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Abstract. In this paper, with respect to how to express the complex fuzzy information, we proposed

the concept of interval-valued linguistic intuitionistic fuzzy numbers (IVLIFNs), whose member-

ship and non-membership are represented by interval-valued linguistic terms, then the Hamming

distance is defined, further, we also proposed the interval-valued linguistic intuitionistic fuzzy en-

tropy. Considering that the VIKOR method can achieve the maximum “group utility” and minimum

of “individual regret”, we extended the VIKOR method to process the interval-valued linguistic in-

tuitionistic fuzzy information (IVLIFI), and proposed an extended VIKOR method for the multiple

attribute decision making (MADM) problems with IVLIFI. And an illustrative example shows the

effectiveness of the proposed approach.

Key words: multiple attribute decision making, interval-valued linguistic intuitionistic fuzzy

numbers, interval-valued linguistic intuitionistic fuzzy entropy, VIKOR method.

1. Introduction

Decision making has been widely used in economic, politics, military, management and

other fields. But in real decision making, the decision information is often incomplete and

fuzzy, it is difficult to obtain the values by the exact numbers. How to express this kind of

information is a very worthwhile research issue. The theory of fuzzy sets (FSs) proposed

by Zadeh (1965) is an important tool to describe fuzzy information. However, because

the fuzzy set only has a membership function, sometimes, it is difficult to express some

complex fuzzy information, such as the voting problem in which exists some of the op-

position and abstain from voting. In order to solve the defects, Atanassov (1986, 1989a)

proposed intuitionistic fuzzy set (IFS), which includes a membership function and a non-

membership function. However, the membership function and non-membership function

in IFS can only take the crisp numbers; sometimes it is still difficult to express the com-

plex fuzzy information. Further, Atanassov (1989b), Atanassov and Gargov (1989) ex-

tended the membership degree and non-membership degree of IFS to interval numbers,

*Corresponding author.



666 P. Liu, X. Qin

and proposed the interval-valued intuitionistic fuzzy set (IVIFS), and defined some oper-

ational rules and relations of IVIFS. Now, research on IFS and IVIFS has been a hotspot,

and a great number of research achievements about IFS and IVIFS are made (Liu, 2017;

Liu and Chen, 2017; Liu et al., 2017; Liu and Li, 2017).

Generally, on one hand, in a quantitative setting, we use the numerical values to express

the information, and can get an effective result. On the other hand, when we present a

decision problem in a qualitative setting, it is difficult to express the fuzzy information by

the exact numerical value, and it is more feasible by linguistic terms rather than numerical

values (Herrera et al., 2000; Xu, 2004; Cabrerizo et al., 2013; Dong and Herrera-Viedma,

2015; Massanet et al., 2014; Liu et al., 2016; Liu and Teng, 2016; Liu and Yu, 2014). In

order to easily express the membership degree and non-membership degree of IFNs in a

qualitative setting, one concept called linguistic intuitionistic fuzzy numbers (LIFNs) is

proposed by Chen and Liu (2015), in which the membership degree and non-membership

degree are expressed by linguistic variables based on the given linguistic term set. LIFNs

combine the advantages of both linguistic term sets and IFNs, they can more effectively

deal with the fuzzy informationand have gotten more and more concerns in decision fields.

The entropy has become a hotspot of the research field. The entropy is originated

from the Thermodynamics. Shannon introduced it into information theory to measure the

uncertainty of information. Zadeh (1965) was first one to use the entropy to measure the

fuzziness of a fuzzy set. Later, Burillo and Bustince (1996) defined the intuitionistic fuzzy

entropy to measure the degree of hesitation in the intuitionistic fuzzy sets. Zhao and Xu

(2016) proposed the entropy measures for interval-valued intuitionistic fuzzy information

from a comparative perspective. Then, Guo (2004) and Liu et al. (2005) presented the

axiomatic definition of interval-valued intuitionistic fuzzy entropy. Wang and Wei (2011)

extended entropy of IFSs to IVIFSs. Subsequently, Gao and Wei (2012) defined a new

entropy formula based on the improved Hamming distance for IVIFSs. However, these

entropy definitions have some defects. For example, the constraint for the maximum val-

ues of entropy (Guo, 2004) considers only one aspect of uncertainty from fuzziness and

neglects the other aspect of uncertainty from the lack of knowledge. Therefore, Xie and

Lv (2016) improved the axiomatic definition of entropy for IVIFSs and proposed a new

entropy formula which can consider both uncertainty from fuzziness and the lack of in-

formation, which can reflect the amount of information better.

In addition, the VIKOR method is an important decision tool to process the fuzzy

MADM problems because it can consider the maximum “group utility” and minimum

of “individual regret” and can consider two kinds of particular measures of “closeness”

to the virtual ideal solution and the virtual negative ideal solution, simultaneously. Com-

paring with the other decision making methods, such as TOPSIS, ELECTRE, TODIM

etc., the advantage of VIKOR can give one compromise optimal choice or a group of

choices with no differences based on the maximum “group utility” and minimum of “in-

dividual regret”, however, the other methods just can provide an optimal choice. Because

the traditional VIKOR method can only deal with the crisp numbers, some new exten-

sions of VIKOR for the different fuzzy information have been studied. Liu and Wang

(2011) extended VIKOR to generalized interval-valued trapezoidal fuzzy numbers. Wu
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et al. (2016a) extended VIKOR to linguistic information. Liao et al. (2015) extended

VIKOR to Hesitant fuzzy linguistic information. Keshavarz Ghorabaee et al. (2015) ex-

tended VIKOR to interval type-2 fuzzy sets. Zhang and Wei (2013) extended VIKOR to

deal with HFS. Liu and Wu (2012) extended VIKOR to process the multi-granularity lin-

guistic variables. Zhang et al. (2010) extended VIKOR to process the hybrid information,

including linguistic variables, crisp numbers, interval numbers, triangular fuzzy numbers,

trapezoid fuzzy numbers, and so on. Du and Liu (2011) extended VIKOR to deal with in-

tuitionistic trapezoidal fuzzy numbers. Wu et al. (2016b) extended the VIKOR method to

linguistic information and applied it to nuclear power industry. Gul et al. (2016) applied

the VIKOR method to the state of art literature review. Kuo et al. (2015) extended VIKOR

to develop a green supplier selection model. However, now it cannot process the IVLIFNs.

The IVIFNs are more convenient to express the complex fuzzy information than IFNs,

however, their membership degree and non-membership degree are expressed by interval

numbers. Similarly, in qualitative setting, it is easier to express the membership degree and

non-membership degree by interval-valued linguistic variables than by interval numbers.

So one of our goals in this paper is to propose the interval-valued linguistic intuitionis-

tic fuzzy numbers (IVLIFNs), in which the membership degree and the non-membership

degree are presented by interval-valued linguistic variables. Secondly, we also put for-

ward the conception of interval-valued linguistic intuitionistic fuzzy entropy which can

describe the uncertainty from fuzziness and the uncertainty from lack of knowledge of

IVLIFNs better. Thirdly, we extend the VIKOR to IVLIFNs because the existing VIKOR

didn’t deal with IVLIFNs, and propose an extended VIKOR method to solve the MADM

problems in which the attribute values take the form of IVLIFNs and the attribute weights

are unknown. Here, interval-valued linguistic intuitionistic fuzzy entropy will be used to

determine each attribute’s weight.

In order to do that, the remainder of this paper is as follows. In Section 2, we briefly

review some basic concepts of IVIFNs and IVIF Entropy, we also propose the notion of

IVLIFNs and define the hamming distance of IVLIFNs, interval-valued linguistic intu-

itionistic fuzzy entropy. Further, the traditional VIKOR method was introduced. In Sec-

tion 3, we extend the traditional VIKOR method to the IVLIF information, and a MADM

approach is proposed. In Section 4, we give a numerical example to elaborate the effec-

tiveness and feasibility of our approach. The comparison with other methods is conducted

in Section 5. Concluding remark is made in Section 6.

2. Preliminaries

2.1. Interval-Valued Intuitionistic Fuzzy Sets (IVIFSs)

Definition 1 (Atanassov and Gargov, 1989). Let X = {x1, x2, . . . , xn} be a finite and non-

empty universe of discourse. An interval-valued intuitionistic fuzzy set Ã is given by:

Ã =
{〈

x, ũ
Ã
(x), ṽ

Ã
(x)

〉∣∣x ∈ X
}

=
{〈

x,
[
u−

A(x), u+
A(x)

]
,
[
v−
A (x), v+

A (x)
]〉∣∣x ∈ X

}
, (1)
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where u−
A(x) ∈ [0,1], u+

A(x) ∈ [0,1] and v−
A (x) ∈ [0,1], v+

A (x) ∈ [0,1], the numbers

ũÃ(x) and ṽÃ(x) represent the membership degree and non-membershipdegree of the ele-

ment x to the set Ã respectively, and u−
A(x)6 u+

A(x), v−
A (x)6 v+

A (x), u+
A(x)+v+

A (x)6 1.

For a given x ∈ X, π̃(x) = [1 − u+
A(x) − v+

A (x),1 − u−
A(x) − v−

A (x)] is called the

interval-valued intuitionistic fuzzy hesitation degree.

For convenience, we use IVIF(X) to express the set of all IVIFS.

Definition 2 (Atanassov and Gargov, 1989). If Ã = {〈x, [u−
A(x), u+

A(x)], [v−
A(x),

v+
A (x)]〉|x ∈ X}, B̃ = {〈x, [u−

B (x), u+
B(x)], [v−

B (x), v+
B (x)]〉|x ∈ X} are two IVIFSs, the

basic operations can be defined as follows.

(1) Ã ⊆ B̃ if and only if

{
u−

A(x)6 u−
B (x), u+

A(x)6 u+
B (x),

v−
A (x)> v−

B (x), v+
A (x)> v+

B (x);
(2)

(2) Ã = B̃ if and only if Ã ⊆ B̃, Ã ⊇ B̃; (3)

(3) Ãc =
{〈

x,
[
v−
A (x), v+

A (x)
]
,
[
u−

A(x), u+
A(x)

]〉∣∣x ∈ X
}
. (4)

Definition 3 (Delgado et al., 1998). If Ã = {〈xi, [u
−
A(xi), u

+
A(xi)], [v

−
A (xi), v

+
A (xi)]〉|

xi ∈ X}, B̃ = {〈xi, [u
−
B (xi), u

+
B (xi)], [v

−
B (xi), v

+
B (xi)]〉|xi ∈ X} are two IVIFSs, then

Hamming distance between Ã and B̃ is defined as follows:

d(Ã, B̃) =
1

4n

n∑

i=1

[∣∣u−
A(xi) − u−

B (xi)
∣∣ +

∣∣u+
A(xi) − u+

B (xi)
∣∣ +

∣∣v−
A (xi) − v−

B (xi)
∣∣

+
∣∣v+

A (xi) − v+
B (xi)

∣∣ +
∣∣π−

A (xi) − π−
B (xi)

∣∣ +
∣∣π+

A (xi) − π+
B (xi)

∣∣]. (5)

2.2. Interval-Valued Intuitionistic Fuzzy Entropy

In this section, we will introduce the interval-valued intuitionistic fuzzy entropy which can

consider both uncertainty from fuzziness and from the lack of information, the fuzzier the

information, and the more information is missing, the greater the entropy value.

Definition 4 (Xie and Lv, 2016). Let ∀Ã ∈ IVIF(X), the mapping E: IVIF(X) → [0,1]

is called entropy if E satisfies the following conditions:

Condition 1. E(Ã) = 0 if and only if Ã is a crisp set, the crisp set includes Ã =

{〈xi, (1,1), (0,0)〉|xi ∈ X} and Ã = {〈xi, (0,0), (1,1)〉|xi ∈ X};

Condition 2. E(Ã) = 1 if and only if [v−
A (xi), v

+
A (xi)] = [u−

A(xi), u
+
A(xi)] = [0,0] for

every xi ∈ X;

Condition 3. E(Ã) = E(ÃC) for every Ã ∈ IVIFS(X);

Condition 4. For any B̃ ∈ IVIFS(X) if Ã ⊆ B̃ when u−
B (xi) 6 v−

B (xi), u
+
B (xi) 6 v+

B (xi)

for every xi ∈ X, or Ã ⊇ B̃ when u−
B (xi) > v−

B (xi), u
+
B (xi) > v+

B (xi) for every xi ∈ X,

then E(Ã) 6 E(B̃).
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Theorem 1. Let X = {x1, x2, . . . , xn} be a universe, Ã = {〈xi, [u
−
A(xi),

u+
A(xi)], [v

−
A (xi), v

+
A (xi)]〉|xi ∈ X}, the formula of the entropy is as follows:

E(Ã)

=
1

n

n∑

i=1

2 − |u+
A(xi) − v+

A (xi)|
2 − |u−

A(xi) − v−
A (xi)|

2 + (π−
A (xi))

2 + (π+
A (xi))

2

4
.

(6)

2.3. VIKOR Method

The VIKOR is a good MADM method which can consider both the group utility and

individual regret. The decision making problem can be expressed as follows.

Suppose there are m alternatives which are presented as X1,X2, . . . ,Xm, and there

are n attributes which are presented as A1,A2, . . . ,An, the evaluation value of alternative

Xi with respect to attribute Aj is expressed by xij , i = 1,2, . . . ,m, j = 1,2, . . . , n. We

suppose the x∗
j expresses the virtual positive ideal value and the x−

j expresses virtual

negative ideal value under the attribute Xj . w = (w1,w2, . . . ,wn)
T is the attribute weight

vector which satisfies wi ∈ [0,1],
∑n

i=1
wi = 1. The compromise ranking by VIKOR

method is begun with the form of Lp-metric [21].

Lpi =

{
n∑

j=1

[
(f ∗

j − fij )

(f ∗
j − f −

j )

]p
}1/p

1 6 p 6 ∞; i = 1,2, . . . ,m. (7)

In the VIKOR method, the maximum group utility can be presented by min Si and

minimum individual regret can be presented by minRi , where Si = L1,i , and Ri = L∞,i .

The steps of the VIKOR method can be described as follows:

Step 1: Normalize the decision matrix.

Step 2: Compute the virtual positive ideal x∗
j and the virtual negative ideal x−

j values

under the attribute Aj , we have

x∗
j = max

i
xij , x−

j = min
i

xij . (8)

Step 3: Computing the group utility value and individual regret value Ri ; i = 1,2, . . . ,m,

as follows:

Si =

n∑

j=1

wj

(
x∗
j − xij

)
/
(
x∗
j − x−

j

)
, (9)

Ri = max
j

wj

(
x∗
j − xij

)
/
(
x∗
j − x−

j

)
. (10)
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Step 4: Compute the values: i = 1,2, . . . ,m, according to the following formulas:

Qi =
v(Si − S∗)

(S− − S∗)
+

(1 − v)(Ri − R∗)

(R− − R∗)
, (11)

where S∗ = mini Si , S
− = maxi Si , R

∗ = mini Ri , R
− = maxi Ri , v is the balance param-

eter of decision strategy which can balance the factors between group utility and individual

regret. Then, it explains that considering “the maximum group utility” is more and con-

sidering “the minimum individual regret” is less, then, it explains that considering “the

minimum individual regret” is more and considering “the maximum group utility” is less.

(In our research, we suppose that the “minimum individual regret” and “the maximum

group utility” are both important.)

Step 5: Rank all the alternatives. According to the values S and Q, we will get three

ranking results, and then we can obtain a set of the compromise solutions.

Step 6: Obtain a compromise solution X(1), which is in the first position of all ranking

alternatives produced by the value Q (i.e. the alternative is with minimum value Q) if it

meets the following two conditions:

Condition 1. Acceptable advantage: Q(X(2)) − Q(X(1)) > 1

m−1
, where Q(X(2)) is

the Q value in the second position of all ranking alternatives produced by the value Q,

and m is the number of alternatives;

Condition 2. Acceptable stability. Alternative X(1) must also be in the first position

of all ranking alternatives produced by the value by S and R.

If one of above two conditions is not met, we will get a collection of compromise

alternatives and not one compromise solution.

(1) If condition 2 is not met, then we can get that alternatives X(1) and X(2) should be

compromise solutions.

(2) If condition 1 is not met, then the maximum M can be gotten by the for-

mula Q(X(M)) − Q(X(1)) < MQ, MQ = 1

m−1
, and we can get the alternatives,

X(1),X(2), . . . ,X(M) are compromise solutions.

Based on the above analysis, we know that the best solution is the one with the min-

imum Q value when the conditions 1 and 2 are met, and when one of two conditions is

not met, we may have more than one compromise solution.

The VIKOR method is a useful tool for solving the MADM problems, and it can get a

collection of compromise solutions or one compromise solution according to some con-

ditions based on the maximum “group utility” and minimum “individual regret”.

3. Distance and Entropy for Interval-Valued Linguistic Intuitionistic Fuzzy Sets

(IVLIFSs)

3.1. Interval-Valued Linguistic Intuitionistic Fuzzy Sets

In order to easily understand the IVLIFSs, firstly, we introduce the basic concept about

the linguistic variables as follows.
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In real decision making, there is a lot of qualitative information, which is easily rep-

resented by means of linguistic variables (Delgado et al., 1998; Herrera and Herrera-

Viedma, 1997; Xu, 2004; Zadeh, 1975).

Suppose that S = {si |i = 1,2, . . . , t} is a linguistic term set with odd cardinality, where

t is a positive integer, si represents a possible value for a linguistic variable. For example,

a set of nine linguistic terms S could be given as follows (see Chen and Liu, 2015):

S = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 = slightly poor, s4 = fair,

s5 = slightly good, s6 = good, s7 = very good, s8 = extremely good}.

Next, we will extend the IVIFSs to the interval-valued linguistic intuitionistic fuzzy

sets (IVLIFSs). The concept and related properties of IVLIFSs are shown as follows:

Definition 5. Let R = {r̃1, r̃2, . . . , r̃n} be a finite and non-empty universe of dis-

course, S[0,t ] is a linguistic term universe of discourse with odd cardinality and

sα−
i
, sα+

i
, sβ−

i
, sβ+

i
∈ S[0,t ]. An interval-valued linguistic intuitionistic fuzzy number can be

expressed by r̃i = (sα̃i
, s

β̃i
) = ([sα−

i
, sα+

i
], [sβ−

i
, sβ+

i
]), i = 1,2, . . . , n. Then an interval-

valued linguistic intuitionistic fuzzy set M̃ can be given by:

M̃ =
{
(sα̃

M̃
(r̃i), sβ̃

M̃
(r̃i)

)
∣∣r̃ ∈ R

}
=

{(
[sα−

M̃
(r̃i)

, sα+

M̃
(r̃i)

], [sβ−

M̃
(r̃i)

, sβ+

M̃
(r̃i)

]
)∣∣r̃i ∈ R

}
(12)

where α−

M̃
(r̃i) ∈ [0, t], α+

M̃
(r̃i) ∈ [0, t] and β−

M̃
(r̃i) ∈ [0, t], β+

M̃
(r̃i) ∈ [0, t], the numbers

sα̃
M̃

(r̃i) and sβ̃M̃ (r̃i)
represent the membership degree and non-membership degree to the

number r̃i of set M̃ , respectively, and α−

M̃
(r̃i) 6 α+

M̃
(r̃i), β−

M̃
(r̃i) 6 β+

M̃
(r̃i), α+

M̃
(r̃i) +

β+

M̃
(r̃i)6 t .

Moreover, sπ̃
M̃

(r̃i) is called the interval-valued linguistic intuitionistic fuzzy hesitation

degree, and

π̃M̃ (r̃i) =
[
π−

M̃
(r̃i),π

+

M̃
(r̃i)

]
=

[
1 − α+

M̃
(r̃i) − β+

M̃
(r̃i),1 − α−

M̃
(r̃i) − β−

M̃
(r̃i)

]
.

Definition 6. Let R(0,t ) be the set of all IVLIFSs based on S(0,t ) and M̃ = {([sα−

M̃
(r̃i)

,

sα+

M̃
(r̃i)

], [sβ−

M̃
(r̃i)

, sβ+

M̃
(r̃i)

])|r̃i ∈ R}, Ñ = {([sα−

Ñ
(r̃i)

, sα+

Ñ
(r̃i)

], [sβ−

Ñ
(r̃i)

, sβ+

Ñ
(r̃i)

])|r̃i ∈ R}, the

following basic operations can be defined:

(1) M̃ ⊆ Ñ if and only if

{
α−

M̃
(r̃i)6 α−

Ñ
(r̃i), α+

M̃
(r̃i)6 α+

Ñ
(r̃i),

β−

M̃
(r̃i)> β−

Ñ
(r̃i), β+

M̃
(r̃i)> β+

Ñ
(r̃i),

(13)

(2) M̃ = Ñ if and only if M̃ ⊆ Ñ and M̃ ⊇ Ñ, (14)

(3) M̃c =
{(

[sβ−

M̃
(r̃i)

, sβ+

M̃
(r̃i)

], [sα−

M̃
(r̃i)

, sα+

M̃
(r̃i)

]
)∣∣r̃i ∈ R

}
. (15)
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3.2. The Distance Between Two IVLIFSs

Definition 7. Let R(0,t ) be the set of all IVLIFSs based on S(0,t ) and M̃ = {([sα−

M̃
(r̃i)

,

sα+

M̃
(r̃i)

], [sβ−

M̃
(r̃i)

, sβ+

M̃
(r̃i)

]).|r̃i ∈ R}, Ñ = {([sα−

Ñ
(r̃i)

, sα+

Ñ
(r̃i)

], [sβ−

Ñ
(r̃i)

, sβ+

Ñ
(r̃i)

])|r̃i ∈ R},

then Hamming distance measure between M̃ and Ñ is defined as follows:

d(M̃, Ñ) =
1

4tn

n∑

i=1

∣∣α−

M̃
(ri) − α−

Ñ
(ri)

∣∣ +
∣∣α+

M̃
(ri) − α+

Ñ
(ri)

∣∣ +
∣∣β−

M̃
(ri) − β−

Ñ
(ri)

∣∣

+
∣∣β+

M̃
(ri) − β+

Ñ
(ri)

∣∣ +
∣∣π−

M̃
(ri) − π−

Ñ
(ri)

∣∣ +
∣∣π+

M̃
(ri) − π+

Ñ
(ri)

∣∣. (16)

Theorem 2. Let M̃1 = {([sα−

M̃1

(ri)
, sα+

M̃1

(ri)
], [sβ−

M̃1

(ri)
, sβ+

M̃1

(ri)
])|ri ∈ R}, M̃2 = {([sα−

M̃2

(ri)
,

sα+

M̃2

(ri)
], . . . , [sβ−

M̃2

(ri)
, sβ+

M̃2

(ri)
])|ri ∈ R}, M̃3 = {([sα−

M̃3

(ri)
, sα+

M̃3

(ri)
], [sβ−

M̃3

(ri)
, sβ+

M̃3

(ri)
])|

ri ∈ R}, are any three sets of IVLIFSs, then the Hamming distance satisfies the following

conditions:

(1) 0 6 d(M̃1, M̃2)6 1, (17)

(2) If d(M̃1, M̃2) = 0, then M̃1 = M̃2, (18)

(3) d(M̃1, M̃2) = d(M̃2, M̃1), (19)

(4) d(M̃1, M̃2) + d(M̃2, M̃3)> d(M̃1, M̃3). (20)

3.3. Interval-Valued Linguistic Intuitionistic Fuzzy Entropy

Definition 8. Let IVLIF(R) be the set of all IVLIFSs, ∀M̃ ∈ IVLIF(R), the mapping

E : IVLIF(R) → [0, t] is called entropy if E satisfies the following conditions:

Condition 1. E(M̃) = 0 if and only if M̃ is a crisp set, the crisp set includes M̃ =

{〈ri , (st , st ), (s0, s0)〉|ri ∈ R} and M̃ = {〈ri, (s0, s0), (st , st )〉|ri ∈ R};

Condition 2. E(M̃) = 1 if and only if [sα−

M̃
(ri)

, sα+

M̃
(ri)

] = [sβ−

M̃
(ri)

, sβ+

M̃
(ri)

] = [s0, s0] for

every ri ∈ R;

Condition 3. E(M̃) = E(M̃C) for every M̃ ∈ IVLIF(R);

Condition 4. For any Ñ ∈ IVLIF(R), if M̃ ⊆ Ñ when α−

Ñ
(ri)6 β−

Ñ
(ri), α

+

Ñ
(ri)6 β+

Ñ
(ri)

for every ri ∈ R, or M̃ ⊇ Ñ when α−

Ñ
(ri) > β−

Ñ
(ri), α

+

Ñ
(ri) > β+

Ñ
(ri) for every ri ∈ R,

then E(M̃)6 E(Ñ).

Theorem 3. Let R = {r1, r2, . . . , rn} be a universe, M̃ = {([sα−

M̃
(ri)

, sα+

M̃
(ri)

], [sβ−

M̃
(ri)

,

sβ+

M̃
(ri)

])|ri ∈ R}, the formula of the entropy is as follows:
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E(M̃)

=
1

n

n∑

i=1

2t2 − |α+

M̃
(ri) − β+

M̃
(ri)|

2 − |α−

M̃
(ri) − β−

M̃
(ri)|

2 + (π−

M̃
(ri))

2 + (π+

M̃
(ri))

2

4t2
.

(21)

Proof.

Condition 1. M̃ is a crisp set, namely
[
sα−

M̃
(ri)

, sα+

M̃
(ri)

]
= [s0, s0],

[
sβ−

M̃
(ri)

, sβ−

M̃
(ri)

]
= [st , st ] or

[
sα−

M̃
(ri)

, sα+

M̃
(ri)

]
= [st , st ],

[
sβ−

M̃
(ri)

, sβ−

M̃
(ri)

]
= [s0, s0],

then E(M̃) = 0.

If E(M̃) = 0, since

2t2 +
(
π−

M̃
(ri)

)2
+

(
π+

M̃
(ri)

)2
> 2t2,

∣∣α+

M̃
(ri) − β+

M̃
(ri)

∣∣2
+

∣∣α−

M̃
(ri) − β−

M̃
(ri)

∣∣2
6 2t2,

so
[
sπ−

M̃
(ri)

, sπ+

M̃
(ri)

]
= [s0, s0] and

[
sα−

M̃
(ri)

, sα+

M̃
(ri)

]
= [s0, s0],

[
sβ−

M̃
(ri)

, sβ+

M̃
(ri)

]
= [st , st ]

or
[
sπ−

M̃
(ri)

, sπ+

M̃
(ri)

]
= [s0, s0] and

[
sα−

M̃
(ri)

, sα+

M̃
(ri)

]
= [st , st ],

[
sβ−

M̃
(ri)

, sβ+

M̃
(ri)

]
= [s0, s0],

namely, M̃ is a crisp set.

Condition 2. If [sα−

M̃
(ri)

, sα+

M̃
(ri)

] = [sβ−

M̃
(ri)

, sβ+

M̃
(ri)

] = [s0, s0], it’s obvious that E(M̃) = 1.

If E(M̃) = 1, since

2t2 +
(
π−

M̃
(ri)

)2
+

(
π+

M̃
(ri)

)2
6 4t2,

∣∣α+

M̃
(ri) − β+

M̃
(ri)

∣∣2
+

∣∣α−

M̃
(ri) − β−

M̃
(ri)

∣∣2
> 0,

so
[
sπ−

M̃
(ri)

, sπ+

M̃
(ri)

]
= [st , st ] and

[
sα−

M̃
(ri)

, sα−

M̃
(ri)

]
=

[
sβ−

M̃
(ri)

, sβ−

M̃
(ri)

]
= [s0, s0].

Condition 3. For the two IVLIFSs M̃ and M̃c, [sπ−

M̃
(ri)

, sπ+

M̃
(ri)

] = [sπ−

M̃c (ri)
, sπ+

M̃c (ri)
], so

it’s obvious that the condition 3 is right.

Condition 4.

E(M̃)

=
1

n

n∑

i=1

2t2 − |α+

M̃
(ri) − β+

M̃
(ri)|

2 − |α−

M̃
(ri) − β−

M̃
(ri)|

2 + (π−

M̃
(ri))

2 + (π+

M̃
(ri))

2

4t2
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=
1

n

n∑

i=1

2t2 + α+

M̃
(ri)(β

+

M̃
(ri) − t) + β+

M̃
(ri)(α

+

M̃
(ri) − t) + α−

M̃
(ri)(β

−

M̃
(ri) − t) + β−

M̃
(ri)(α

−

M̃
(ri) − t)

2t2

and if α−

Ñ
(ri) 6 β−

Ñ
(ri), α

+

Ñ
(ri) 6 β+

Ñ
(ri) and M̃ ⊆ Ñ for every ri ∈ R then β−

M̃
(ri) >

β−

Ñ
(ri)> α−

Ñ
(ri)> α−

M̃
(ri) and β+

M̃
(ri)> β+

Ñ
(ri)> α+

Ñ
(ri)> α+

M̃
(ri), so

α+

M̃
(ri)

(
β+

M̃
(ri) − t

)
6 α+

Ñ
(ri)

(
β+

Ñ
(ri) − t

)
,

β+

M̃
(ri)

(
α+

M̃
(ri) − t

)
6 β+

Ñ
(ri)

(
α+

Ñ
(ri) − t

)
,

α−

M̃
(ri)

(
β−

M̃
(ri) − t

)
6 α−

Ñ
(ri)

(
β−

Ñ
(ri) − t

)
,

β−

M̃
(ri)

(
α−

M̃
(ri) − t

)
6 β−

Ñ
(ri)

(
α−

Ñ
(ri) − t

)
,

then E(M̃)6 E(Ñ).

As the above method, when α−

Ñ
(ri)> β−

Ñ
(ri), α+

Ñ
(ri)> β+

Ñ
(ri) and M̃ ⊇ Ñ for every

ri ∈ R, we can conclude that E(M̃)6 E(Ñ).

So, the Condition 4 is right.

From above conditions, we can see that the interval-valued linguistic intuitionistic

fuzzy entropy can consider both uncertainty from fuzziness and from the lack of infor-

mation based on IVLIFS, when IVLIFS is a crisp set, the entropy value is smallest; when

IVLIFS present the form of [sα−

M̃
(ri)

, sα+

M̃
(ri)

] = [sβ−

M̃
(ri)

, sβ+

M̃
(ri)

] = [s0, s0], the informa-

tion of IVLIFS is fuzziest and lack all the information, the entropy value is largest; for

given a IVLIFSs, the fuzzier the information, and the more information is missing, the

greater the entropy value.

4. An Extended VIKOR Method for Interval-Valued Linguistic Intuitionistic Fuzzy

Numbers Based on Entropy

In this paper, we will extend the VIKOR method to solve MADM problem with the

interval-valued linguistic intuitionistic fuzzy information (IVLIFI).

In order to do this, we describe the decision making problem firstly.

For a multiple attribute decision making problem, let X = {x1, x2, . . . , xm} be a group

of alternatives, C = {c1, c2, . . . , cn} be a group of attributes, and the attribute weights

are unknown. Suppose that r̃ij = ([sα−(r̃ij ), sα+(r̃ij )], [sβ−(r̃ij ), sβ+(r̃ij )]) is the evaluation

value of the alternative with respect to the attributes Cj which is expressed by the IVLIFI,

where [sα−(r̃ij ), sα+(r̃ij )], [sβ−(r̃ij ), sβ+(r̃ij )] represent the membership degree and non-

membership degree of IVLIFNs, and sα−(r̃ij ), sα+(r̃ij ), sβ−(r̃ij ), sβ+(r̃ij ) ∈ S[0,t ]. The deci-

sion matrix denoted by IVLIFNs is listed in Table 1, and the goal of this MADM problem

is to rank the alternatives.

In this study, we think the weight information is unknown, and we use the interval-

valued linguistic intuitionistic fuzzy entropy to calculate the weight.

The procedures of the proposed method are shown as follows:
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Table 1

Decision making matrix with the interval-valued linguistic intuitionistic fuzzy information.

c1 c2 . . . cn

x1 r̃11 r̃12 . . . r̃1n

x2 r̃21 r̃22 . . . r̃2n

. . . . . . . . . . . . . . .

xm r̃m1 r̃m2 . . . r̃mn

Step 1. Normalize the decision matrix.

Since there are different types of attributes, we should convert different type to the

same type.

In general, we can transform the cost attribute values to benefit type, and the trans-

formed decision matrix is expressed by R̃ = [r̃ij ]m×n (i = 1,2, . . . ,m, j = 1,2, . . . , n),

where

r̃ij =

{
([sα−(r̃ij ), sα+(r̃ij )], [sβ−(r̃ij ), sβ+(r̃ij )]) for benefit attribute Cj ,

([sβ−(r̃ij ), sβ+(r̃ij )], [sα−(r̃ij ), sα+(r̃ij )]) for cost attribute Cj .
(22)

Step 2. Obtain the virtual positive ideal solution and the virtual negative ideal solution.

According to the partial order relation, we have the virtual positive ideal solution (PIS):

X∗ =
{
r̃∗

1
, r̃∗

2
, . . . , r̃∗

n

}
(23)

where

r̃∗
j =

{[
s

max{α−
1j ,α−

2j ,...,α−
mj }, smax{α+

1j ,α+
2j ,...,α+

mj }

]
,

[
s

min{β−
1j

,β−
2j

,...,β−
mj }, smin{β+

1j
,β+

2j
,...,β+

mj }

]}
, j = 1,2, . . . , n, (24)

the virtual negative ideal solution (NIS)

X− = {r̃−
1

, r̃−
2

, . . . , r̃−
n } (25)

where

r̃−
j =

{
[s

min{α−
1j ,α−

2j ,...,α−
mj }

, s
min{α+

1j ,α+
2j ,...,α+

mj }
],

[s
max{β−

1j ,β
−
2j ,...,β−

mj }
, s

max{β+
1j ,β+

2j ,...,β
+
mj }

]
}
, j = 1,2, . . . , n. (26)

Step 3. Calculate the entropy of every attribute Ej =
∑m

i=1
eij by formula (16), where

j = 1,2, . . . , n.

Step 4. Calculate the weight value of each attribute by using the model as follows Wang

et al. (2012):

wj =
E−1

j∑n
i=1

E−1

j

, j = 1,2, . . . , n. (27)
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Step 5. Compute Si and Ri , and we have

Si =

∑n
j=1

wj‖r̃
∗
j − r̃ij ‖

‖r̃∗
j − r̃−

j ‖
, i = 1,2, . . . ,m, (28)

Ri =
maxwj‖r̃

∗
j − r̃ij ‖

‖r̃∗
j − r̃−

j ‖
, i = 1,2, . . . ,m (29)

where |r̃1 − r̃2| is the distance between two interval-valued linguistic intuitionistic fuzzy

numbers r̃1 and r̃2, which is defined by Eq. (11).

Step 6. Compute the value Qi , and we have

Qi =
v(Si − S∗)

(S− − S∗)
+

(1 − v)(Ri − R∗)

(R− − R∗)
(30)

where S∗ = mini Si , S
− = maxi Si , R

∗ = mini Ri , R
− = maxi Ri , v is the balance param-

eter which can balance the group utility and individual regret, here suppose that v = 0.5,

it shows that the “minimum individual regret” and the “maximum group utility” are both

important.

Step 7. Same as the step 5 of Section 2.

Step 8. Same as the step 6 of Section 2.

5. Illustrative Example

5.1. Description of the Example

In this part, we will give an example to explain the proposed method. Suppose there is a

problem of selecting the sites of subsidiary company which is described as follows.

A manufacturing company hopes to build a new subsidiary company. Suppose that

X = {x1, x2, x3, x4} is a group of four potential sites, they are the alternatives and C =

{c1, c2, c3, c4, c5} is a group of attributes, where (c1, c2, c3, c4, c5) stand for “the price

of land”, “the distance of sale market”, “the distance of discourse”, “the labour market”,

“local economical”, respectively, and the weight vector of attributes is unknown. The alter-

natives xi (1, . . . ,4) are to be evaluated with respect to the five attributes by the IVLIFNs

based on the linguistic term set:

S =
{
s0 = extremely poor, s1 = very poor, s2 = poor, s3 = slightly poor, s4 = fair,

s5 = slightly good, s6 = good, s7 = very good, s8 = extremely good
}
.

Then we can build the decision matrix R = (γij )4×5 shown in Table 2.

The goal of this decision making is to select the best site of subsidiary company.



An Extended VIKOR Method for Decision Making Problem 677

Table 2

Decision matrix R of IVLIFNs.

c1 c2 c3 c4 c5

x1 ([s6, s7], [s1, s1]) ([s5, s6], [s1, s2]) ([s4, s5], [s1, s3]) ([s6, s7], [s1, s1]) ([s5, s6], [s1, s2])

x2 ([s5, s6], [s1, s2]) ([s5, s7], [s1, s1]) ([s5, s6], [s1, s2]) ([s5, s6], [s1, s2]) ([s6, s7], [s1, s1])

x3 ([s5, s6], [s1, s2]) ([s4, s5], [s2, s3]) ([s6, s7], [s1, s1]) ([s5, s6], [s1, s2]) ([s3, s4], [s3, s4])

x4 ([s4, s5], [s2, s3]) ([s6, s7], [s1, s1]) ([s4, s5], [s2, s3]) ([s4, s6], [s1, s2]) ([s3, s4], [s3, s4])

5.2. Steps of Decision Making for this Example

Next, we present the procedure of decision making based on the VIKOR method and

interval-valued linguistic intuitionistic fuzzy entropy.

Step 1. We suppose the decision matrix R1 has been normalized.

Step 2. Obtain the virtual positive ideal solution and the virtual negative ideal solution by

Eqs. (23)–(26), and we can get

X∗ =
{
r̃∗

1
, r̃∗

2
, r̃∗

3
, r̃∗

4
, r̃∗

5

}

=
{(

[s6, s7], [s1, s1]
)
,
(
[s6, s7], [s1, s1]

)
,
(
[s6, s7], [s1, s1]

)
,
(
[s6, s7], [s1, s1]

)
,

(
[s6, s7], [s1, s1]

)}
,

X− =
{
r̃−

1
, r̃−

2
, r̃−

3
, r̃−

4
, r̃−

5

}

=
{(

[s4, s5], [s2, s3]
)
,
(
[s4, s5], [s2, s3]

)
,
(
[s4, s5], [s2, s3]

)
,
(
[s4, s6], [s1, s2]

)
,

(
[s3, s4], [s3, s4]

)}
.

Step 3. Calculate the entropy of every attribute Ej = 1

m

∑m
i=1

eij by formula (16), where

j = 1,2, . . . , n. We can get

E1 = 0.3828, E2 = 0.3633, E3 = 0.4063, E4 = 0.3711, E5 = 0.4219.

Step 4. Calculate the weight value of each attribute by Eq. (27), we can get

w1 = 0.202632, w2 = 0.213526, w3 = 0.190942,

w4 = 0.209031, w5 = 0.183870.

Step 5. Compute Si , Ri , and we have

S1 =
w1‖r

∗
1

− r11‖

‖r∗
1

− r−
1

‖
+

w2‖r
∗
2

− r12‖

‖r∗
2

− r−
2

‖
+

w3‖r
∗
3

− r13‖

‖r∗
3

− r−
3

‖
+

w4‖r
∗
4

− r14‖

‖r∗
4

− r−
4

‖

+
w5‖r

∗
5

− r15‖

‖r∗
5

− r−
5

‖
= 0.358995,
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S2 =
w1‖r

∗
1

− r21‖

‖r∗
1

− r−
1

‖
+

w2‖r
∗
2

− r22‖

‖r∗
2

− r−
2

‖
+

w3‖r
∗
3

− r23‖

‖r∗
3

− r−
3

‖
+

w4‖r
∗
4

− r24‖

‖r∗
4

− r−
4

‖

+
w5‖r

∗
5

− r25‖

‖r∗
5

− r−
5

‖
= 0.389522,

S3 =
w1‖r

∗
1

− r31‖

‖r∗
1

− r−
1

‖
+

w2‖r
∗
2

− r32‖

‖r∗
2

− r−
2

‖
+

w3‖r
∗
3

− r33‖

‖r∗
3

− r−
3

‖
+

w4‖r
∗
4

− r34‖

‖r∗
4

− r−
4

‖

+
w5‖r

∗
5

− r35‖

‖r∗
5

− r−
5

‖
= 0.638066,

S4 =
w1‖r

∗
1

− r41‖

‖r∗
1

− r−
1

‖
+

w2‖r
∗
2

− r42‖

‖r∗
2

− r−
2

‖
+

w3‖r
∗
3

− r43‖

‖r∗
3

− r−
3

‖
+

w4‖r
∗
4

− r44‖

‖r∗
4

− r−
4

‖

+
w5‖r

∗
5

− r45‖

‖r∗
5

− r−
5

‖
= 0.786474,

R1 = max
5

{
w1‖r

∗
1

− r11‖

‖r∗
1

− r−
1

‖
,
w2‖r

∗
2

− r12‖

‖r∗
2

− r−
2

‖
,
w3‖r

∗
3

− r13‖

‖r∗
3

− r−
3

‖
,
w4‖r

∗
4

− r14‖

‖r∗
4

− r−
4

‖
,

w5‖r
∗
5

− r15‖

‖r∗
5

− r−
5

‖

}
= 0.190942,

R2 = max
5

{
w1‖r

∗
1

− r21‖

‖r∗
1

− r−
1

‖
,
w2‖r

∗
2

− r22‖

‖r∗
2

− r−
2

‖
,
w3‖r

∗
3

− r23‖

‖r∗
3

− r−
3

‖
,
w4‖r

∗
4

− r24‖

‖r∗
4

− r−
4

‖
,

w5‖r
∗
5

− r25‖

‖r∗
5

− r−
5

‖

}
= 0.139354,

R3 = max
5

{
w1‖r

∗
1

− r31‖

‖r∗
1

− r−
1

‖
,
w2‖r

∗
2

− r32‖

‖r∗
2

− r−
2

‖
,
w3‖r

∗
3

− r33‖

‖r∗
3

− r−
3

‖
,
w4‖r

∗
4

− r34‖

‖r∗
4

− r−
4

‖
,

w5‖r
∗
5

− r35‖

‖r∗
5

− r−
5

‖

}
= 0.213526,

R4 = max
5

{
w1‖r

∗
1

− r41‖

‖r∗
1

− r−
1

‖
,
w2‖r

∗
2

− r42‖

‖r∗
2

− r−
2

‖
,
w3‖r

∗
3

− r43‖

‖r∗
3

− r−
3

‖
,
w4‖r

∗
4

− r44‖

‖r∗
4

− r−
4

‖
,

w5‖r
∗
5

− r45‖

‖r∗
5

− r−
5

‖

}
= 0.209031.

Step 6. Compute the values Qi (i = 1,2,3,4) by Eq. (30) (suppose v = 0.5), we have

Q1 = 0.652241, Q2 = 0.964294, Q3 = 0.173585, Q4 = 0.030301.

Step 7. Rank the alternatives.

We firstly gave the ranking results by the values, and the smaller the values are, the

better the alternatives are. The results are listed in Table 3.
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Table 3

The ranking and the best alternative by S ,Q and R.

x1 x2 x3 x4 Ranking The best

alternative

S 0.358995 0.389522 0.638066 0.786474 x1 ≻ x2 ≻ x3 ≻ x4 x1

R 0.190942 0.139354 0.213526 0.209031 x2 ≻ x1 ≻ x4 ≻ x3 x2

Q (v = 0.5) 0.347759 0.035706 0.826415 0.969699 x2 ≻ x1 ≻ x3 ≻ x4 x2

Step 8. Obtain the compromise ranking results. Firstly, we rank the alternatives by Q in

increasing order, the alternative with first position is x2 with Q(x2) = 0.035706, and al-

ternative x2 is not the best ranked by, which does not satisfy the condition 2. x1 is the

alternative with second position with Q(x1) = 0.347759. So x2, x1 are both the compro-

mise solutions.

As MQ = 1/(m − 1) = 1/(4 − 1) = 0.333333, so

Q(x2) − Q(x1) = 0.312053,

which does not satisfy the condition 1, but we can get

Q(x3) − Q(x1) = 0.790709.

So, x2, x1, x3 are all compromise solutions.

5.3. Comparison Analysis

Since there is no decision making method based on interval-valued linguistic intuitionistic

fuzzy information, in order to verify the effectiveness of the method proposed in this paper,

we use the TOPSIS method to solve this example again, and compare the ranking result and

select the best alternative. Furthermore, since the LIFN is a special case of the IVLIFN,

we can extend LIFNs to IVLIFNs, so we can use this method to solve the example in Chen

and Liu (2015), compare the ranking results and the best alternative, too.

5.3.1. Compared with TOPSIS Method

In Hu and Xu (2007), they proposed TOPSIS method for MADM with interval-valued

intuitionistic fuzzy information. We extend this method to IVLIFNs, and our example

above will be solved again by TOPSIS method, the procedures are shown as follows:

Steps 1–4. Similar to steps 1–4 of Section 4.2.

Step 5. Calculate the distances between each alternative and the virtual positive ideal

solution and the virtual negative ideal solution, the results are shown as follows:

(1) The distance between each alternative and the virtual positive ideal solution is

shown as follows:

d(x1,X
∗) = 0.0974, d(x2,X

∗) = 0.0887,

d(x3,X
∗) = 0.1738, d(x4,X

∗) = 0.2065.
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(2) The distance between each alternative and the virtual positive ideal solution is

shown as follows:

d(x1,X
−) = 0.1979, d(x2,X

−) = 0.1832,

d(x3,X
−) = 0.1436, d(x4,X

−) = 0.1466.

Step 6. Calculate the relative closeness between each alternative and the ideal solution,

we can get:

C1 = 0.3299, C2 = 0.3262, C3 = 0.5476, C4 = 0.5848.

Step 7. Rank the alternatives according to the proximities and select the best one, we can

get:

x2 ≻ x1 ≻ x3 ≻ x4,

and the best one is x2.

Clearly, the ranking result is the same as that by Q in Table 3. The advantage of the

extended VIKOR method is that it can provide the compromise alternative set by the max-

imum “group utility” and minimum “individual regret”. According to the real decision

problem, we can adjust the values of the balance parameter v to balance the factors be-

tween group utility and individual regret, and get different alternative rankings; it is more

feasible and scientific to solve the MADM problems in the real world. In this example,

we can think the alternatives x2, x1, x3 are the same according to the new method. But

the best alternatives are only x2 calculated by Hu and Xu’s method, obviously, it can’t get

multiple compromise alternatives. The advantage of Hu and Xu’s method is that it is sim-

ple in ranking the alternatives, while our proposed method is a little complex. In addition,

because the ranking principle is different, it is reasonable not to get the completely same

ranking results. In this example, these two methods produced the same best and worst

alternatives, and this can show the validity of the proposed method.

5.3.2. Compared with Another Aggregation Operator

In Chen and Liu (2015), X = {x1, x2, x3, x4} is a set of four potential global suppli-

ers under consideration and A = {a1, a2, a3, a4, a5} is a set of attributes, where ai (i =

1,2, . . . ,5) stands for “overall cost of the product”, “quality of the product”, “service

performance of supplier”, “supplier’s profile”, “risk factor”, respectively. The weight vec-

tor of attributes is ω = (ω1,ω2,ω3,ω4,ω5)
T = (0.25,0.2,0.15,0.18,0.22)T for deci-

sion makers dk (k = 1,2, . . . ,4) under the above five attributes, and construct the lin-

guistic intuitionistic fuzzy decision matrices, the maker weight vector of attributes is

w = (w1,w2,w3,w4)
T = (0.25,0.2,0.3,0.25)T .

Chen and Liu (2015) utilized the LIFWA operator to aggregate all attributes of each

alternative and get a comprehensive decision making matrix, the result is presented in

Table 4.
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Table 4

The synthesis of decision making matrix aggregated by Chen and Liu (2015).

d1 d2 d3 d4

x1 (s6.199, s1.578) (s5.458, s2.363) (s5.598, s1.647) (s5.129, s2.023)

x2 (s6.138, s1.444) (s5.715, s1.433) (s6.343, s1.301) (s6.127, s1.133)

x3 (s5.428, s1.690) (s5.501, s1.966) (s4.673, s1.842) (s4.572, s2.471)

x4 (s5.510, s1.902) (s5.644, s2.093) (s5.846, s1.712) (s4.871, s1.927)

Table 5

The decision making matrix R2 of IVLIFNs extended by Table 4.

d1 d2

x1 ([s6.199, s6.199], [s1.578, s1.578]) ([s5.458, s5.458], [s2.363, s2.363])

x2 ([s6.138, s6.138], [s1.444, s1.444]) ([s5.715, s5.715], [s1.433, s1.433])

x3 ([s5.129, s5.129], [s1.690, s1.690]) ([s5.501, s5.501], [s1.966, s1.966])

x4 ([s5.510, s5.510], [s1.902, s1.902]) ([s5.644, s5.644], [s2.093, s2.093])

d3 d4

x1 ([s5.598, s5.598], [s1.647, s1.647]) ([s5.129, s5.129], [s2.023, s2.023])

x2 ([s6.343, s6.343], [s1.301, s1.301]) ([s6.127, s6.127], [s1.133, s1.133])

x3 ([s4.673, s4.673], [s1.842, s1.842]) ([s4.572, s4.572], [s2.471, s2.471])

x4 ([s5.846, s5.846], [s1.712, s1.712]) ([s4.871, s4.871], [s1.927, s1.927])

Firstly, we extend the LIFNs which are shown in Table 4 to IVLIFNs, for exam-

ple, the linguistic intuitionistic fuzzy number (s6.199, s1.578) can be extended to IVLIFNs

([s6.199, s6.199], [s1.578, s1.578]) ∈ Ŵ[0,8], and the decision matrix of LIFNs had been nor-

malized obviously, the results are shown in Table 5.

Next, we use our method to rank the alternatives based on the decision making matrix

of Table 5, and obtain the compromise ranking results. The procedures are presented as

follows:

Step 1. Since decision matrix R2 has been normalized, we start the next step directly.

Step 2. Obtain the virtual positive ideal solution and the virtual negative ideal solution.

Step 3. Compute Si and Ri . (Since the weight of each expert has been given, we don’t

need to calculate the entropy anymore.)

Step 4. Compute the values Qi (i = 1,2,3,4) (suppose v = 0.5).

Step 5. Rank the alternatives. The results are shown in Table 6.

Step 6. Obtain the compromise ranking results. According to the rules of VIKOR method,

firstly, we rank the alternatives by Q in increasing order, the alternative with first position

is x2, we can get the x2 as the only compromise solution. In addition, the alternative x2 is

also best ranked by S and R, which satisfies the condition 2.

As MQ = 1/(m − 1) = 1/(4 − 1) = 0.333333, so

Q(x2) − Q(x1) = 0.529596,
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Table 6

The ranking and the best alternative by S , Q and R.

x1 x2 x3 x4 Ranking The best

alternative

S 0.562322 0.012383 0.965570 0.623102 x2 ≻ x1 ≻ x4 ≻ x3 x2

R 0.202598 0.012383 0.406821 0.254974 x2 ≻ x1 ≻ x4 ≻ x3 x2

Q(v = 0.5) 0.529596 0 1 0.627870 x2 ≻ x1 ≻ x4 ≻ x3 x2

it also satisfies the condition 1, so we can get the alternative x2 as the only compromise

solution.

It is easy to see that the ranking results obtained by the method proposed in this paper

and by the method in Chen and Liu (2015) are completely the same, and the best alternative

of two methods is always x2. So it can prove the method in this paper is effective. Our

proposed method can select the compromise alternative by the maximum “group utility”

and minimum “individual regret” and Chen’s method does not consider these factors, so

the advantage of our method is that it is more flexible and effective to solve the MADM

problems in the real world.

6. Conclusions

The intuitionistic fuzzy sets have become more and more important tools to deal with

imprecise and uncertain information. In this paper, we propose the concept of interval-

valued linguistic intuitionistic fuzzy numbers, in which the membership degree and the

non-membership degree are presented by interval-valued linguistic variables. The Ham-

ming distance between two IVLIFNs is defined. We also define the interval-valued lin-

guistic intuitionistic fuzzy entropy, which can reflect fuzziness and the degree of lack of

information. Further, the traditional VIKOR method is extended to process the IVLIFNs

and used to solve the MADM problems, which are based on the maximum “group util-

ity” and minimum “individual regret”. Finally, an example is used to demonstrate their

practicality and effectiveness. By comparing it to the other MADM methods, the advan-

tages of the proposed method are that it can simultaneously consider the “group utility’

and “individual regret” and can give a compromise best solution or a set of compro-

mise solutions. In further research, it is necessary and meaningful to use the proposed

method to real decision making problems such as environment evaluation (Wu, 2016;

Zhang, 2016; Jain, 2016; He et al., 2015), etc. Some other methods based on IVLIFNs

should also be developed to neutrosophic set (Li et al., 2016), interval neutrosophic hesi-

tant fuzzy sets (Ye, 2016). In addition, we can extend our analysis to some other prob-

lems as consensus or management of incomplete information (Cabrerizo et al., 2015;

Ureńa et al., 2015), and so on.
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