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Abstract. In this paper, one method for training the Support Vector Regression (SVR) machine in

the complex data field is presented, which takes into account all the information of both the real

and imaginary parts simultaneously. Comparing to the existing methods, it not only considers the

geometric information of the complex-valued data, but also can be trained with the same amount

of computation as the original SVR in the real data field. The accuracy of the proposed method is

analysed by the simulation experiments. This also can be applied to the field of anti-interference for

satellite navigation successfully, which shows its effectiveness in practical application.
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1. Introduction

Support Vector Machine (SVM) is a high-performancemachine learning algorithm, which

was introduced by Vapnik in the early 1990s (Ramón and Christodoulou, 2006). SVM has

been proved to have excellent performances in addressing non-linear regression problems

due to the robustness against noise and interferences. In the application of SVM, there is

a kind of important model that is commonly known as SVR (Ramón and Christodoulou,

2006).

The original SVR is targeted to treat real numbers. The SVRs in complex data field

are also desired in some field, such as the beam forming (Ramón et al., 2005; Gaudes

et al., 2007) and pattern recognition (Scholkopf and Smola, 2002; Chen and Xie, 2005).

The main method for processing the complex-valued SVR model is using two separate

processes for the real and imaginary parts (Bouboulis and Theodoridis, 2011) respectively,

which misses the cross-information of the real and imaginary parts of a complex number.

Currently, Kernel-based methods have been employed to solve nonlinear tasks for

SVRs. The key method is Reproducing Kernel Hilbert Spaces (RKHS). Wintinger’s calcu-

lus on complex RKHS was developed in dissertations (Bouboulis et al., 2013, 2015). It was

also proved that a complex SVM/SVR task is equivalent to solving two real SVM/SVR
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tasks by exploiting a specific real kernel. In Bouboulis et al. (2012), the authors intro-

duced how to use RHKS to solve the problem in complex data field. Different from the

above-mentioned methods, we propose a model, which not only considers the geometric

information of the complex-valued data, but also can be trained with the same amount of

computation as the original SVR in the real data field. The proposed method also has no

more additional requests for kernel function than the original SVR in real data field.

The paper is organized as follows. In Section 2, the main contributions of the paper are

presented, where the model of complex SVR and the training algorithms for the model are

proposed in details. In Section 3, experiments are carried out to demonstrate the perfor-

mance of the proposed method, and the method is applied to anti-jamming field. Finally,

the paper is concluded in Section 4.

2. Complex-Valued SVR Model

In this section, a complex SVR model and the corresponding solving algorithms are pro-

posed. Firstly, the complex-valued original problem of SVR is introduced. Secondly, the

dual problem is derived. Thirdly, Karush–Kuhn–Tucker (KKT) conditions are obtained.

Finally, the solution of the original problem is achieved by solving the dual problem.

The following notations are used in this paper. The superscripts H and T denote her-

mitian transposition and transposition. ‖ · ‖ is the Euclidean vector norm. Re(.) and Im(.)

denote the real and imaginary part of a complex number, respectively. | · | denotes modu-

lus of a complex data. In particular, when the imaginary part of the complex data is equal

to zero, | · | denotes absolute value.

2.1. Model Building

The real-valued SVR can be obtained by solving the following optimization problem

(Ramón and Christodoulou, 2006):

min
w

1

2
‖w‖2 + P

l
∑

i=1

(ξi + ξ ′
i ). (1)

Subject to the constraints

yi −
(

wT xi + b
)

6 ε + ξi ,
(

wT xi + b
)

− yi 6 ε + ξi
′, (2)

ξi , ξi
′ > 0

for i = 1,2, . . . , l, where {(x1, y1), . . . , (xl, yl)} is the training set and xi ∈ Rn, w ∈ Rn,

yi ∈ R. P is a penalty factor. ε is the insensitive loss factor. ξi and ξi
′ are the slack variables

of the output. P , ε, ξi and ξ ′
i are all real numbers. In the formula (1), the optimal value can

be obtained by finding the optimal value of its dual problem. According to the principle of
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real-valued SVR, an SVR model in complex field is built and the corresponding solution

method is proposed. In order to simplify the expression, ‘Subject to the constraints’ will

be abbreviated to ‘s.t.’. The corresponding complex SVR task is formulated and expressed

as

min
1

2
‖w‖2 + C1

l
∑

i=1

(ξi + ξi
′) + C2

l
∑

i=1

(ηi + ηi
′),

Re
(

yi −
(

wT xi + b
))

6 ε + ξi ,

Re
((

wT xi + b
)

− yi

)

6 ε + ξi
′, (3)

s.t. Im
(

yi −
(

wT xi + b
))

6 ε + ηi, i = 1,2, . . . , l,

Im
((

wT xi + b
)

− yi

)

6 ε + η′
i ,

ξi , ξ
′
i , ηi, η

′
i > 0

where xi ∈ Cn, w ∈ Cn, yi ∈ C. C1 and C2 are the penalty factor of the real and imaginary

parts. ε is the insensitive loss factor. ξi and ξi
′ are the slack variables in the real part of the

output, and the corresponding ηi and ηi
′ are in the imaginary part. C1, C2, ε, ξi , ξi

′, ηi

and ηi
′ are all real numbers. The formula (3) is a complex-valued quadratic programming

problem, which also can be solved by solving its dual problem.

2.2. Dual Problem

The Lagrange function of the equation (3) can be expressed as

Lp =
1

2
‖w‖2 + C1

l
∑

i=1

(ξi + ξi
′) + C2

l
∑

i=1

(ηi + ηi
′)

−

l
∑

i=1

(γiξi + γi
′ξi

′) −

l
∑

i=1

(κiηi + κi
′ηi

′)

+

l
∑

i=1

αi

[

Re
(

yi − wT xi − b
)

− ε − ξi

]

+

l
∑

i=1

α∗
i

[

Re
(

− yi + wT xi + b
)

− ε − ξi
′
]

+

l
∑

i=1

β
i

[

Im
(

yi − wT xi − b
)

− ε − ηi

]

+

l
∑

i=1

β∗
i

[

Im
(

− yi + wT xi + b
)

− ε − ηi
′
]

, (4)
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where αi , α∗
i , βi , β∗

i , γi , γ ′
i , κi and κ ′

i are the Lagrange multipliers. According to the dual

definition of Wolfe (Brandwood, 1983; Huang and Zhang, 2007), the partial derivatives

are:

∇w(Lp) = w −

l
∑

i=1

φix,

∇b(Lp) = −

l
∑

i=1

αi +

l
∑

i=1

α∗
i

− j

l
∑

i=1

βi + j

l
∑

i=1

β∗
i
.

For real variables, the gradients can be obtained in the traditional way:

∇ξi (Lp) = C1 − γi − αi , ∇ξi
′(Lp) = C1 − γi

′ − α∗
i ,

∇ηi (Lp) = C2 − κi − βi, ∇ηi
′(Lp) = C2 − κi

′ − β∗
i ,

where φi = (αi − α∗
i ) + j (βi − β∗

i ), for all i = 1,2, . . . , l. As all partial derivatives are

equal to zero for saddle point conditions, the following parameters can be obtained:

w =

l
∑

i=1

(

αi − α∗
i

)

+ j
(

βi − β∗
i

)

xi, (5)

l
∑

i=1

(

αi − α∗
i

)

=

l
∑

i=1

(

βi − β∗
i

)

= 0, (6)

C1 − γi − αi = 0, C1 − γi
′ − α∗

i = 0, (7)

C2 − κi − βi = 0, C2 − κi
′ − β∗

i = 0, (8)

for i = 1,2, . . . , l. Let λi = αi − α∗
i , ϕi = βi − β∗

i , then

φi = λi + jϕi . (9)

Accordingly to the equations (5)–(9), the dual problem of the equation (4) can be solved.

The solution can be presented as:

min
1

2

l
∑

i=1

l
∑

j=1

φH
i φj (xi, xj ) + ε

l
∑

i=1

(

|λi | + |ϕi|
)

− Re

[ l
∑

i=1

φH
i yi

]

,

s.t.

{ ∑l
i=1 φi = 0,

αi , αi∗, βi, βi∗> 0,
i = 1,2, . . . , l. (10)
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By introducing a kernel function K(xi, xj ): C × C → R, the dual problem can be ex-

pressed as:

min
1

2

l
∑

i=1

l
∑

j=1

φH
i φjK(xi, xj ) + ε

l
∑

i=1

(

|λi | + |ϕi |
)

− Re

[ l
∑

i=1

φH
i yi

]

,

s.t.

{

∑l
i=1 φi = 0

αi, αi∗, βi , βi∗> 0,
i = 1,2, . . . , l. (11)

The objective function can be expressed by λi and ϕi , and the formula as follows:

1

2

l
∑

i=1

l
∑

j=1

φH
i φjK(xi, xj ) + ε

l
∑

i=1

(

|λi | + |ϕi |
)

− Re

[ l
∑

i=1

φH
i yi

]

=
1

2

l
∑

i=1

l
∑

j=1

(λiλj + ϕiϕj )K(xi, xj ) + ε

l
∑

i=1

(

|λi | + |ϕi |
)

− Re

[ l
∑

i=1

λiyi

]

− Im

[ l
∑

i=1

ϕiyi

]

. (12)

Assume that the optimal solution of the dual problem (11) is ᾱ(∗) = (ᾱ1, ᾱ
∗
1
, . . . , ᾱl, ᾱ

∗
l )T

and β̄(∗) = (β̄1, β̄
∗
1
, . . . , β̄l, β̄

∗
l )T . The optimal solution of the primal problem can be ob-

tained:

w =

l
∑

i=1

(

ᾱi − ᾱ∗
i

)

+ j
(

β̄i − β̄∗
i

)

xi. (13)

If the training point is support vector on the boundary, then the threshold b̄ can be com-

puted:

b̄ = yj −

l
∑

i=1

φiK(xi, xj ) + (ε + jε). (14)

Finally, a support vector regression function in complex data field can be obtained:

f (x) =

l
∑

i=1

φiK(xi, x) + b̄. (15)
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2.3. KKT Conditions

Assume that the solution of the formula (11) is ᾱ(∗) and β̄(∗), then the KKT condition of

(3) can be given in formula (16).











































































































































































































Re

(

yi −

( l
∑

j=1

φjK(xj , xi) + b

))

6 ε + ξi,

Re

(( l
∑

j=1

φjK(xj , xi) + b

)

− yi

)

6 ε + ξi
′,

Im

(

yi −

( l
∑

j=1

φjK(xj , xi) + b

))

6 ε + ηi ,

Im

(( l
∑

j=1

φjK(xj , xi) + b

)

− yi

)

6 ε + ηi
′,

αi

{

ε + ξi − Re

[

yi −

l
∑

j=1

φjK(xj , xi) − b

]}

= 0,

α∗
i

{

ε + ξi
′ − Re

[

− yi +

l
∑

j=1

φjK(xj , xi) + b

]}

= 0,

βi

{

ε + ηi − Im

[

yi −

l
∑

j=1

φjK(xj , xi) − b

]}

= 0,

β∗
i

{

ε + ηi
′ − Im

[

− yi +

l
∑

j=1

φjK(xj , xi) + b

]}

= 0,

(C1 − αi)ξi = 0,
(

C1 − α∗
i

)

ξi
′ = 0,

(C2 − βi)ηi = 0,
(

C2 − β∗
i

)

ηi
′ = 0,

−ξi,−ξi
′,−ηi,−ηi

′ 6 0,

−αi,−α∗
i
,−βi,−β∗

i
6 0.

(16)

for all i = 1,2, . . . , l. Here, the inherent relationship among αi , α
∗
i , βi and β∗

i will be con-

sidered firstly.

Corollary 1. Let ᾱ(∗) and β̄(∗) be the solution of formula (11), and then we have

{

αiα
∗
i = 0,

βiβ
∗
i = 0.

(17)

Proof. The proof procedure is composed of two parts.
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In part 1, suppose αi ∈ (0,C1). Based on KKT conditions in (16), the following equa-

tions can be achieved:

αi

(

ε + ξi − Re

(

yi −

l
∑

j=1

φjK(xj , xi) − b

))

= 0,

(C1 − αi)ξi = 0. (18)

By calculation of equation (18), we have

Re

(

yi −

l
∑

j=1

φjK(xj , xi) − b

)

= ε,

ξi = 0. (19)

Through combination of formulas (16) and (19), the following expression can be obtained:

α∗
i

(

ε + ξi
′ + Re(yi − (w · xi) − b)

)

= 0, ξ ′
i > 0. (20)

Obviously, α∗
i = 0 can be deferred from equation (20).

In part 2, we suppose αi = C1. According to KKT conditions in (16), it is known that

ξi is an arbitrary value. And there are some cases as follows.

Part 2.1. Suppose ξi = 0 and according to part 1, it is easy to get α∗
i = 0.

Part 2.2. Suppose ξi 6= 0 (ξi > 0), then



































Re

(

− yi +

l
∑

j=1

φjK(xj , xi) + b

)

= −ε − ξi ,

α∗
i

(

ε + ξi
′ + Re

(

yi −

l
∑

j=1

φjK(xj , xi) − b

))

= 0,

ξ ′
i > 0.

(21)

By solving equation (21), α∗
i = 0 can also be obtained.

In summary, α∗
i αi = 0 is proved to be true. With the similar method, β∗

i βi = 0 can be

proved as well. �

According to the Corollary, we can analyse the distribution of the real and imaginary

parts of the sample points on the boundary. At the same time, in order to facilitate the

expression of the formula, a simple notation is introduced:

Ei = E(xi) = f (xi) − yi. (22)
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Therefore the complex domain KKT conditions can be expressed as:







































∣

∣Re(Ei)
∣

∣6 ε
(

|λi | = 0
)

,
∣

∣Re(Ei)
∣

∣ = ε
(

0 < |λi | < C1

)

,
∣

∣Re(Ei)
∣

∣> ε
(

|λi | = C1

)

,
∣

∣ Im(Ei)
∣

∣6 ε
(

|ϕi | = 0
)

,
∣

∣ Im(Ei)
∣

∣ = ε
(

0 < |ϕi | < C2

)

,
∣

∣ Im(Ei)
∣

∣> ε
(

|ϕi | = C2

)

.

(23)

The formula (11) can be solved by using SMO (Cristianini and Shawo-Taylor, 2005;

Yang and Tian, 2004) method.

2.4. SMO Algorithm

SMO algorithm is a special case of decomposing algorithm. The core of the algorithm

is to update two Lagrangian multipliers corresponding to two sample points at a time,

while others remain unchanged. In the complex domain, the Lagrangian multiplier vari-

ables corresponding to sample points (xi, yi) and (xj , yj ) are (λi, φi) and (λj , φj ). It is

important for SMO algorithm to choose the two appropriate training points and solve the

corresponding optimal problem with two Lagrangian multiplier variables. In the follow-

ing, these two problems are solved.

Firstly, suppose that there are already two training points (x1, y1) and (x2, y2). In order

to simplify the formula, let Kij = K(xi, xj ). Therefore the objective function (12) can be

expressed as

W(λ1, λ2, φ1, φ2)

=
1

2
λ2

1K11 +
1

2
λ2

2K22 + λ1λ2K12 + ε
[

|λ1| + |λ2|
]

−
[

λ1 Re(y1) + λ2 Re(y2)
]

+
1

2
ϕ2

1K11 +
1

2
ϕ2

2K22 + ϕ1ϕ2K12 + ε
[

|ϕ1| + |ϕ2|
]

−
[

ϕ1 Im(y1) + ϕ2 Im(y2)
]

+λ1

l
∑

i=3

λiK1i + λ2

l
∑

i=3

λiK2i + ϕ1

l
∑

i=3

ϕiK1i + ϕ2

l
∑

i=3

ϕiK2i + W(const),

(24)

where W(const) has no relationship with (x1, y1) and (x2, y2). Let the initial feasible

solution of this problem is (λold
1 , φold

1 ) and (λold
2 , φold

2 ), and the optimal solution of the

problem is the new values (λ1, φ1) and (λ2, φ2) of the two variables. In order to satisfy

the constraint, the new values must satisfy

{

λold
1 + λold

2 = sold
1 = λ1 + λ2,

φold
1 + φold

2 = sold
2 = φ1 + φ2,

(25)
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where sold
1 and sold

2 are constant. The formula (25) is substituted into the objective function

(24) and takes partial derivation of W with respect to λ2. By simplifying, we finally get

λ2 = λold
2 +

1

κ

(

Re(E1) − Re(E2) − ε
[

sgn(λ2) − sgn(λ1)
])

. (26)

Similarly, we can update φ2:

φ2 = φold
2 +

1

κ

(

Im(E1)− Im(E2) − ε
[

sgn(φ2) − sgn(φ1)
])

, (27)

where κ = k11 + k22 − 2k12 and sgn(.) is signum function.

Second, we should solve the problem of selecting the two training points in the itera-

tion. According to the definition of gradient, we choose first training point which not only

violates KKT conditions but also can maximize the module of gradient.

∂W

∂λi

=

l
∑

j=1

λjKij + 0 + εsgn(λi) − Re(yi) = Re(Ei) − Re(b) + εsgn(λi), (28)

∂W

∂ϕi

=

l
∑

j=1

ϕjKij + 0 + εsgn(ϕi) − Im(yi) = Im(Ei) − Im(b) + εsgn(ϕi), (29)

for i = 1,2. Since the ultimate aim of training is to find the training points that make

objective function minimize, we choose the second training point which can make greatest

change of formula (24).

3. Experimental Results

In this section, the effectiveness of the proposed method in Section 2 will be demonstrated

by experiments. Then it will be applied to the anti-interferencefield for further verification,

which is carried out by comparison of our proposed solution method with the existing

Power Inversion (PI) algorithm. All the simulation experiments conducted in the paper

are implemented in MATLAB.

3.1. SVR-Function Estimation

In this subsection, a regression test is performed to verify the ability of the support vector

regression model to handle noise by using two function f1(x) = ejx/20 + N , x ∈ R and

f2(x) = sin(x)
x

+ N , x ∈ C. For f1(x), x ∈ [0,60]. For f2(x), x = xr+jxi , xr and xi

are real random variables, and xr ∈ [−4,4], xi ∈ [−1,1], j as the imaginary unit. N is

the white Gaussian noise with zero mean and variances σ = 0.2. The regression curves

are shown in Figs. 1 and 2, which indicate that with the proposed solution method, the

regression data can agree well with the original data.
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Fig. 1. Regression result of f1(x).
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Fig. 2. Regression result of f2(x).

At the same time, a Monte Carlo experiment for 50 times are conducted to demonstrate

the stability of the proposed solution, based on the root mean-square-error (RMSE) of

complex-data defined as:

RMSE =

√

√

√

√

1

N

N
∑

t=1

|xt − x̂t |
2
, (30)

where x̂t is the estimated value of xt .
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Fig. 3. Resultant RMSE of complex-data.

The resultant RMSE of the complex-data is depicted in Fig. 3, which shows that the

square error is small and has a high stability.

In all of the above experiments, a real Gaussian Radial Basis Kernel (RBF) function

is selected for SMO algorithm and the Gaussian RBF is expressed as

K(x,y) = exp

(

−
‖x − y‖2

r2

)

, (31)

where r is the Gaussian kernel parameter. For f1(x), C1 = C2 = 2, ε = 1E−5, r = 50.

For f2(x), C1 = C2 = 10, ε = 0.1, r = 0.8.

Next, we compare the performance of the proposed method with CSVR (Bouboulis,

2015). The CSVR method exploits a Xcomplex kernel function and transforms the com-

plex problem into two real SVR tasks. In order to compare the performance of the two

algorithms under the same standard, the Gaussian Radial Basis kernel function is selected

and C1 = C2. The training samples are generated by f2(x), and xr ∈ [−1,1], xi ∈ [−1,1].

In this experiments, r = 0.6 and ε = 0.1 for both proposed solution and CSVR. Table 1

shows the difference in RMSE between the two algorithms under 50 Monte Carlo experi-

ments. It can be concluded from the Table 1 that the precision of the proposed solution is

roughly the same as that of CSVR.

Table 1

RMSE under different penalty factors.

Penalty Proposed (RMSE) CSVR (RMSE)

C1 = C2 = 2 −12.89 dB −12.79 dB

C1 = C2 = 10 −15.17 dB −14.93 dB

C1 = C2 = 20 −15.23 dB −14.77 dB
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3.2. Application to Anti-Interference Problem

In this section, the proposed complex-SVR will be applied to the field of anti-interference

to verify its effect in practical application. The anti-interference technology is an important

part of array signal processing. According to the literature (Ramón and Christodoulou,

2006), the output vector of an L-element array can be described in matrix notation as:

X = AsS + AjJ + N, (32)

where S is desired signals, J is interfere signals, N is noise vector, and As is the response

vector of the desired signals, Aj is the response vector of the interfere signals. The pur-

pose of the anti-interference is to obtain desired output S and suppress interfere signal.

Therefore, the output of the array processor is

y = WH X = d + ε, (33)

where W is the weight vector of the array, d is the estimated value of the desired signal

S, ε is the estimation error. In practical applications, we only know the output vector of

the array. Therefore, in order to achieve interference suppression, it is important to know

how to use the output vector X of an L-element array to get the optimal weight vector W.

Firstly, it is important to generate the training data. For an L-elements Unit Circular

Array (UCA), a dataset X(k) = [x1(k), x2(k), . . . , xl(k)]T can be obtained, where 1 <

k < N and N is the snapshot number and xi(k) is the received value of the i − th element

at moment k. The autocorrelation matrix of all samples can be computed by

R =
1

N

N
∑

k=1

X(k)X(k)H . (34)

According to the PI algorithm (Zahm, 1973; Compton, 1979), the optimal weight is

W =
R−1Const

ConstT R−1Const
, (35)

where Const = [1,0, . . . ,0]T . And then a set of pairs {R,W } can be chosen as training

samples.

Secondly, we will show how to use Complex-SVR to achieve anti-interference. The

narrowband signal is chosen as the jammer, whose direction is θ = 1200, ϕ = 500, where θ

is the azimuth, ϕ is the elevation angle. In this experiment, a 4-element UCA is chosen and

the data X is divided into 100 sections (where N = 12800), so as to have 128 snapshots in

each section. Then, based on the equations (34) and (35), 100 sample data can be obtained.

In the experiment, 70 sample data are chosen as training samples, and the remaining 30

points as the testing samples. In this experiment, C1 = C2 = 20, ε = 1E−4, r = 0.8. The

arrays patterns of PI and the proposed complex-valued SVR are illustrated in Fig. 4. where

Fig. 4(a) is a pattern of the azimuth angle when the elevation angle is fixed. and Fig. 4(b)
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(a) the pattern in azimuth view (b) the pattern in elevation view

Fig. 4. The arrays pattern of the original PI algorithm and complex SVR.

is a pattern of the elevation angle when the azimuth angle is fixed. The antenna gain is

defined as

G = 10 log
(
∥

∥WH Aj

∥

∥

2)
. (36)

It can be seen from Fig. 4 that complex-valued SVR can get deeper nulls in the direction

of the interfering signals than PI.

4. Conclusion

A complex-valuedmodel of SVR was proposed in the paper. The proposed method consid-

ers all the information of both the real and imaginary parts of the SVR model. Compared

to conventional SVR model, the great feature is that although the method has both the

real and imaginary parts information, it does not require extra amount of computation.

The accuracy and stability of the proposed model of SVR are finally demonstrated by ex-

periments. In addition, it was also applied to the anti-interference of satellite navigation

system for verification of its effect in reality. The results indicate that the proposed method

achieved much better performance the normal PI algorithm.
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