maximize the optical efficiency of fields: a genetic algorithm, micraGA,
and a memetic one, UEGO. As far as the authors know, they have not been previously applied to this
problem. However, they could be a good option according to their structure. Additionally, a Brute-
Force Grid is used to estimate the global optimum and a Pure-Random Search is applied as a baseline
reference. Our empirical results show that many different configurations of the distribution model
lead to very similar solutions. Although micraGA exhibits poor performance, UEGO achieves the
best results in a reduced time and seems appropriate for the problem at hand.
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1. Introduction

Solar Central Receiver Systems, SCRS in what follows, are an interesting and promising
technology in the field of solar-based renewable energies. They were initially proposed
in 1957 and, since then, they have been under continuous development (Gordon, 2013;
p. 618). This kind of power facilities is especially characterized by its scalability, operating
efficiency and output stability (Avila-Marin et al., 2013; Besarati and Goswami, 2014;
Collado and Guallar, 2012; Collado and Guallar, 2013).

In simple terms, SCRS consist of a set of high reflectance mirrors, called ‘heliostats’,
and a radiation receiver which is usually on top of a tower. Heliostats track the apparent
movement of the Sun throughout days to concentrate solar incident radiation over the
receiver. Consequently, it is under high-density solar radiation. Then, a heat-interchange
process is carried out in it to heat a working fluid. This fluid can be finally used in a
classic turbine cycle to generate electric energy. Due to the high temperatures reached,
thermodynamic performance is high (Besarati and Goswami, 2014; Collado and Guallar,
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Fig. 1. Scheme of a SCRS system.

2012). In Fig. 1, a simple SCRS facility is depicted. Further information about them can
be found in Alexopoulos and Hoffschmidt (2017), Behar et al. (2013), Camacho et al.
(2012), Müller-Steinhagen (2013), Reddy et al. (2013), Stine and Geyer (2001).

This work deals with optimizing the heliostat field of SCRS facilities, which is also
known as ‘collector subsystem’. The set of heliostats and their configuration define this
part of facilities. This subsystem can cause up to 40% of operating energetic loss and
can take up to 50% of the initial investment according to Besarati and Goswami (2014),
Jones et al. (2007). Therefore, it must be carefully optimized when designing a SCRS
power facility. Several optimization objectives are possible. For instance, optical efficiency
maximization, as studied in Besarati and Goswami (2014), Noone et al. (2012), is one of
them. Production cost reduction, as mentioned in Ramos and Ramos (2012), Sánchez and
Romero (2006), is another valid option. Finally, some variations and combinations of the
previous ones, as studied in Zhang (2007), are also common objective functions.

As summarized in Carrizosa et al. (2014), the design of heliostat fields is usually based
on two basic strategies. The first one is to apply and optimize a certain heuristic distribu-
tion pattern. The classic radial staggered model, proposed by the University of Houston
(Stine and Geyer, 2001; Chap. 10), and the biomimetic spiral, recently proposed by Noone
et al. (2012), are two examples of patterns. In Mutuberria et al. (2015), where several
patterns are compared, more examples and references can be found. The second strat-
egy is to select final heliostat positions from a defined set (as iteratively done in Sánchez
and Romero, 2006). However, a mixed approach is usually applied: An over-sized field
is initially generated by following a particular distribution model to get a set of available
positions over the ground. Then, the best ones are finally selected until the real power re-
quirements are fulfilled. In fact, this strategy is quite common and it has been used, for
instance, in Besarati and Goswami (2014), Noone et al. (2012), Ramos and Ramos (2012),
Pitz-Paal et al. (2011), Sánchez and Romero (2006). This latter approach permits more
degrees of freedom to get optimal fields.

In this work, parametric optimization of the biomimetic spiral pattern is studied. The
design objective is to maximize the optical efficiency of fields. This distribution scheme
could be ultimately applied to both directly generate final fields and in a hybrid design
methodology. Thus, it is important to rely on an efficient and reliable optimizer to adjust
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its design variables. In this context, two stochastic population-based algorithms, called
micraGA and UEGO, are applied to solve the problem at hand. Their structure seems
to be especially suitable to solve it. However, as far as the authors know, none of them
had been previously used in this situation. Hence, the main goal of this work is to study
their behaviour in it. Additionally, a Pure-Random Search algorithm is used to study the
complexity of the problem and to get a baseline perspective of the quality of solutions.
Finally, a Brute-Force Grid is applied to approximate where the optimal solution is deter-
ministically. In contrast to the active trend of deploying large fields with several thousands
of heliostats (e.g. 4120 units in Khi Solar One and 173500 ones in Ivanpah), this paper
considers small and medium size fields. Specifically, facilities with several hundreds of
heliostats, like CESA-I and PS10, with 300 and 624 units respectively, define the scope of
interest. This is due to their lower requirements of space and initial investment, i.e. higher
applicability. However, the size of the different problems is gradually increased, which
makes it possible to discover general patterns. The results obtained seem scalable.

The rest of the paper is organized as follows: In Section 2, the optimization problem
and the objective function are exposed. In Section 3, the different optimizers applied to the
problem are described. In Section 4, the experiments carried out and the results obtained
are shown. Finally, in Section 5, conclusions are drawn and future work is exposed.

2. Objective Function

The design of heliostat fields, as introduced, will be aimed at maximizing yearly irradiance
weighted efficiency, ηyear,I . It is a common objective function which is used, for instance,
in Besarati and Goswami (2014), Noone et al. (2012). It is focused on the optical efficiency
of the heliostat field, while also considering the available solar radiation at every instant
through the year. This magnitude can be formulated as Noone et al. (2012):

ηyear,I =
∑365

day=1

∫ sunset

sunrise
Ib(t)η(t) dt

∑365
day=1

∫ sunset

sunrise
Ib(t) dt

(1)

where Ib(t) is the instantaneous beam irradiance and η(t) is the instantaneous optical
efficiency. It must be noted that Eq. (1) is defined in abstract terms. Hence, it must be con-
figured by selecting the appropriate model for every encapsulated concept. These aspects
are detailed in Noone et al. (2012), where the unweighted version of the equation is also
included.

The optical efficiency of a field, η(t), measures its performance in redirecting and
concentrating incident solar radiation over the receiver at every instant t (Stine and Geyer,
2001; Chap. 10). In this context, an instant is equivalent to a certain solar position and
incident radiation density on a particular day and time. It defines the heliostat field config-
uration. As an efficiency factor, η(t) is defined between 0 and 1 (minimum and maximum
possible efficiency, respectively). It is internally formed by a selected set of sub-factors
which model different sources of energy loss in heliostat fields. Discarding any of them is
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Fig. 2. Global scheme of the problem to solve.

equivalent to assume it as 1, i.e. not causing energy loss. For the scope of this work, η is
defined for every heliostat as in Noone et al. (2012):

η = ηcos · ηsb · ηitc · ηaa · ηref (2)

where ηcos, ηsb , ηitc, ηaa and ηref are the cosine, shadowing and blocking, interception,
atmospheric attenuation and reflectivity efficiency, respectively. These concepts will be
summarized later in this section while also including the particular model applied to their
calculation. Thus, η(t) in Eq. (1) is referred to the average obtained from the values of
every active heliostat. Further information about these efficiency factors can be found in
Besarati and Goswami (2014), Stine and Geyer (2001), Noone et al. (2012). Additionally,
the alternative definition of Eq. (2) used in Collado and Guallar (2012) is very descriptive.
Its nomenclature not only includes time and the coordinates of heliostats but also the effect
of their neighbours.

Instantaneous beam solar radiation, Ib(t), weights pure optical efficiency. As intro-
duced, it adds an energetic perspective to Eq. (1). It modifies the instantaneous optical
efficiency of a certain field considering the availability of solar radiation at every instant
studied. This factor is also abstractly defined and the selected model will be described
later in this section.

The instantaneous component, t , encompasses a year, which is also divided into days.
Days are finally considered as raw sets of instants, i.e. apparent solar positions. The way
in which days are discretized is also abstract and configurable. For instance, in Noone
et al. (2012), some interesting notes about considering a variable time step are presented.
However, those strategies are out of the scope of this work and a constant time step will
be used to compare the selected optimizers.

Figure 2 gives an overview of the problem to solve. Eq. (1), which directly depends
on the heliostat field design, is the objective function to be maximized. It can be seen as
simulation procedure of this part of SCRS facilities. A common context defined by the
number of time steps per year, the configuration of every internal model, etc., is assumed.
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Therefore, it is necessary to define the design of candidate fields to be analysed with the
underlying objective function while optimizing. As introduced, fields will be designed by
directly applying the biomimetic spiral pattern proposed in Noone et al. (2012). Conse-
quently, the optimizers applied will need to find the parameters of this pattern, ‘a’ and ‘b’,
that generates a field with a maximum value of Eq. (1). As usual in engineering problems,
the objective function does not directly depend on the design variables. Next, the internal
models selected for Eq. (1) and the biomimetic pattern are described.

2.1. Sun Positioning

The configuration of heliostat fields is defined by the apparent solar position at every in-
stant, t . The model explained in Stine and Geyer (2001; Chap. 3) has been selected to
calculate the apparent solar position throughout the year. Its coordinate system and con-
ventions have been followed too. Any apparent solar position is defined by its azimuth
and altitude angles, A and α, respectively. They are calculated depending on solar decli-
nation (δ), latitude (φ) and hour angle (ω):

α = sin−1(sin δ sin φ + cosδ cosω cosφ), (3)

A′ = sin−1

(

− cosδ sinω

cosα

)

;
A = 180◦ − A′ if cosω >

( tan δ

tanφ

)

,

A = 360◦ + A′ otherwise.
(4)

2.2. Solar Radiation

The impact of the optical performance of a certain field depends on incident solar radia-
tion density. Independently of their design, fields cannot concentrate much power on the
receiver when there is no much solar energy to be profited. Therefore, it is important to
weigh optical efficiency values with solar radiation density at every instant t . The model
used to estimate direct solar radiation density depends on the concept of ‘air mass’ (AM)
(explained in Stine and Geyer, 2001; Chap. 2) and the location height above sea level. The
expression of this model, in (kW/m2), is (Laue, 1970):

Ib = 1.353 ·
{

(1 − 0.14h)0.7AM0.678

+ 0.14h
}

(5)

where h is the location height above sea level in kilometers. It must be noted that Ib

depends on time because air mass varies with solar altitude.

2.3. Field Efficiency

The optical efficiency of heliostat fields depends on these concepts, which are defined for
every single heliostat and averaged to compute Eq. (2):
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Fig. 3. Shadowing heliostat projection on the studied one.

Cosine efficiency, ηcos: profitable reflective area of heliostats due to their orientation.
According to the Law of Reflection, it is derived from the cosine of the angle formed
by the incident solar beam with the heliostat normal direction:

ηcos = S · H (6)

where S and H are unit vectors expressing the solar and heliostat normal directions
(the coordinate system used is described in Stine and Geyer, 2001; Sec. 8.5).

Shadowing and blocking efficiency, ηsb: reflective area of heliostats neither shadowed
nor blocked by any other one. As proposed in Ramos and Ramos (2014), its com-
putation is addressed as a polygon clipping problem. Once every heliostat has been
oriented for the simulated instant, the ηsb factor of a certain one, hi , is computed
after four steps. First, the four vertexes of the Ps potentially shadowing heliostats are
projected, in the direction of sunlight, on the plane defined by the reflective surface
of hi . By proceeding this way, Ps polygons are generated over the plane of hi . This
step is depicted in Fig. 3. Second, the four vertexes of the Pb potentially blocking
heliostats are also projected on the plane of hi , but in the direction of their target
vector. Similarly, Pb polygons are generated over the plane of hi . Third, every gener-
ated polygon is subtracted from the rectangle of the reflective surface of hi , which is
on its infinite plane. Finally, ηsb of hi is the ratio of the area of the polygon obtained
after subtraction, AS , to the original one, AT , as expressed in Eq. (7).

ηsb =
AS

AT

. (7)

The heliostats previously labelled as ‘potentially shadowing/blocking’ are selected,
for every heliostat hi , by applying an adaptation of the ‘bounding sphere’ method
mentioned in Noone et al. (2012). Specifically, hi is wrapped in a sphere and pro-
jected on the plane. After that, it is translated towards the Sun and the receiver. If
the sphere of any other heliostat can intercept the translation trajectory, that one
is considered a candidate. The type will be of ‘shadowing’ or ‘blocking’ when the
translation is towards the Sun or the receiver, respectively. This procedure is de-
picted in Fig. 4: H2 could block H1 because the distance d to the trajectory of H1
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Fig. 4. Selection of candidate heliostats ‘bounding sphere’.

towards the receiver is less than the sum of the radii of both spheres. Further infor-
mation regarding aspects such as the way in which heliostats are oriented can be
found in Stine and Geyer (2001; Sec. 8.5). Polygon clipping methods are also out
of the scope of this work. However, the algorithms of Greiner and Hormann (1998)
and Vatti (1992) are good options for the interested reader. Whereas the algorithm
of Greiner–Hormann was used in Ramos and Ramos (2014), the method of Vatti
has been used in this work through the implementation of Johnson (2012).

Interception efficiency, ηitc: ratio of success in targeting the receiver. It is estimated once
dependingon the dimensions of the heliostats and the receiver as in Cristóbal (2011),
where the model proposed by Collado and Turégano (1989) is implemented:

ηint =
pH( lwr

2
√

2σr
,−ar , ar ) · pH( dwr

2
√

2σr
,−ar , ar)

a2
r

(8)

where lwr and dwr are the height and diameter of the receiver, respectively. σr is the
standard deviation of sunshape. ar is a compoundparameter defined for convenience
and computed as

√
AT /(2

√
2σr ), where AT is the same area previously defined.

Finally, pH is an auxiliary function and further information about it is available in
Cristóbal (2011), Collado and Turégano (1989).

Atmospheric attenuation efficiency, ηaa: effect of the atmosphere on radiation reflected
by heliostats. It has been selected the same model applied in Noone et al. (2012). It
depends on the distance between every heliostat and the receiver, drec, as expressed
in Eq. (9).

ηaa =
{

0.99321 − 0.0001176drec + 1.97 · 10−8d2
rec; drec 6 1000 m,

exp(−0.0001106drec) otherwise.
(9)

Reflectivity efficiency, ηref : energy loss caused by the physical properties of reflective
surfaces. It is assumed to be a common constant of heliostats.
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2.4. Biomimetic Distribution Model

The available heliostats are distributed according to the promising biomimetic layout pro-
posed in Noone et al. (2012). It has been successfully used to design fields of several
hundreds of heliostats in Besarati and Goswami (2014), Noone et al. (2012), which is the
main target of the present study. This distribution pattern is also characterized by achieving
a good trade-off between land use and field efficiency. For instance, in Mutuberria et al.
(2015), its good properties are also observed. The method is inspired by the spiral patterns
of the phyllotaxis disc, like florets on the head of sunflowers. This pattern consists of two
equations that define the position of every heliostat in polar coordinates (Noone et al.,
2012):

θk = 2πϕ−2k, (10a)

rk = akb. (10b)

θk and rk are the azimuthal and radial distance, respectively. k is the index of any he-
liostat as part of the spiral and ϕ is the golden ratio. However, a and b are the parameters
of the pattern which are adjusted to vary the density of fields. Hence, they will be deter-
mined through optimization. Finally, it must be noted that azimuth values are measured
clockwise from North direction, in radians. Radial distances are measured from the tower
base, in meters. For instance, the field shown in Fig. 2 follows this pattern.

3. Optimization Algorithms

The optimization problem described has been solved with four different algorithms: a ge-
netic algorithm (called micraGA), a memetic global optimizer (called UEGO), a Pure-
Random Search (that will be referred as PRS) and a Brute-Force Grid (named as BFG in
what follows).

3.1. Genetic Algorithm: micraGA

Genetic algorithms, proposed by J. Holland in the late seventies (Holland, 1975), are fre-
quently used for complex black-box optimization problems. This is because their princi-
ples are not linked to any particular problem but to the evolution of species. This kind of
algorithms is also usually applied to heliostat field optimization. For instance, they have
been successfully used in Besarati and Goswami (2014), Ramos and Ramos (2012), Pitz-
Paal et al. (2011).

In this work, a genetic algorithm called micraGA has been designed to solve the prob-
lem summarized in Fig. 2. Each individual consists of: (i) a couple of values for variables
a and b and (ii) the weighted efficiency of the corresponding field according to Eq. (1).
Three individuals can be seen in Fig. 5. Initial individuals are generated by randomly se-
lecting their values for a and b in Eq. (10) within the search space. In case that random
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Fig. 5. Reproduction step of micraGA.

couples lead to inconsistent fields where some heliostats are too near each other, these
couples are discarded and re-generated. The population size, defined by an input parame-
ter, will be kept constant during the search. Once the initial population has been defined,
this evolutionary procedure is repeated a given number of cycles:

Selection: A certain even number of sets of randomly selected individuals is formed.
Both the number of sets and their cardinality are user-defined parameters. Their
values will be commented later in Section 4. Then, the best individuals of all con-
secutive sets are paired to form a couple every two. This strategy, called ‘tournament
selection’ (Redondo, 2009), is more likely to attenuate strong genetic drifts in the
population.

Reproduction: A new descendant is generated from every previous couple. They result
from averaging the values of the progenitors for a and b. This approach aims to
obtain individuals that point to unknown local optima in the search space. Figure 5
contains a depiction of this step.

Mutation: Every existing individual is altered by adding a random increment to its values
for a and b. However, to get a cooling procedure, increments are previously divided
by a parameter raised to the current number of cycle. The limits considered when
generating random increments and the cooling factor are part of the input parameters
of micraGA. Any mutation is discarded if the altered individual is worse than the
initial one.

Replacement: At the end of every cycle, the population for the next one is formed by
selecting the best individuals from the current population and its descendants. Tour-
nament selection is applied again for this purpose.

Finally, it must be noted that reproduction and mutation might lead to unfeasible individ-
uals. However, in contrast to correctness required at population initialization, this kind of
individuals is permitted during the search. This approach aims to maintain as many ex-
plored zones as possible to be able to reach isolated optimal solutions. Nevertheless, the
aptitude of this kind of individuals is heavily penalized by setting it to 0.

3.2. Universal Evolutionary Global Optimizer: UEGO

The ‘Universal Evolutionary Global Optimizer’ (UEGO) is a memetic (Moscato, 1989;
Dawkins, 1976) multi-modal optimization algorithm. It was presented in Jelasity (1998)
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as a method especially suitable to be parallelized and highly adaptable to different prob-
lems (Jelasity, 1998; Ortigosa et al., 2001b; Ortigosa et al., 2007; Redondo et al., 2009a;
Redondo et al., 2009b). The algorithm defines that of ‘species’ as its fundamental concept.
Every species is the aggregation of a candidate solution and a certain attraction radius over
the search space. The structure of UEGO is divided into two separate levels, a global and
a local one. At the former one, an iterative management process of the set of species is
defined. This procedure, which includes a cooling component to enhance convergence, is
independent of the problem. However, the local level needs to be adjusted to the consid-
ered problem by selecting a local optimizer to use. This is an iconic property of memetic
algorithms. This layered design is also determinant for the adaptability of UEGO to dif-
ferent problems.

For the problem at hand, species consist of: i) a couple of candidates values for a and b,
ii) its aptitude according to Eq. (1) and iii) its attraction radius. Figure 6 shows a species
adapted to this problem. Algorithm 1 enumerates the steps of UEGO. As can be seen,
its parameters are the maximum population size and executions of the objective function
(MSpec and MEv, respectively), the number of search levels (NLev) and the minimum
attraction radius (MR).

According to Algorithm 1, at line 1, UEGO starts by randomly generating a species
whose radius covers the whole search space. Next, it is locally optimized by applying the
Solis & Wets’ SASS algorithm (Solis and Wets, 1981). This optimizer has been selected
because it does not require any specific properties of the objective function. Besides, it has
been previously and successfully coupled with UEGO (Redondo, 2009). Then, at line 3,
the main loop of UEGO is repeated for the remaining levels. As shown at line 4, every level
i starts with the computation of three reference values. The first one, r[i], is the attraction
radius that will be linked to every new species. Radii are progressively reduced, according
to an exponential progression, until the minimum value defined by the user. The second
one, new[i], is the number of objective function evaluations allowed to create new species.
The last one, n[i], is the maximum number of objective function evaluations allowed to
optimize species locally. Next, at line 5, new promising species are created within the
zones defined by the existing ones. After that, at line 6, any overlapping species are fused
depending on r[i] and the Euclidean distance between their centres, i.e. the (a, b) points
in the search space. Figure 7 includes a depiction of this step. At line 7, if the maximum
number of species has been exceeded, the most recent ones, which have the shortest radius,
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Algorithm 1: UEGO algorithm

Input: Int MSpec, Int MEv, Int NLev, Real MR

Output: SpecieList specs

1 Init_spec_list()

2 Optimize_species(n[1])
3 for i = 2 to NLev do
4 Establish(r[i],new[i], n[i])
5 Create_species(new[i]/length(species_list))

6 Fuse_species(r[i])
7 Shorten_species_list(MSpec)

8 Optimize_species_list(n[i]/MSpec)

9 Fuse_species(r[i])
10 end

Radius A A 

B 
Radius B 

Species A 

Species B 

Fusing 

Radius A B 

Species A&B 

Assume that Species B is better than Species A: 

• Set the best candidate point as the new center (better aptitude) 

• Keep the lower level, i.e., longer radius (avoid premature convergence) 

 

Fig. 7. Fusion of two species in UEGO.

are removed. This approach makes premature convergence more difficult to occur because
the search scope is kept wide. Later, at line 8, the existing species are locally optimized. It
must be noted that this can cause that their centres are moved in the search space. Finally,
the possibility of fusing nearby species is re-analysed at line 9.

Unfeasible solutions are allowed but penalized in the same way as in micraGA. Further
information about UEGO and its configuration can be found in Redondo (2009), Ortigosa
et al. (2001a).

3.3. Pure-Random Search: PRS

Pure-Random Search, PRS in what follows, is the simplest global optimization algorithm
(Brooks, 1958). It consists in randomly generating solutions in the search space while the
best one achieved so far is kept as a reference. Despite its simplicity, when the number
of iterations allowed increases to infinity, the probability of finding a global optimum
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tends to 1 (Brooks, 1958). However, this approach is more theoretically interesting than
applicable.

For the problem at hand, PRS simply needs to generate a random couple of parameters
a and b for Eq. (10) at each iteration. The corresponding field of that candidate solution is
then evaluated according to Eq. (1). In case that it outperforms the previous reference, the
new one is registered as the best solution known. This procedure is repeated for an user-
defined number of iterations. After that, PRS finally returns the reference as the solution.

In this work, PRS has been initially selected to get a baseline reference for analysing
the results of population-based optimizers. It can also be used to appreciate the problem
complexity.

3.4. Brute-Force Grid: BFG

Since all the previous methods are stochastic, they do not guarantee to obtain the same
results after different executions. Furthermore, the optimal configuration of Eq. (10) is not
formally known for the considered conditions. Consequently, a Brute-Force Grid (BFG)
is applied to get a configurable and deterministic perspective of the search space.

BFG, given a discretization step in each dimension, systematically generates and eval-
uates all possible combinations of the variables under optimization. This approach seems
to be successfully used by the tool HFLD in Wei et al. (2007) for parametric optimization
of distribution models. It could have also been used in Noone et al. (2012) to generate the
set of combinations of a and b.

On the one hand, this strategy is interesting due to its deterministic nature. Moreover,
its accuracy can be precisely configured by adjusting the discretization steps. On the other
hand, it will be extremely time-consuming for most configurations. Thus, its application
to large problems or as part of complex field designs procedures might be unfeasible.

For the problem at hand, dimensions a and b of Eq. (10) are discretized for a given
resolution. Then, all possible combinations are formed and evaluated according to Eq. (1).
The best one is finally selected as the optimal solution. BFG will be applied to get an
approximated idea of the structure of the search space and where its optimal point is.

4. Experimentation and Results

The problem context has been implemented in C++. The objective function, which re-
quires simulating the candidate fields throughout the year, has been parallelized due to
its significant computational cost. The simulation of instants has been distributed among
concurrent threads as proposed in Cruz et al. (2017). The POSIX-Threads (PThreads) li-
brary has been used for parallelization. The optimizers described in Section 3 have also
been implemented in C++. The compiler used is g++ 4.8.1 with optimization level ‘O2’.
The experiments have been carried out in a cluster node that features an Intel Xeon E5
2650 with 16 cores and 64 GB of shared RAM. The evaluation of the objective function
can hence deploy up to 16 concurrent threads.
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Regarding the problem definition, the latitude of the facility is 37.4◦ North. The height
of the tower is 100 m with a cylindrical receiver of 10.5 m of height and 8.5 m in diameter.
Since a north-field configuration is required, only those positions of the pattern at the
north of the tower are considered. All heliostats are assumed to have a plain reflective
surface of 100 m2 (10 m × 10 m) whose center is at 5 m over the ground. The time
step throughout days is constant. Specifically, for any studied field, Eq. (1) is computed at
every hour from sunrise to sunset. For the selected solar model and latitude, approximately
4000 instants can be uniformly generated in a year. However, the solar positioning model
shows symmetry, which is inherited by radiation density estimation. Thus, simulations
only evaluate about 2400 real instants.

The considered problem sizes range from 50 to 500 heliostats to place. According to
Besarati and Goswami (2014), a and b, are defined in [2.0,8.0] and [0.45,0.70], respec-
tively. For BFG, the discretization steps in a and b are 0.05 and 0.005, respectively. This
configuration has also been used to plot the shape of the objective function shown in Fig. 8
for both the smallest and the biggest instances. As can be seen, the search space is quite
homogeneous, which is mainly due to keeping it limited to a robust distribution model.
UEGO and micraGA have been configured, after preliminary experimentation, with a ro-
bust set of parameters for all the studied problems. They have been configured to get the
best results possible, with stability in spite of their stochastic nature, and as fast as possi-
ble. For UEGO, this is achieved with a limit of field evaluations equal to 1000, 20 levels
of search, a limit of 15 species and a minimum radius equal to 0.0001. micraGA has been
configured to have a population size of 70 and to select 70 progenitors from tournaments
of 12 individuals at every cycle. micraGA will execute a total of 4 cycles. Its cooling proce-
dure will divide mutation increments by 9.0(x−0.5), where x is the cycle (when it is larger
than 1). Mutation amplitude in a is in range [−1.0,1.0] while it is in range [−0.15,0.15]
in b. Finally, PRS has been adjusted to take a similar time to UEGO and micraGA. Specif-
ically, it is allowed to execute 1250 cycles. This time constraint would be interesting in
case of using this process to generate preliminary fields in a more complex design method.

Table 1 contains the results obtained after experimentation. Each row represents a
particular problem size while the sets of columns show the results achieved by every op-
timizer. The records of BFG contain the efficiency achieved and the runtime for every
problem size. However, due to their non-deterministic nature, the records of UEGO, mi-
craGA and PRS consist of the average efficiency achieved, the standard deviation and the
runtime for every problem size. The experiments with non-deterministic methods have
been repeated for 10 times. Additionally, the last row includes the average of all the in-
stances. The best efficiency in every case is in bold font.

As can be seen in Table 1, the achieved efficiencies are numerically very similar for
the same instance. Besides, multiple combinations of a and b result in fields of similar
efficiency. In Pitz-Paal et al. (2011), where heliostat field optimization is also studied, a
similar situation was observed. Generally speaking, the real impact of such variations in
efficiency would ultimately depend on the field size. In fact, the differences between those
methods with a better average (UEGO and BFG) and the others tend to be higher with more
heliostats. If we studied the final average efficiency of every method as that of a virtual
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a

Fig. 8. Objective function’s approximated plot for 50 (left) and 500 (right) heliostats.

field, the difference between the best and worst methods would be of a few thousands
of euros a year (less than 6,000 euros). However, if these results were scaled to larger
fields, the same degree of variation would represent an extra benefit of several thousands
of euros (less than 60,000 euros). These values would not be determinant if compared to
the total budget of the facility. Nevertheless, they could be achieved by simply selecting
the most appropriate optimizer at design. Moreover, since analytical models might tend
to overestimate efficiencies because of their simplifications, it is important to work with
high precision.
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Table 1
Average results obtained with each optimizer.

BFG UEGO micraGA PRS

Hel. Ef.
(10−5)

T. (s) Ef.
(10−5)

St.D.
(10−5)

T. (s) Ef.
(10−5)

St.D.
(10−5)

T. (s) Ef.
(10−5)

St.D.
(10−5)

T. (s)

50 70336.61 479 70336.62 0.00 54 70336.58 0.04 53 70336.24 0.43 62
100 69369.70 1235 69369.74 0.00 142 69369.24 0.71 148 69368.45 1.00 154
150 68671.19 2211 68671.20 0.00 271 68670.22 2.19 271 68669.97 1.00 278
200 68200.80 3457 68200.84 0.00 410 68197.08 4.33 422 68198.92 1.22 420
250 67798.31 4828 67798.38 0.00 600 67796.46 2.00 590 67795.90 1.35 594
300 67453.50 6487 67453.53 0.00 780 67451.34 3.03 800 67448.40 2.49 773
350 67178.22 8295 67178.30 0.00 975 67175.64 5.09 1010 67174.52 3.18 992
400 66929.81 10318 66929.92 0.00 1251 66925.94 5.74 1259 66925.12 2.03 1235
450 66727.91 12539 66727.96 0.00 1447 66724.96 4.25 1500 66725.76 1.45 1475
500 66538.51 14856 66538.57 0.00 1785 66534.14 4.12 1784 66531.64 5.96 1759
Avg.: 67920.46 6471 67920.51 0.00 772 67918.16 3.15 784 67917.49 2.01 774

UEGO gets the best average efficiency in all the studied cases. It is also very stable
as can be observed in its values of standard deviation. In fact, it usually returns the same
solution for each problem instance even after different executions. They all are also in the
region where the optimal solution is expected to be according to the preliminary analysis
with BFG. Therefore, UEGO is neither affected by its stochasticity nor by the multimodal
structure of the objective function.

BFG achieves efficiencies quite near to those obtained by UEGO. However, its runtime
is significantly higher. Hence, its integration in complex design procedures would be less
practical. On the one hand, BFG is up to 10 times slower than UEGO with a relatively
coarse discretization of the search space while even obtaining slightly worse results. On
the other hand, BFG is deterministic and its resolution can be arbitrarily adjusted through
its discretization steps. These properties make it theoretically interesting for studies such
as the one presented in this work. However, as can be deduced from Table 1, BFG would
need an enormous amount of time to handle larger problem instances, wider search spaces
and higher accuracy. More sophisticated methods such as UEGO outperforms BFG with
less computational effort.

Regarding micraGA, its performance is quite low when compared with UEGO. In
fact, it is even marginally outperformed by PRS in two cases, the instances of 200 and 450
heliostats. This behaviour is consistent with the idea that the complexity of micraGA is
between those of UEGO and PRS. Furthermore, it is not particularly stable if compared
with the standard deviation obtained by PRS and especially by UEGO. micraGA does not
converge adequately due to the structure of the search space. It would need a significantly
higher runtime to get closer results to UEGO. Thus, since micraGA cannot outperform
UEGO and it is complex if compared to PRS, it is not a good option to be further consid-
ered.

Finally, despite being the worst ones, the results obtained by PRS are quite interesting.
In spite of its simplicity and lack of orientation during the search, depending on the pre-
cision needed, it could achieve acceptable results. This is mainly due to two reasons: i) its
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reduced logic overhead makes it possible to study numerous combinations in a similar
runtime to UEGO and micraGA; ii) it is not affected by the structure of the search space.
In fact, PRS could be interesting as part of a more complex heliostat field optimization
method because of its simplicity. However, its instability and lack of robustness compared
to UEGO make it not appropriate as a standalone method.

5. Conclusions and Future Work

In this work, the complexity of heliostat fields design has been studied. An optimization
problem aimed at maximizing yearly irradiance weighted efficiency has been defined.
The design procedure followed directly tries to optimize the parameters of the promis-
ing biomimetic distribution pattern. Four optimization algorithms have been studied to
solve the problem, namely, BFG, UEGO, PRS and micraGA. The possibility of coupling
their use within more complex methods is also discussed considering computational cost.
Whereas Genetic Algorithms and BFG are state-of-art methods for the present problem,
UEGO had not been applied to solve it before. PRS, as far as the authors know, could also
be included in this set. Since the objective function is wrapped within a distribution robust
pattern, it is heavily multimodal.

UEGO is the best option out of the considered ones. This method gets the best solu-
tions in a stable and fast way for all the studied instances. Hence, it should be considered
for heliostat field design based on the described distribution pattern. It also seems to be
fast enough to be included as part of a more complex design procedure. The field efficien-
cies obtained by BFG are very similar to those achieved by UEGO. In fact, for a given
resolution, BFG could obtain the best solution possible due to the extensive search that it
performs. However, it would require significantly more runtime than UEGO. Thus, BFG
does not seem to be appropriate for large fields, wide search spaces or to be included
in a complex procedure of several stages. Regarding PRS, it turns out to be an interest-
ing option considering its simplicity. Although it should not be applied to generate final
fields, PRS could be appropriate in a multi-stage procedure depending on the precision
requirements. Finally, the genetic optimizer proposed, micraGA, does not seem to be a
good option. It does not explore the search space properly. Its results are of low quality
and unstable if compared to those of UEGO. In fact, they are very similar to those of PRS
in spite of being more sophisticated than that method.

There are some possible expansion points for future work. First, a better alternative to
micraGA could be explored. Its design should aim at a trade-off between the complexity
of UEGO with the best results and the simplicity of PRS with acceptable quality. Second,
it could be interesting to compare the performance of UEGO and PRS in a multi-stage
optimization process. Finally, extending this comparison context to encompass several
distribution patterns and timing variations in the objective function would be of great
interest.
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