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Abstract. The picture fuzzy set is characterized by three functions expressing the degree of mem-

bership, the degree of neutral membership and the degree of non-membership. It was proposed as

a generalization of an intuitionistic fuzzy set in order to deal with indeterminate and inconsistent

information. In this work, we shall present some novel Dice similarity measures of picture fuzzy

sets and the generalized Dice similarity measures of picture fuzzy sets and indicate that the Dice

similarity measures and asymmetric measures (projection measures) are the special cases of the

generalized Dice similarity measures in some parameter values. Then, we propose the generalized

Dice similarity measures-based patterns recognition models with picture fuzzy information. Then,

we apply the generalized Dice similarity measures between picture fuzzy sets to building material

recognition. Finally, an illustrative example is given to demonstrate the efficiency of the similarity

measures for building material recognition.

Key words: generalized Dice similarity measures, Dice similarity measures, picture fuzzy set,

asymmetric measures, projection measures, patterns recognition, building material recognition.

1. Introduction

Multiple attribute decision making is a main branch of decision theory, where (PFS) intro-

duced by Cuong (2013) has been successfully applied in recent years. The picture fuzzy

set is a generalization of an intuitionistic fuzzy set (IFS) (see Atanassov, 1986, 1989;

Xu and Cai, 2008; Wei, 2011; Xu and Chen, 2008; Ye, 2011; Chen, 2016; Wei, 2015;

Zhang and Xu, 2015; Li and Ren, 2015; Wei, 2009; Wei, 2010). The picture fuzzy set

(Cuong, 2013) is characterized by three functions expressing the degree of membership,

the degree of neutral membership and the degree of non-membership. The only constraint

is that the sum of the three degrees must not exceed 1. Basically, PFS based models can

be applied to situations requiring human opinions involving more answers of types: yes,

abstain, no, refusal, which cannot be accurately expressed in the traditional FS and IFS.

Recently, many researchers have applied PFSs to the decision-making problems. Various

methods have been developed to solve the multiple attribute decision-making problems

with picture fuzzy information. For example, Singh (2014) investigated the correlation
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coefficients for picture fuzzy set and applied the correlation coefficient to clustering anal-

ysis with picture fuzzy information. Son (2015) proposed a novel distributed picture fuzzy

clustering method with picture fuzzy information. Thong and Son (2015) developed a new

approach to multi-variables fuzzy forecasting by using picture fuzzy clustering and picture

fuzzy rules interpolation method. Thong (2015) developed a novel hybrid model between

picture fuzzy clustering and intuitionistic fuzzy recommender systems for medical diag-

nosis and application to health care support systems. Wei (2016b) proposed picture fuzzy

cross-entropy model for multiple attribute decision making problems. Wei (2017c) pro-

posed some aggregating operators for picture fuzzy set. Wei et al. (2016a) defined the

projection models for multiple attribute decision making with picture fuzzy information.

Wei (2017e) developed some cosine similarity measures for picture fuzzy sets. Wei (2018)

proposed some picture 2-tuple linguistic aggregation operators for multiple attribute de-

cision making. Wei (2017b) developed some picture 2-tuple linguistic Bonferroni mean

operators for multiple attribute decision making. Wu and Wei (2017) gave some picture

uncertain linguistic aggregation operators for multiple attribute decision making.

The similarity measure is one of the important and useful tools for degree of similar-

ity between objects (see Szmidt and Kacprzyk, 2000; Liu, 2005; Hung and Yang, 2007;

Xu and Xia, 2010; Ye, 2011; Tian, 2013; Rajarajeswari and Uma, 2013; Szmidt, 2014; Ye,

2016b). Functions expressing the degree of similarity of items or sets are used in physical

anthropology, automatic classification, ecology, psychology, citation analysis, information

retrieval, patterns recognition and numerical taxonomy (Ye, 2012b). In fact, the degree of

similarity or dissimilarity between the objects under study plays an important role. In

vector space, especially the Jaccard, Dice, and cosine similarity measures (Jaccard, 1901;

Dice, 1945a; Salton and McGill, 1987) are often used in information retrieval, citation

analysis, and automatic classification. Therefore, Ye (2012b) proposed the Jaccard, Dice,

and cosine similarity measures between trapezoidal intuitionistic fuzzy numbers (TIFNs)

and applied them to group decision-making problems. Ye (2012a) proposed the multi-

criteria decision making models by using the Dice similarity measure between expected

intervals of trapezoidal fuzzy numbers. Ye (2014) developed the Dice measures for sim-

plified neutrosophic sets. Ye (2016a) proposed the generalized Dice measures for multiple

attribute decision making under simplified neutrosophic environments.

However, these similarity measures do not deal with the similarity measures for pic-

ture fuzzy information. Therefore, it is necessary to extend the Dice measure to picture

fuzzy set to handle patterns recognition, citation analysis, information retrieval and mul-

tiple attribute decision making problems to satisfy the requirements of decision makers’

preference and flexible decision making. In order to do so, the main purposes of this paper

are: (1) to propose two forms of the Dice measures of PFSs, (2) to present the generalized

Dice measures of PFSs, and (3) to develop the generalized Dice measures-based patterns

recognition methods with picture fuzzy information. In the patterns recognition process,

the main advantage of the proposed methods is more general and more flexible than ex-

isting patterns recognition methods with picture fuzzy information to satisfy the practical

requirements.

In order to do so, the remainder of this paper is set out as follows. In the next section,

we introduce some basic concepts related to intuitionistic fuzzy set and picture fuzzy sets.
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In Section 3, we shall propose some Dice similarity measure and some weighted Dice

similarity measure between PFSs. In Section 4, the Dice similarity measures for PFSs are

applied to building material recognition and minerals field recognition. Section 5 con-

cludes the paper with some remarks.

2. Preliminaries

In the following, we introduce some basic concepts related to intuitionistic fuzzy sets and

picture fuzzy sets.

Definition 1 (Atanassov, 1986, 1989). An IFS is given by

A =
{〈

x,µA(x), νA(x)
〉 ∣

∣ x ∈ X
}

, (1)

where µA : X → [0,1] and νA : X → [0,1], where, 0 6 µA(x) + νA(x) 6 1, ∀x ∈ X.

The number µA(x) and νA(x) represents, respectively, the membership degree and non-

membership degree of the element x to the set A.

Definition 2 (Atanassov, 1986, 1989). For each IFS A in X, if

πA(x) = 1 − µA(x) − νA(x), ∀x ∈ X. (2)

Then πA(x) is called the degree of indeterminacy of x to A.

Although Atanassov’s intuitionistic fuzzy set theory (Atanassov, 1986, 1989) has been

successfully applied in different areas, there are situations in real life which cannot be rep-

resented by Atanassov’s intuitionistic fuzzy sets. Picture fuzzy sets (Cuong, 2013) are an

extension of Atanassov’s intuitionistic fuzzy sets (Atanassov, 1986, 1989). Picture fuzzy

set (Cuong, 2013) based models may be adequate in situations when we face human opin-

ions involving more answers of types: yes, abstain, no, refusal. It can be considered as a

powerful tool representing the uncertain information in the process of patterns recognition

and cluster analysis.

Definition 3 (Cuong, 2013). A picture fuzzy set (PFS) A on the universe is X an object

of the form

A =
{〈

x,µA(x), ηA(x), νA(x)
〉 ∣

∣ x ∈ X
}

, (3)

where µA(x) ∈ [0,1] is called the “degree of positive membership of A”, ηA(x) ∈ [0,1]

is called the “degree of neutral membership of A” and ηA(x) ∈ [0,1] is called the “degree

of negative membership of A”, and µA(x), ηA(x), νA(x), satisfy the following condition:

0 6 µA(x)+ηA(x)+νA(x)6 1, ∀x ∈ X. Then for x ∈ X, ρA(x) = 1−(µA(x)+ηA(x)+

νA(x)) could be called the degree of refusal membership of x in A.
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3. Some Dice Similarity Measures for Picture Fuzzy Sets

The Dice similarity measure cannot be computed in this undefined situation when one

vector is zero, which overcomes the disadvantage of the cosine similarity measure (Dice,

1945b). Therefore, the concept of the Dice similarity measure is introduced in this section

(Dice, 1945b).

Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) be two vectors of length where all

the coordinates are positive real numbers. Then the Dice similarity measure [41] is defined

as follows:

D(X,Y ) =
2X · Y

‖X‖2

2
+ ‖Y‖2

2

=
2
∑n

j=1
xjyj

∑n
j=1

x2

j +
∑n

j=1
y2

j

(4)

where X · Y =
∑n

j=1
xjyj is called the inner product of the vector X and Y and ‖X‖2 =

√

∑n
j=1

x2

j and ‖Y‖2 =

√

∑n
j=1

y2

j are the Euclidean norms of X and Y (also called the

L2 norms).

The Dice similarity measure takes value in the interval [0,1]. However, it is undefined

if xj = yj = 0 (j = 1,2, . . . , n). In this case, let the Dice measure value be zero when

xj = yj = 0 (j = 1,2, . . . , n).

3.1. Dice Similarity Measures for Picture Fuzzy Sets

Let A be an PFS in an universe of discourse X = {x}, the PFS is characterized by the

degree of positive membership µA(x), the degree of neutral membership ηA(x) and the

degree of negative membership νA(x) which can be considered as a vector representation

with the three elements.

In this section, we shall propose some Dice similarity measures and some weighted

Dice similarity measures between PFSs based on the concept of the Dice similarity mea-

sure (Ye, 2014, 2016a).

Let A = (µA(xj ), ηA(xj ), νA(xj )) and B = (µB(xj ), ηB(xj ), νB(xj )), j =

1,2, . . . , n, be two groups of picture fuzzy numbers, a Dice similarity measure between

PFSs A and B is proposed as follows:

D1

PFS(A,B) =
1

n

n
∑

j=1

2(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))
.

(5)

The Dice similarity measure between PFSs A and B also satisfies the following prop-

erties:

(1) 0 6 D1

PFS(A,B) 6 1;

(2) D1

PFS(A,B) = D1

PFS(B,A);

(3) D1

PFS(A,B) = 1 if A = B i.e. µA(xj ) = µB(xj ), ηA(xj ) = ηB(xj ), νA(xj ) =

νB(xj ), j = 1,2, . . . , n.
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Proof. (1) Let us consider the j th item of the summation in Eq. (5):

D1

PFS(Aj ,Bj )

=
1

n

n
∑

j=1

2(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))
.

It is obvious that D1

PFS(A,B) > 0, and

(

µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )
)

+
(

µ2

B(xj ) + η2

B(xj ) + ν2

B(xj )
)

> 2
(

µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj )
)

according to the inequality a2 + b2 > 2ab. Thus, 0 6 D1

PFS(Aj ,Bj ) 6 1. From Eq. (5),

the summation of n terms is 0 6 D1

PFS(A,B)6 1.

(2) It is obvious that the proposition is true.

(3) When A = B , there are µA(xj ) = µB(xj ), ηA(xj ) = ηB(xj ), and νA(xj ) =

νB(xj ), for j = 1,2, . . . , n. So, there is

D1

PFS(A,B)

=
1

n

n
∑

j=1

2(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))

=
1

n

n
∑

j=1

2(µA(xj )µA(xj ) + ηA(xj )ηA(xj ) + νA(xj )νA(xj ))

(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ))

=
1

n

n
∑

j=1

2(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ))

2(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ))

= 1.

Therefore, we have finished the proofs. �

If we consider the weights of xj , a weighted Dice similarity measure between PFSs A

and B is proposed as follows:

WD1

PFS(A,B)

=

n
∑

j=1

ωj

2(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))
, (6)

where ω = (ω1,ω2, . . . ,ωn)
T is the weight vector of xj (j = 1,2, . . . , n), with wj ∈ [0,1],

j = 1,2, . . . , n,
∑n

j=1
wj = 1.
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In particular, if ω = ( 1

n
, 1

n
, . . . , 1

n
)T , then the weighted Dice similarity measure reduces

to Dice similarity measure. That’s to say, if we take ωj = 1

n
, j = 1,2, . . . , n, then there

is WD1

PFS(A,B) = D1

PFS(A,B). Obviously, the weighted Dice similarity measure of two

PFSs A and B also satisfies the following properties:

(1) 0 6 WD1

PFS(A,B)6 1;

(2) WD1

PFS(A,B) = WD1

PFS(B,A);

(3) WD1

PFS(A,B) = 1 if A = B i.e. µA(xj ) = µB(xj ), ηA(xj ) = ηB(xj ), νA(xj ) =

νB(xj ), j = 1,2, . . . , n.

Similar to the previous proof method, we can prove the above three properties.

When the four terms like degree of positive membership, degree of neutral member-

ship, degree of negative membership and degree of refusal membership are considered

in PFSs, we further propose the Dice similarity measure and weighted Dice similarity

measure between PFSs as follows:

D2

PFS(A,B)

=
1

n

n
∑

j=1

2(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ) + ρA(xj )ρB(xj ))
(

(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ) + ρ2

A(xj ))

+(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ) + ρ2

B(xj ))

)
,

(7)

WD2

PFS(A,B)

=

n
∑

j=1

ωj

2(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ) + ρA(xj )ρB(xj ))
(

∑n
j=1

(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ) + ρ2

A(xj ))

+
∑n

j=1
(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ) + ρ2

B(xj )))

) ,

(8)

where ω = (ω1,ω2, . . . ,ωn)
T is the weight vector of xj (j = 1,2, . . . , n), with ωj ∈ [0,1],

j = 1,2, . . . , n,
∑n

j=1
ωj = 1.

3.2. Another Form of the Dice Similarity Measure for Picture Fuzzy Sets

In this section, we shall develop another form of Dice similarity measure for picture fuzzy

sets, which is defined as follows.

Definition 4. Let A = (µA(xj ), ηA(xj ), νA(xj )) and B = (µB(xj ), ηB(xj ), νB(xj )),

j = 1,2, . . . , n, be two groups of picture fuzzy numbers, then a Dice similarity measure

between PFSs A and B is proposed as follows:

D3

PFS(A,B)

=

∑n
j=1

2(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))
∑n

j=1
(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) +
∑n

j=1
(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))
.

(9)
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The Dice similarity measure between PFSs A and B also satisfies the following prop-

erties:

(1) 0 6 D3

PFS(A,B) 6 1;

(2) D3

PFS(A,B) = D3

PFS(B,A);

(3) D3

PFS(A,B) = 1 if A = B , i.e. µA(xj ) = µB(xj ), ηA(xj ) = ηB(xj ), νA(xj ) =

νB(xj ), j = 1,2, . . . , n.

Similar to the previous proof method, we can prove the above three properties.

If we consider the weights of xj , a weighted Dice similarity measure between PFSs A

and B is proposed as follows:

WD3

PFS(A,B)

=
2
∑n

j=1
ω2

j (µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))
∑n

j=1
ω2

j (µ
2

A(xj ) + η2

A(xj ) + ν2

A(xj )) +
∑n

j=1
ω2

j (µ
2

B(xj ) + η2

B(xj ) + ν2

B(xj ))
,

(10)

where ω = (ω1,ω2, . . . ,ωn)
T is the weight vector of xj (j = 1,2, . . . , n), with wj ∈

[0,1], j = 1,2, . . . , n,
∑n

j=1
wj = 1. In particular, ω = (ω1,ω2, . . . ,ωn)

T , then the

weighted Dice similarity measure reduces to Dice similarity measure. That’s to say, if

we take ωj = 1

n
, j = 1,2, . . . , n, then there is WD3

PFS(A,B) = D3

PFS(A,B).

Obviously, the weighted Dice similarity measure of two PFSs A and B also satisfies

the following properties:

(1) 0 6 WD3

PFS(A,B) 6 1;

(2) WD3

PFS(A,B) = WD3

PFS(B,A);

(3) WD3

PFS(A,B) = 1 if A = B i.e. µA(xj ) = µB(xj ), ηA(xj ) = ηB(xj ), νA(xj ) =

νB(xj ), j = 1,2, . . . , n.

When the four terms like degree of positive membership, degree of neutral member-

ship, degree of negative membership and degree of refusal membership are considered in

PFSs, we further propose the another form of Dice similarity measure and weighted Dice

similarity measure between PFSs as follows:

D4

PFS(A,B)

=
2
∑n

j=1
(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ) + ρA(xj )ρB(xj ))

(

∑n
j=1

(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ) + ρ2

A(xj ))

+
∑n

j=1
(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ) + ρ2

B(xj ))

) ,

(11)

WD4

PFS(A,B)

=
2
∑n

j=1
ω2

j (µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ) + ρA(xj )ρB(xj ))
(

∑n
j=1

ω2

j (µ
2

A(xj ) + η2

A(xj ) + ν2

A(xj ) + ρ2

A(xj ))

+
∑n

j=1
ω2

j (µ
2

B(xj ) + η2

B(xj ) + ν2

B(xj ) + ρ2

B(xj ))

) ,

(12)
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where ω = (ω1,ω2, . . . ,ωn)
T is the weight vector of xj (j = 1,2, . . . , n), with ωj ∈ [0,1],

j = 1,2, . . . , n,
∑n

j=1
ωj = 1.

3.3. The Generalized Dice Similarity Measure for Picture Fuzzy Sets

In this section, we develop the generalized Dice similarity measure for picture fuzzy sets.

As the generalization of the Dice similarity measure for picture fuzzy sets, the generalized

Dice similarity measure for picture fuzzy sets are defined below.

Definition 5. Let A = (µA(xj ), ηA(xj ), νA(xj )) and B = (µB(xj ), ηB(xj ), νB(xj )),

j = 1,2, . . . , n, be two groups of picture fuzzy numbers, then the generalized Dice simi-

larity measure between PFSs A and B is defined as follows:

GD1

PFS(A,B)

=
1

n

n
∑

j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

λ(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))
,

(13)

GD2

PFS(A,B)

=

∑n
j=1

(µA(xj )µB (xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

λ
∑n

j=1
(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)
∑n

j=1
(µ2

B (xj ) + η2

B(xj ) + ν2

B(xj ))
,

(14)

where λ is a positive parameter for 0 6 λ6 1.

Then, the generalized Dice similarity measure includes some special cases by altering

the parameter value λ.

If λ = 0.5, the two generalized Dice similarity measures (13) and (14) reduced to Dice

similarity measures (9) and (10):

GD1

PFS(A,B)

=
1

n

n
∑

j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

λ(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))

=
1

n

n
∑

j=1

(µA(xj )µB (xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

0.5(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − 0.5)(µ2

B (xj ) + η2

B(xj ) + ν2

B(xj ))

=
1

n

n
∑

j=1

2(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))
, (15)
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GD2

PFS(A,B)

=

∑n
j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

λ
∑n

j=1
(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)
∑n

j=1
(µ2

B(xj ) + η2

B (xj ) + ν2

B (xj ))

=

∑n
j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

0.5
∑n

j=1
(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − 0.5)
∑n

j=1
(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))

=
2
∑n

j=1
(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

∑n
j=1

(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) +
∑n

j=1
(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))
.

(16)

If λ = 0,1, the two generalized Dice similarity measures reduced to the following

asymmetric similarity measures respectively:

GD1

PFS(A,B)

=
1

n

n
∑

j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

λ(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))

=
1

n

n
∑

j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

µ2

B(xj ) + η2

B(xj ) + ν2

B(xj )
for λ = 0, (17)

GD1

PFS(A,B)

=
1

n

n
∑

j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

λ(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))

=
1

n

n
∑

j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )
for λ = 1, (18)

GD2

PFS(A,B)

=

∑n
j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

λ
∑n

j=1
(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)
∑n

j=1
(µ2

B(xj ) + η2

B (xj ) + ν2

B (xj ))

=

∑n
j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))
∑n

j=1
(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))
for λ = 0, (19)

GD2

PFS(A,B)

=

∑n
j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

λ
∑n

j=1
(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)
∑n

j=1
(µ2

B(xj ) + η2

B (xj ) + ν2

B (xj ))
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=

∑n
j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))
∑n

j=1
(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ))
for λ = 1. (20)

From above analysis, it can be seen that the above four asymmetric similarity measures

are the extension of the relative projection measure of the picture fuzzy numbers.

In many situations, the weight of the elements xj ∈ X should be taken into account.

For example, in multiple attribute decision making, the considered attributes usually have

different importance, and thus need to be assigned different weights. Thus, we further

propose the following two weighted generalized Dice similarity measures for PFSs, re-

spectively, as follows:

WD1

PFS(A,B)

=

n
∑

j=1

ωj

µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj )

λ(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))
,

(21)

WD2

PFS(A,B)

=

∑n
j=1

ω2

j (µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))
(

λ
∑n

j=1
ω2

j (µ
2

A(xj ) + η2

A(xj ) + ν2

A(xj ))

(1 − λ)
∑n

j=1
ω2

j (µ
2

B(xj ) + η2

B(xj ) + ν2

B(xj ))

) , (22)

where ω = (ω1,ω2, . . . ,ωn)
T is the weight vector of xj (j = 1,2, . . . , n), with ωj ∈ [0,1],

j = 1,2, . . . , n,
∑n

j=1
ωjwj = 1. In particular, ω = (ω1,ω2, . . . ,ωn)

T , then the weighted

Dice similarity measure reduces to Dice similarity measure. That’s to say, if we take ωj =
1

n
, j = 1,2, . . . , n, then there is WGD1

PFS(A,B) = D1

PFS(A,B), WGD2

PFS(A,B) =

GD2

PFS(A,B).

Then, the weighted generalized Dice similarity measure includes some special cases

by altering the parameter value λ. If λ = 0.5, the two weighted generalized Dice similarity

measures (21) and (22) reduced to weighted Dice similarity measures (6) and (10):

WD1

PFS(A,B)

=

n
∑

j=1

ωj

µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj )

λ(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))

=

n
∑

j=1

ωj

µA(xj )µB (xj ) + ηA(xj )ηB (xj ) + νA(xj )νB (xj )

0.5(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − 0.5)(µ2

B (xj ) + η2

B(xj ) + ν2

B (xj ))

=

n
∑

j=1

ωj

2(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))
, (23)
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WD2

PFS(A,B)

=

∑n
j=1

ω2

j (µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB (xj ))

λ
∑n

j=1
ω2

j (µ
2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)
∑n

j=1
ω2

j (µ
2

B(xj ) + η2

B(xj ) + ν2

B(xj ))

=

∑n
j=1

ω2

j (µA(xj )µB (xj ) + ηA(xj )ηB (xj ) + νA(xj )νB (xj ))

0.5
∑n

j=1
ω2

j (µ
2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − 0.5)
∑n

j=1
ω2

j (µ
2

B (xj ) + η2

B (xj ) + ν2

B (xj ))

=
2
∑n

j=1
ω2

j (µA(xj )µB (xj ) + ηA(xj )ηB (xj ) + νA(xj )νB (xj ))
∑n

j=1
ω2

j (µ
2

A(xj ) + η2

A(xj ) + ν2

A(xj )) +
∑n

j=1
ω2

j (µ
2

B (xj ) + η2

B(xj ) + ν2

B(xj ))
.

(24)

If λ = 0,1, the two weighted generalized Dice similarity measures reduced to the fol-

lowing asymmetric weighted similarity measures respectively:

WGD1

PFS(A,B)

=

n
∑

j=1

ωj

µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj )

λ(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))

=

n
∑

j=1

ωj

µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj )

µ2

B(xj ) + η2

B(xj ) + ν2

B(xj )
for λ = 0, (25)

WGD1

PFS(A,B)

=

n
∑

j=1

ωj

µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj )

λ(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ))

=

n
∑

j=1

ωj

µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj )

µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )
for λ = 1, (26)

WGD2

PFS(A,B)

=

∑n
j=1

ω2

j (µA(xj )µB (xj ) + ηA(xj )ηB (xj ) + νA(xj )νB(xj ))

λ
∑n

j=1
ω2

j (µ
2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)
∑n

j=1
ω2

j (µ
2

B (xj ) + η2

B(xj ) + ν2

B (xj ))

=

∑n
j=1

ω2

j (µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

µ2

B(xj ) + η2

B(xj ) + ν2

B(xj )
for λ = 0, (27)

WGD2

PFS(A,B)

=

∑n
j=1

ω2

j (µA(xj )µB (xj ) + ηA(xj )ηB (xj ) + νA(xj )νB(xj ))

λ
∑n

j=1
ω2

j (µ
2

A(xj ) + η2

A(xj ) + ν2

A(xj )) + (1 − λ)
∑n

j=1
ω2

j (µ
2

B (xj ) + η2

B(xj ) + ν2

B (xj ))

=

∑n
j=1

ω2

j (µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ))

µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )
for λ = 1. (28)
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From above analysis, it can be seen that the above four asymmetric weighted similar-

ity measures are the extension of the relative weighted projection measure of the picture

fuzzy numbers. When the four terms like degree of positive membership, degree of neutral

membership, degree of negative membership and degree of refusal membership are con-

sidered in PFSs, we further propose the generalized Dice similarity measure and weighted

generalized Dice similarity measure between PFSs as follows:

GD3

PFS(A,B)

=
1

n

n
∑

j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ) + ρA(xj )ρB(xj ))
(

λ(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ) + ρ2

A(xj ))

+(1 − λ)(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ) + ρ2

B(xj ))

) ,

(29)

GD4

PFS(A,B)

=

∑n
j=1

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ) + ρA(xj )ρB(xj ))
(

λ
∑n

j=1
(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ) + ρ2

A(xj ))

+(1 − λ)
∑n

j=1
(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ) + ρ2

B(xj ))

) ,

(30)

WGD3

PFS(A,B)

=

n
∑

j=1

ωj

(µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ) + ρA(xj )ρB(xj ))
(

λ(µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ) + ρ2

A(xj ))

+(1 − λ)(µ2

B(xj ) + η2

B(xj ) + ν2

B(xj ) + ρ2

B(xj ))

)
,

(31)

WGD4

PFS(A,B)

=

∑n
j=1

ω2

j (µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj ) + ρA(xj )ρB(xj ))
(

λ
∑n

j=1
ω2

j (µ
2

A(xj ) + η2

A(xj ) + ν2

A(xj ) + ρ2

A(xj ))

+(1 − λ)
∑n

j=1
ω2

j (µ
2

B(xj ) + η2

B(xj ) + ν2

B(xj ) + ρ2

B(xj ))

) ,

(32)

where ω = (ω1,ω2, . . . ,ωn)
T is the weight vector of xj (j = 1,2, . . . , n), with ωj ∈ [0,1],

j = 1,2, . . . , n,
∑n

j=1
wj = 1, and λ is a positive parameter for 0 6 λ 6 1.

4. Applications

In this section, the Dice similarity measures for PFSs are applied to building material

recognition (adapted from Xu and Cai, 2008). Let us consider four building materials:

sealant, floor varnish, wall paint and polyvinyl chloride flooring, which are represented
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Table 1

The data on building materials.

A1 A2 A3 A4 A

x1 (0.17,0.53,0.13) (0.51,0.24,0.21) (0.31,0.39,0.25) (1.00,0.00,0.00) (0.91,0.03,0.05)

x2 (0.89,0.08,0.03) (0.13,0.64,0.21) (0.07,0.09,0.05) (0.74,0.16,0.10) (0.68,0.08,0.21)

x3 (0.53,0.33,0.09) (1.00,0.00,0.00) (0.91,0.03,0.02) (0.85,0.09,0.05) (0.90,0.05,0.02)

x4 (0.89,0.08,0.03) (0.13,0.64,0.21) (0.07,0.09,0.05) (0.74,0.16,0.10) (0.68,0.08,0.21)

x5 (0.42,0.35,0.18) (0.03,0.82,0.13) (0.04,0.85,0.10) (0.02,0.89,0.05) (0.05,0.87,0.06)

x6 (0.08,0.89,0.02) (0.73,0.15,0.08) (0.68,0.26,0.06) (0.08,0.84,0.06) (0.13,0.75,0.09)

x7 (0.33,0.51,0.12) (0.52,0.31,0.16) (0.15,0.76,0.07) (0.16,0.71,0.05) (0.15,0.73,0.08)

Table 2

The generalized Dice similarity measures of Eq. (21) and ranking orders.

λ WGD(A1,B) WGD(A1,B) WGD(A1,B) WGD(A1,B) Ranking orders

0 0.658 0.675 0.708 1.059 A4 ≻ A3 ≻ A2 ≻ A1

0.2 0.661 0.700 0.726 1.027 A4 ≻ A3 ≻ A2 ≻ A1

0.5 0.688 0.749 0.767 0.988 A4 ≻ A3 ≻ A2 ≻ A1

0.7 0.726 0.791 0.816 0.967 A4 ≻ A3 ≻ A2 ≻ A1

1.0 0.834 0.883 1.521 0.939 A3 ≻ A4 ≻ A2 ≻ A1

Table 3

The generalized Dice similarity measures of Eq. (22) and ranking orders.

λ WGD(A1,B) WGD(A1,B) WGD(A1,B) WGD(A1,B) Ranking orders

0 0.604 0.713 0.754 1.055 A4 ≻ A3 ≻ A2 ≻ A1

0.2 0.633 0.743 0.794 1.027 A4 ≻ A3 ≻ A2 ≻ A1

0.5 0.683 0.792 0.860 0.988 A4 ≻ A3 ≻ A2 ≻ A1

0.7 0.722 0.829 0.911 0.964 A4 ≻ A3 ≻ A2 ≻ A1

1.0 0.788 0.891 1.001 0.930 A3 ≻ A4 ≻ A2 ≻ A1

by the PFSs Ai (i = 1,2,3,4) in the feature space X = {x1, x2, x3, x4, x5, x6, x7}. The

weight vector of xi (i = 1,2, . . . ,7) is:

w = (0.12,0.15,0.09,0.16,0.20,0.10,0.18)T .

Now, we consider another kind of unknown building material A, with data as listed

in Table 1. Based on the weight vector w and the data in Table 1, we can use the above

similarity measures to identify to which type the unknown material A belongs.

According to Eqs. (21), (22), (31), (32) and different values of the parameter λ, the

weighted generalized Dice measure values between Ai (i = 1,2,3,4) can be obtained,

which are shown in Tables 2, 3, 4 and 5 respectively.

From the Tables 2, 3, 4 and 5, different ranking orders are shown by taking different

values of λ and different Dice similarity measures. Then the building material A should

belong to the class of building material A3 or A4 according to the principle of the maxi-

mum degree of Dice similarity measures between PFSs.
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Table 4

The generalized Dice similarity measures of Eq. (31) and ranking orders.

λ WGD(A1,B) WGD(A1,B) WGD(A1,B) WGD(A1,B) Ranking orders

0 0.658 0.676 0.715 1.059 A4 ≻ A3 ≻ A2 ≻ A1

0.2 0.661 0.700 0.727 1.027 A4 ≻ A3 ≻ A2 ≻ A1

0.5 0.688 0.745 0.752 0.988 A4 ≻ A3 ≻ A2 ≻ A1

0.7 0.724 0.786 0.776 0.966 A4 ≻ A2 ≻ A3 ≻ A1

1.0 0.827 0.870 0.832 0.938 A4 ≻ A2 ≻ A3 ≻ A1

Table 5

The generalized Dice similarity measures of Eq. (32) and ranking orders.

λ WGD(A1,B) WGD(A1,B) WGD(A1,B) WGD(A1,B) Ranking orders

0 0.604 0.714 0.760 1.055 A4 ≻ A3 ≻ A2 ≻ A1

0.2 0.633 0.743 0.773 1.027 A4 ≻ A3 ≻ A2 ≻ A1

0.5 0.682 0.790 0.794 0.988 A4 ≻ A3 ≻ A2 ≻ A1

0.7 0.719 0.825 0.809 0.963 A4 ≻ A2 ≻ A3 ≻ A1

1.0 0.783 0.884 0.831 0.929 A4 ≻ A2 ≻ A3 ≻ A1

Furthermore, for the special cases of the four generalized Dice measures we obtain the

following results:

◮ When λ = 0, the four weighted generalized Dice measures are reduced to the

weighted projection measures of Ai (i = 1,2,3,4) on A. Thus, the building material

A should belong to the class of building material A4 according to the principle of the

maximum degree of Dice similarity measures between PFSs.

◮ When λ = 0, the four weighted generalized Dice measures are reduced to the

weighted Dice similarity measures of Ai (i = 1,2,3,4) on A. Thus, the building ma-

terial A should belong to the class of building material A4 according to the principle of

the maximum degree of Dice similarity measures between PFSs.

◮ When λ = 0, the four weighted generalized Dice measures are reduced to the

weighted projection measures of Ai (i = 1,2,3,4) on A. Thus, the building material

A should belong to the class of building material A3 or A4 according to the principle of

the maximum degree of Dice similarity measures between PFSs.

Therefore, according to different Dice similarity measures and different values of the

parameter λ, ranking orders may be also different. Thus the proposed patterns recognition

methods can be assigned some value of λ and some measure to satisfy the real require-

ments.

Obviously, the patterns recognition methods based on the Dice measures and the pro-

jection measures are the special cases of the proposed patterns recognition models based

on generalized Dice measures. Therefore, in the patterns recognition process, the patterns

recognition models developed in this paper are more general and more flexible than exist-

ing patterns recognition models under picture fuzzy environment.
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5. Conclusion

The picture fuzzy set is characterized by three functions expressing the degree of mem-

bership, the degree of neutral membership and the degree of non-membership. It was pro-

posed as a generalization of an intuitionistic fuzzy set in order to deal with indeterminate

and inconsistent information. In this work, we shall present some novel Dice similarity

measures of picture fuzzy sets and the generalized Dice similarity measures of picture

fuzzy sets and indicate that the Dice similarity measures and asymmetric measures (pro-

jection measures) are the special cases of the generalized Dice similarity measures in some

parameter values. Then, we propose the generalized Dice similarity measures-based pat-

terns recognition models with picture fuzzy information. Then, we apply the generalized

Dice similarity measures between picture fuzzy sets to building material recognition. Fi-

nally, an illustrative example is given to demonstrate the efficiency of the similarity mea-

sures for building material recognition. In the future, the application of the proposed Dice

similarity measure of PFSs needs to be explored in decision making, risk analysis and

many other fields under uncertain environment (see Wei et al., 2017a; Wei and Lu, 2018;

Wei et al., 2017c; Zeng et al., 2016; Lu et al., 2017b; Zhang and Xu, 2014; Lu et al., 2017a;

Zeng et al., 2017; Wei et al., 2017b; Hu et al., 2013; Peng and Yang, 2015; Wei, 2016a;

Xu and Ma, 2016; Wei et al., 2016b; Garg, 2016; Wei, 2017e; Wei and Lu, 2017;

Wei, 2017d; Wei, 2017a; Wei and Wang, 2017).
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