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Abstract. Scalar quantizer selection for processing a signal with a unit variance is a difficult prob-
lem, while both selection and quantizer design for the range of variances is even tougher and to
the authors’ best knowledge, it is not theoretically solved. Furthermore, performance estimation of
various image processing algorithms is unjustifiably neglected and there are only a few analytical
models that follow experimental analysis. In this paper, we analyse application of piecewise uniform
quantizer with Golomb-Rice coding in modified block truncation coding algorithm for grayscale
image compression, propose design improvements and provide a novel analytical model for perfor-
mance analysis. Besides the nature of input signal, required compression rate and processing delay
of the observed system have a strong influence on quantizer design. Consequently, the impact of
quantizer range choice is analysed using a discrete designing variance and it was exploited to im-
prove overall quantizer performance, whereas variable-length coding is applied in order to reduce
quantizer’s fixed bit-rate. The analytical model for performance analysis is proposed by introduc-
ing Inverse Gaussian distribution and it is obtained by discussing a number of images, providing
general closed-form solutions for peak-signal-to-noise ratio and the total average bit-rate estima-
tion. The proposed quantizer design ensures better performance in comparison to the other similar
methods for grayscale image compression, including linear prediction of pixel intensity and edge-
based adaptation, whereas analytical model for performance analysis provides matching with the
experimental results within the range of 1 dB for PSQNR and 0.2 bpp for the total average bit-rate.

Key words: analytical model, Golomb–Rice coding, image compression, inverse Gaussian
distribution, piecewise uniform quantizer, number of pixel change.

1. Introduction

Image processing incorporates a variety of manipulations designed in order to provide
desired information or specific image quality that is application depended. Although both
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optical and analog image processing have a great importance in the image acquisition
processes, digital image processing has a dominant role in a number of applications such
as intelligent watermarking, video telephony or pattern recognition. With high-growing
market, these applications became very important and high quality of images is required.
The final objective is to achieve as high as possible image quality at the given bit-rate. On
the other hand, age of information sets new hardware requirements with the rapid growing,
setting limited data storage, low processing delay or hardware simplicity as important
demands. As a result, digital image compression has a key role in development of future
systems.

Block truncation coding (BTC) is the image compression method proposed by Delp
and Mitchell (1979). Its quite simple design and capability to introduce other various tech-
niques into the algorithm made it very popular and a common tool for solving different
problems. Currently, it is commonly used to compress a video to be stored in frame mem-
ory for display devices such as LCDs (Kim et al., 2016) and it is widely used for LCD
overdrives (Kim and Lee, 2016). Furthermore, modern watermarking techniques are very
often based on block truncation coding – in Chang et al. (2015) it is proposed high capacity
reversible data hiding scheme based on residual histogram shifting for compressed images
of block truncation coding whereas high capacity data hiding scheme for error-diffused
block truncation coding is presented by Guo and Liu (2012). Next, SVD-based tamper
detection and self-recovery algorithm using active watermarking and block partitioning
is discussed in Dadkhah et al. (2014). Moreover, BTC method can be successfully applied
to the systems that deal with both grayscale and colour images (Lema and Mitchell, 1984;
Chang et al., 2008).

Also, colour image quantization has been researched in recent years and some methods
based on artificial bee colony algorithm (Ozturk et al., 2014) or designed for specific fea-
ture extraction (Ponti et al., 2016) were proposed. Besides that, current problems require
application of various techniques to biometric systems, pattern recognition, computer vi-
sion or medical imaging making the image processing algorithms research very important
(Barcellos et al., 2015; Alomari et al., 2016). In this paper, we are focused on piecewise-
uniformquantizer designing and its application to the algorithm which processes grayscale
images.

Issues that originate during image acquisition and image-processing steps that were
applied to the image during digital image processing, such as those involving contrast
and dynamic range mismatch, can be successfully depicted using a histogram (Salomon,
2007). Histograms are frequently used to determine whether an image is making effective
use of its intensity range by analysing the size, shape and form of the histogram’s distribu-
tion. In Savic et al. (2012) a model for PSQNR (peak signal-to-quantization-noise ratio)
calculation which exploits weighting function for averaging was presented. However, this
function depends on the input dataset and closed-form solutions are not provided. In this
paper, we will consider a histogram of variances which is focused on distinction between a
pixel value and a mean value of all pixels in a block that the pixel belongs to. This kind of
histogram will be researched in order to make an analytical model with closed-form solu-
tions for performance estimation of the proposed system. Besides PSQNR, estimation of
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the total average bit-rate will be provided due to a great influence of applied Golomb–Rice
coding as a lossless data compression method (Perić et al., 2010a, 2010b). The histogram
will be modelled by introducing Inverse Gaussian function in order to provide general
closed-form solutions.

Besides providing a novel analytical model, emphasize of the paper is to propose an
improved quantizer design, in order to improve overall system performance of block trun-
cation coding. Improvements are done by applying Golomb–Rice binary coding of the
piecewise uniform quantizer’s output signal as well as by determining its optimal support
range, discussing the influence of the discrete designing variance. Variable-length cod-
ing is already presented in both software and hardware solutions in a number of schemes
that are exploited in image processing techniques, including the state-of-the-art solutions
(Sayood, 2006; Salomon, 2007). JPEG-LS exploits various schemes for adaptive coding
of residuals such as arithmetic coding and the Merhav–Seroussi–Weinberger scheme (Ali
and Manzur, 2015). Moreover, some hardware solutions are already proposed, making
Golomb–Rice coding suitable for both software and hardware applications (Kim et al.,
2011). Next, hybrid model for compression of Laplacian source, discussed in Perić et al.

(2010a), exploits Golomb–Rice output levels coding. However, the authors discussed hy-
brid model only for the unit variance, which is not suitable for image compression applica-
tions. Furthermore, aforementioned hybrid quantizer deals with continual signals whereas
image compression system that we discuss considers discrete signals. In this paper, we
propose Golomb–Rice coding application for designing core quantizer encoders, such as
those applied in block truncation coding, and we discuss its performance for medium bit-
rates that provide very high image quality. The obtained closed-form solutions depend on
the input signal variance as well as discrete designing variance. Furthermore, this way
designed quantizer encoder can be applied also in the other different and more complex
image processing algorithms. In the end, it will be shown that this way improved simple
block truncation coding system outperforms other similar techniques that incorporate lin-
ear prediction (Savic et al., 2015) and forward edge-based adaptation (Mathews and Nair,
2015). The system which incorporates linear prediction of the neighbouring pixel values
(Savic et al., 2015), exploits advantages of both uniform and piecewise uniform quantiz-
ers to perform additional data transfer in order to improve previously predicted values.
However, this way applied dual-mode quantization is performed only on about 70% of
the pixels, as the prediction provides satisfactory results at 30% of blocks (size 4 × 4).
However, we have to note that even though the proposed quantizer design provides high
image quality, few existing techniques that incorporate vector instead of scalar quantiza-
tion (Simic et al., 2017) or transformation coding, such as wavelet or curvelet (Li et al.,
2010, 2013), provide higher compression ratio but also demand higher processing delay
and have significantly higher complexity.

The paper is organized as follows. Section 2 describes the proposed coding algorithm
and piecewise uniform quantizer design with Golomb–Rice coding. Next, Section 3 pro-
poses a novel analytical model with closed-form solutions, based on Inverse Gaussian
function introduction. Finally, experimental results and comparison with other similar
models are shown in Section 4.
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2. Coding Algorithm and Piecewise Uniform Quantization

In the case when it is necessary to operate with discrete data, quantization process is very
often done in two steps. The first one deals with the received continual signal where contin-
ual samples have to be quantized with the fixed uniform quantizer Q0, described with N0

quantization levels. This way obtained samples, X = {x1, x2, . . . , xN0
}, are further quan-

tized with quantizer Q1 in order to perform additional data compression. Usually, quan-
tizer Q0 performs quantization with the high number of quantization levels. For grayscale
images N0 = 512 since that block truncation coding algorithm is based on quantization
of distinction between a pixel value and the mean value of all pixels in a block that pixel
belongs to, where x1 = −255 and xN0

= 255 (pixels of an image can take integer values
from 0 to 255). On the other hand, quantizer Q1 should deal with a low or medium num-
ber of quantization levels, in order to make a compromise between reconstruction quality
and the total average bit-rate. Nowadays, algorithms that discuss low number of quantiza-
tion levels, providing lower image quality, are much more researched (Simic et al., 2017).
Thus, in this paper we will discuss piecewise uniform quantizer Q1 with N = 16 and
N = 32 quantization levels, i.e. with medium number of levels.

It is well-known from literature that Laplacian information source provides excellent
modelling of distinction between pixel value and the mean value of all pixels in a block,
i.e. provides satisfactory matching between block truncation coding algorithm and real-
ity (Jayant and Noll, 1984). Consequently, we will suppose that information source has
Laplacian distribution with a memoryless property and mean value equal to zero. It is
defined with:

p(x) = 1√
2σ

exp

(

−
√

2|x|
σ

)

. (1)

The second step of quantization process provides quantization of discrete output sam-
ples from quantizer Q0 by using N quantization levels, where N < N0, providing addi-
tional data compression. Probabilities of these discrete input levels, considering Laplacian
source, are defined with:

P(xi) =
∫ xi+1

xi

p(x)dx = 1

2

(

exp

(

−
√

2xi

σ

)

− exp

(

−
√

2xi+1

σ

))

. (2)

Design of the piecewise uniform quantizer Q1 will be done as follows. Firstly, a piece-
wise uniform quantizer for the unit variance is designed. Its threshold values are obtained
by using optimal compandor, whose compressor function is defined by Jayant and Noll
(1984):

c(x) = −1 + 2

∫ x

−tmax
p1/3(t)dt

∫ tmax

−tmax
p1/3(t)dt

, (3)
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where tmax denotes maximal signal amplitude. Boundaries between segments can be cal-
culated with:

ϕσ=1
i = 3√

2
log

(
2iM + (N − 2iM) exp

(

−
√

2
3

tσ=1
max (N)

)

N

)

, 0 6 i 6 L/2, (4)

ϕσ=1
i = 3√

2
log

(
N

2N − 2iM + (2iM − N) exp
(

−
√

2
3

tσ=1
max (N)

)

)

, L/2 < i 6 L.

(5)

In previous expressions, tσ=1
max represents the optimal maximal signal amplitude for the

unit variance and its values are taken from (Perić et al., 2009). The value depends on the
number of quantization levels – tσ=1

max = 6.01 for N = 16 and tσ=1
max = 7.91 for N = 32.

Furthermore, the number of uniform output levels in each segment is denoted with M and
it can be calculated as M = N/L.

The width of each region cell within a segment is equal to:

1i =
ϕσ=1

i − ϕσ=1
i−1

M
. (6)

Furthermore, decision thresholds of the piecewise uniform quantizer, designed for the unit
variance, can be obtained as:

ω
opt
i,j = ϕσ=1

i + j · 1i, 0 6 i 6 L; 1 6 j 6 M. (7)

Finally, the output levels are defined with:

y
opt
i,j = ϕσ=1

i +
(

2j − 1

2

)

1i, 0 6 i 6 L; 1 6 j 6 M. (8)

In Eqs. (4)–(8) i denotes a segment while j denotes the output level within the observed
segment. Due to the fact that compressor function c(x), defined with Eq. (3), maps the
input range to (−tmax, tmax) wherein tσ=1

max ≪ xN0
, denormalization will be done by using

a discrete designing variance σ̂ as follows:

ωi,j = ω
opt
i,j · σ̂ , 0 6 i 6 L; 1 6 j 6 M, (9)

yi,j = y
opt
i,j · σ̂ , 0 6 i 6 L; 1 6 j 6 M. (10)

Finally, quantization levels could be written in a simpler form using one index, as:

yk = yi,j , k = 1, . . . ,N, (11)

where index k, that corresponds to indices i and j , is obtained as k = (i − 1)M + j .
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2.1. Golomb–Rice Coding

After quantization with Q0 and Q1, signal is encoded with a binary Golomb–Rice en-
coder at the output of designed quantizer encoder. In order to apply Golomb–Rice code
described with parameter m = 2k , N quantization levels have to be divided into S seg-
ments. Taking into account symmetry of the quantizer Q1, we will consider that S = L/2,
i.e. S is equal to the number of segments in the positive range of quantizer Q1, in order
to simplify encoding design. This way, each Golomb–Rice segment will cover the corre-
sponding symmetric ranges from the quantizer Q1 in both positive and negative range.
Segments are indexed with 0,1, . . . , S − 1. The total number of quantization levels has to
be equal to:

N = S · m. (12)

When organizing encoding process in this way, it can be seen that m represents the number
of output levels in each segment of variable length coding. Finally, the codeword of the j th
segment (0 6 j 6 S − 1) is formed as XX

︸︷︷︸

j

0 x . . . x
︸ ︷︷ ︸

k

and its length is (Perić et al., 2010a):

lj = j + k + 1 [bits]. (13)

2.2. Algorithm for Image Processing

In this section, we will explain the application of the previously described quantizer on
grayscale image processing. The algorithm is performed from left to right and from top
to bottom and it consists of the following steps:

1. The image is divided into a set of non-overlapping blocks, whose size is n × n (we
will use n = 4). Each block is processed separately.

2. The average pixel value xav of the block is found. Next, this value is quantized
(with uniform quantizers using 6 bits) and obtained quantized average value x̂av

is transmitted to the receiver (Savic et al., 2010).
3. The difference block of size n×n is formed. Its elements are obtained as the differ-

ence of the pixel values of the current block xi,j and its quantized mean value x̂av,
and they are denoted with di,j , i = 1, . . . , n; j = 1, . . . , n:

di,j = xi,j − x̂av. (14)

4. Quantization of elements di,j is done using the proposed quantizer Q1.
5. Quantized elements denoted with d̂i,j are binary coded with Golomb–Rice code

and transmitted to the receiver.
6. In the receiver, after the reception of x̂av and d̂i,j , the reconstruction of all pixels of

the original image is done as:

x̂i,j = d̂i,j + x̂av. (15)

7. Go to the step 2 until all blocks are processed.
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3. Analytical Model for Performance Analysis

Besides analysis of the piecewise uniform quantizer design and its optimization, the main
goal of this paper is to propose a novel analytical model for grayscale image compression
performance estimation. The model considers the proposed quantizer design and modified
block truncation coding algorithm described in Section 2.2 and it is based on a modelling
of histogram of variances whereas distinction between a pixel and the mean pixel value of
all pixels in a block that pixel belongs to, is considered as the input signal. The aforemen-
tioned histogram is obtained by processing ten standard test grayscale images (Baboon,
Bridge, Couple, Jet, Cart, Lena, Pepper, Ship, Street and Church).

In order to analyse and make a model of such histogram, we have researched various
distributions such as Rayleigh, Lognormal, Birnbaum-Saunders and Laplacian. However,
the best results we have achieved were by using general Inverse Gaussian distribution that
is defined with:

f (x) =
(

λ

2πx3

)1/2

exp

(−λ(x − µ)2

2µ2x

)

. (16)

Its support range is x ∈ (0,+∞) whereas the mean parameter is (µ > 0) and λ is the
shape parameter (λ > 0). The parameters of Inverse Gaussian distribution are estimated
by using maximum likelihood estimation method (MLE) which represents one of the stan-
dard methods and probably the most versatile one. However, the parameters could be esti-
mated also by using other methods such as method of moments or least squares estimation
method. If we suppose that x1, x2, . . . , xn are independent and identically distributed ob-
servations, likelihood function is defined with:

L(θ;x1, x2, . . . , xn) =
n
∏

i=1

f (xi, θ), (17)

where θ is a vector of parameters. After substituting Eq. (16) in Eq. (17), likelihood func-
tion for Inverse Gaussian distribution is obtained:

L(µ,λ) =
(

λ

2π

) n
2

(
n
∏

i=1

1

X3
i

) 1
2

exp

(

nλ

µ
− λ

2µ2

n
∑

i=1

Xi − λ

2

n
∑

i=1

1

Xi

)

. (18)

Finally, assuming that the log-likelihood function log(L(µ,λ)) is differentiable, unknown
parameters are estimated as:

d logL(µ,λ)

d µ
= 0 ⇒ µ̂ = 1

n

n
∑

i=1

Xi , (19)

d logL(µ,λ)

d λ
= 0 ⇒ λ̂ =

(

1

n

n
∑

i=1

(
1

Xi

− 1

µ̂

)
)−1

. (20)
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Fig. 1. Histogram of variances and Inverse Gaussian model.

In order to transform Inverse Gaussian function to a probability density function
(Fig. 1), unknown parameters will be estimated analogously to Eq. (19) and Eq. (20) as:

µ̂ =
g
∑

i=1

h(σi)σi, (21)

λ̂ =
(

g
∑

i=1

h(σi)

(
1

σi

− 1

µ̂

)
)−1

, (22)

where g represents the number of considered discrete variances of the input signal σi

whereas h(σi) represents weighting function of the observed set of images. In the end, we
have obtained µ̂ = 11 and λ̂ = 8.4 for such set of test images by using described method.
Fig. 1 shows both histogram of variances and corresponding Inverse Gaussian model for
parameters calculated using Eqs. (21)–(22).

In order to calculate the total average bit-rate of the proposed image compression al-
gorithm, we propose two models. The first one is more precise and it is based on the
proposed piecewise uniform quantizer design (M1 model) – all discrete thresholds and
quantization levels are exploited in the same way as for PSQNR calculation. The other
model is based on the optimal companding technique and it includes some additional er-
ror, but the obtained analytical expressions are much simpler and it is not necessary to
memorize thresholds and quantization levels values (M2 model).

M1 model uses piecewise uniform quantizer with compressor function described with
Eq. (3) while Golomb–Rice coding is performed as it was described in Section 2.1. Since
that Laplacian source is considered at the entrance, compressor function can be defined
as:
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c1(x) =
1 − exp

(

−
√

2x
3σ̂

)

1 − exp
(

−
√

2tmax

3σ̂

) , x > 0. (23)

The input signal will be coded using codewords of length lj (Eq. (13)) with probabil-
ities:

P0(σ, σ̂ ) = 2

∫ d1

0
p(x)dx = 1 − exp

(

−
√

2 · d1

σ

)

, (24)

Pj (σ, σ̂ ) = 2

∫ dj+1

dj

p(x)dx = exp

(

−
√

2 · dj

σ

)

− exp

(

−
√

2 · dj+1

σ

)

,

1 6 j 6 S − 2, (25)

PS−1(σ, σ̂ ) = 2

∫ dS

dS−1

p(x)dx = exp

(

−
√

2 · dS−1

σ

)

− exp

(

−
√

2 · dS

σ

)

. (26)

In Eqs. (24)–(26) and Eqs. (30)–(32)with di (1 6 i 6 S−1) are denoted discrete threshold
values and it is valid di(σ̂ ) = ωi−1,M , whereas dS = 255. Furthermore, p(x) is Laplacian
distribution defined with Eq. (1). Finally, the average bit-rate for the single variance is
calculated with:

RGR =
S−1
∑

j=0

lj · Pj (σ, σ̂ ), (27)

where σ represents the variance of distinction between a pixel value and mean value of
all pixels in a block that pixel belongs to and it represents the input signal of the quantizer.
Figure 2 shows the total average bit-rate dependence on the input signal variance. By
observing Fig. 2, it can be clearly seen that the average bit-rate is strongly dependent
on the input signal variance. Consequently, for considering the wider set of signals, the
weighting function has to be included. As a result, the total average bit-rate of the model
M1 is obtained by using weighting function for averaging and taking into account the
required number of bits for transmitting xav (Section 2.2) as:

RM1 =
255
∑

i=1

S−1
∑

j=0

w(σi) · lj · Pj (σi, σ̂ ) + rav. (28)

In previous equation, probabilities of segments Pj (σi, σ̂ ) are defined with Eqs. (24)–(26)
where thresholds are obtained using compressor function from Eq. (23). Moreover, rav

denotes the required number of bits for transmitting xav and it is equal to 0.375 [bpp]. For
comparison, instead of w(σi) which represents Inverse Gaussian distribution, it will be
used h(σi), i.e. original histogram. The same averaging will be performed in both Eq. (33)
and Eq. (35) in order to obtain the total average bit-rate and PSQNR of the M2 model,
respectively.
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Fig. 2. RGR dependence on the input signal variance for various values of σ̂ (M1 model).

The second model (M2) is based on the optimal companding quantizer application.
The compressor function of such quantizer is defined with:

c2(x) = 1 − e−
√

2x
3σ̂ , x > 0. (29)

Probabilities of segments defined with Eq. (29) are:

P0(σ, σ̂ ) = 2

∫ d1

0
p(x)dx = 1 −

(

1 − m

N

) 3σ̂
σ

, (30)

Pj (σ, σ̂ ) = 2

∫ dj+1

dj

p(x)dx =
(

1 − j
m

N

) 3σ̂
σ

−
(

1 − (j + 1)
m

N

) 3σ̂
σ

,

1 6 j 6 S − 2, (31)

PS−1(σ, σ̂ ) = 2

∫ dS

dS−1

p(x)dx =
(

1 − (S − 1)
m

n

) 3σ̂
σ

. (32)

Finally, the total average bit-rate of the model M2 is obtained by using weighting function
for averaging and taking into account the required number of bits rav for transmitting xav

(Section 2.2) as:

RM2 =
255
∑

i=1

S−1
∑

j=0

w(σi) · lj · Pj (σi , σ̂ ) + rav. (33)
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In Eq. (33), unlike Eq. (28) probabilities of segments Pj (σi, σ̂ ) are defined with Eqs. (30)–
(32) where thresholds are obtained using compressor function from Eq. (29).

Because of the fact that the proposed model describes a kind of a lossy image compres-
sion method, some information will be lost irreversibly during the quantization process.
In order to measure reconstructed signal quality, we estimate distortion (D) that represents
a standard measure. It can be calculated with Savic et al. (2012):

D = 2

N/2
∑

k=1

qk∑

j=1

(tk,j − yk)
2P(tk,j ), (34)

where tk,j ∈ Zk are input levels for which the quantization level is yk , whereas parame-

ter qk denotes the number of input levels mapped with yk , where
∑N/2

k=1 qk = N0/2. Zk

are non-overlapping and non-negative subsets of the set X where Zk = {xk1, . . . , xkqk} and
⋃N/2

k=1 Zk = X+, whereas with X+ is denoted the subset which consists of all non-negative
elements of the set X. Furthermore, probabilities of discrete input levels are defined with
Eq. (2). Finally, taking previous consideration into account, including weighting averag-
ing for observed test grayscale images, reconstructed image quality calculated by using
the proposed analytical model will be denoted with PSQNRwav. This measure will be cal-
culated as:

PSQNRwav =
255
∑

σi=1

w(σi)PSQNR [dB], (35)

where

PSQNR = 10 log10

x2
max

D
[dB]. (36)

In previous equation xmax represents the maximal theoretical pixel value of an image (for
grayscale images xmax = 255).

4. Numerical Results and Discussion

This section provides experimental results of applying the proposed design and com-
parison with the results obtained by using described analytical model, as well as com-
parison with the other algorithms. The experiments are done for the set of ten standard
test grayscale images (Baboon, Bridge, Couple, Jet, Cart, Lena, Pepper, Ship, Street and
Church) of resolution n × n pixels (n = 512). These ten images are shown in Fig. 3. Un-
like theoretical calculations, experimentally measured reconstructed image quality using
PSQNR can be obtained as:

PSQNR = 10 log10

(
x2

max

MSE

)

[dB], (37)
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(a) (b) (c)

 

(d) (e) (f)

 

ŝ

(g) (h) (i)

 

ŝ

ŝ

(j)

Fig. 3. Standard test grayscale images: (a) Baboon; (b) Bridge; (c) Couple; (d) Jet; (e) Cart; (f) Lena; (g) Pepper;
(h) Ship; (i) Street; (j) Church.
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ŝ

Fig. 4. PSQNR – analytical model.

where MSE is mean squared error between original and reconstructed images and it is
defined with:

MSE = 1

n × n

∑(

x − x∗)2, (38)

where summation is done for all pixels of an image.
First of all, we provide a detailed analysis for the case when the number of quantization

levels is N = 16 and the number of segments is L = 8. This case is chosen since it has low
complexity and Golomb–Rice coding has great influence (k = 2) that will be discussed
later.

Figure 4 shows theoretical comparison of PSQNR values, obtained by using the exact
histogram of variances and the proposed closed-form solutions based on Inverse Gaussian
distribution.

By observing Fig. 4, it can be seen that with increasing the value of discrete designing
variance σ̂ , matching between the proposed closed-form solutions and analytical model
that exploits the exact histogram is getting better and almost equal. However, a mismatch
that can be noticed occurs due to variance mismatch within two quantization steps (Perić et

al., 2015) as well as it occurs to a non-ideal modelling using Inverse Gaussian distribution
for low variances. Finally, the highest PSQNR is provided for such value of σ̂ that is almost
equal to the corresponding mean value of the modelled input signal (µ̂ = 11), justifying
the term “designing variance” for parameter σ̂ (Perić et al., 2015).

By applying Eq. (28) and Eq. (33) for the observed case (N = 16, L = 8), we have
obtained theoretical values for the total average bit-rate. These results are shown in Fig.
5, and the performance of the proposed analytical model is compared with the values
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Fig. 5. The total average bit-rate – analytical model.

Table 1
Comparison of experimental and theoretical results – the total average bit-rate and PSQNR.

The total average bit-rate [bpp] PSQNR [dB]

M1 model M2 model Experiments Theoretical model Experiments

σ̂ Rhist RInv. Gaus Rhist RInv. Gaus Rex PSQNRhist PSQNRInv. Gauss PSQNRex

12 3.8720 3.8643 3.7985 3.7924 3.9257 42.8945 43.8275 40.1194
14 3.8044 3.7986 3.7311 3.7276 3.8987 42.9537 43.8193 40.8063
15 3.7547 3.7501 3.7031 3.7009 3.8694 41.6060 42.3193 41.3739
16 3.7171 3.7135 3.6781 3.6772 3.8360 41.6322 42.0689 41.0867
24 3.5793 3.5842 3.5471 3.5546 3.6572 40.0148 39.9896 40.9050
30 3.5121 3.5220 3.4931 3.5050 3.5733 38.3763 38.2929 39.6773

obtained by using the exact histogram values. By observing Fig. 5, it can be seen that the
proposed closed-form expressions achieve great matching with the corresponding values
obtained by using the exact histogram. Also, it can be noticed that the values obtained
by using piecewise uniform quantizer for calculations (M1 model) predict higher bit-rates
in comparison to the corresponding values obtained by using optimal compandor (M2
model). Later, Table 1 will show that M1 model is more precise.

In order to compare obtained results with existing models, firstly we provide com-
parison with the results published in Savic et al. (2012). The corresponding theoretical
results from the aforementioned paper, for fixed piecewise uniform quantizer application,
are PSQNRinf = 35.32 dB and Rinf = 4.375 bpp. Considering M1 model and taking into
account that PSQNR values increase/decrease for 5.5 dB by changing the bit-rate for 1 bit
for medium bit-rates, the proposed system achieves theoretical gain of PSQNR/R ratio in
comparison to the corresponding design presented in Savic et al. (2012) and it is shown
in Fig. 6.
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Fig. 6. Theoretical gain – comparison with Savic et al. (2012) N = 16, L = 8.

It can be clearly seen that the proposed modelling provides gain estimation very close
to the one obtained by using the exact histogram (1 < 1 dB) for the values of discrete
variance σ̂ > 12. Moreover, the difference decreases by increasing σ̂ and the best perfor-
mance is achieved in the range σ̂ ∈ (14,16). It should be noted that for σ̂ > 22 difference
is lower than 0.25 dB, that is almost negligible.

Consequently, taking into account that the best performance is predicted in the range
σ̂ ∈ (14,16) we have decided to provide experimental results by using the proposed al-
gorithm for σ̂ ∈ (12,14,15,16,24,30) and these results and corresponding comparison
with the theoretical models are shown in Table 1.

By observing the results shown in Table 1, it can be concluded that the total average
bit-rate decreases by increasing discrete designing variance σ̂ . It is evident that theoreti-
cal results obtained by using the proposed solutions (RInv. Gaus) achieve performance very
close to the one obtained by using the exact histogram (Rhist) as well as very close to the
experimental results (Rex). However, the results obtained by using M1 model are closer
to the experimental results as it could be expected because of its higher complexity. Next,
the results tell us that for σ̂ ∈ (15,16,24) the absolute errors between the experimental
results (PSQNRex) and the proposed closed-form solutions (PSQNRInv.Gauss) are less than
1 dB. Furthermore, we can conclude that theoretical results follow the changes of exper-
imental results. This means that the proposed model provides satisfactory performance
estimation within the range σ̂ ∈ (15,30). Taking into account results from Fig. 6, it can
be concluded that the best system performance is achieved for σ̂ = 15. Moreover, since
for σ̂ ∈ (15,16,24) higher accuracy is provided, for all the other numbers of quantization
segments L and quantization levels N , we will provide analysis that incorporates those
three values.
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Table 2
The total average bit-rate and PSQNR for various values of N and L.

N L σ̂ Rhist RInv.Gauss Rex [bpp] PSQNRhist PSQNRInv.Gauss PSQNRex

[bpp] [bpp] [bpp] [dB] [dB] [dB]

16 4 15 4.6771 4.6838 4.4271 40.8748 41.5134 40.8935
24 4.5268 4.5427 4.3802 37.6488 38.0756 39.1120
30 4.4748 4.4952 4.3654 36.1054 36.4777 37.8268

32 4 15 5.6553 5.6720 5.4179 45.6322 46.3163 45.4106
24 5.5130 5.5379 5.3710 43.3062 43.8258 44.2079
30 5.4549 5.4850 5.3563 42.5318 43.0339 43.0973

8 15 4.7340 4.7393 4.6939 46.6803 47.4487 46.3190
24 4.5525 4.5670 4.5379 45.4434 45.9896 45.2847
30 4.4987 4.5177 4.4839 43.7051 44.1817 45.3434

16 15 4.4131 4.3769 4.3364 46.7983 47.5733 46.6716
24 4.0102 3.9907 3.9568 45.5497 46.0716 45.8032
30 3.8550 3.8423 3.8180 43.8754 44.3203 45.8192

Table 2 shows theoretical and experimental performance for the various values of sys-
tem parameters.

As it was expected, PSQNR value increases by increasing the number of quantiza-
tion levels. Moreover, for fixed number of quantization levels, PSQNR value increases by
increasing the number of segments L. In order to compare compression quality for afore-
mentioned quantizers, the total average bit-rate depending on the number of quantization
levels and the number of quantization segments is also shown.

4.1. Comparison of the Obtained Results with Other Models

This section provides comparison of the obtained results with the corresponding one pre-
sented in other papers (Savic et al., 2012; Mathews and Nair, 2015; Savic et al., 2015).
The results are compared with the similar techniques as well as with the other that incor-
porates adaptation and linear prediction. In Table 3 are shown the average PSQNR and
the total average bit-rate values for three standard test grayscale images (Lena, Street and
Boat) processed by the proposed algorithm and they are compared with the corresponding
results published in Savic et al. (2012), denoted with PSQNRInf and RInf .

In Table 3, with Gaind is denoted experimental gain of the proposed model produced
by the proposed quantizer design implementation, whereas Gaintot is the total gain that is
obtained by both different quantizer design and variable length Golomb–Rice coding, i.e.
achieved by the proposed encoder design. It should be noted that Golomb–Rice coding
is not suitable in the case when L = 4 since the total average bit-rate is higher than the
bit-rate required for fixed quantizers (Savic et al., 2012). However, it can be clearly seen
that the proposed encoder design provides gain for the all observed system parameters and
that the gain reaches 11.56 dB.

Unlike conventionally designed classic block truncation coding models, there are a lot
of modifications designed to provide specific performance. In Mathews and Nair (2015) an
adaptive block truncation technique, that uses edge-based quantization in order to improve
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Table 3
The comparison of the system performance with the results published in Savic et al. (2012) for three standard

test grayscale images (Lena, Street and Boat).

N L σ̂ PSQNRex Rex [bpp] PSQNRInf RInf [bpp] Gaind Gaintotal

[dB] [bpp] [dB] [bpp] [dB] [dB]

16 4 15 42.045 4.504 33.037 4.375 9.008 8.299
24 39.963 4.435 6.926 6.596
30 38.468 4.412 5.431 5.228

8 15 42.831 3.869 35.817 4.375 7.014 9.797
24 41.895 3.657 6.078 10.027
30 40.443 3.573 4.626 9.037

32 4 15 46.556 5.496 40.058 5.375 6.498 5.833
24 45.311 5.432 5.253 4.940
30 44.065 5.408 4.007 3.826

8 15 47.778 4.704 42.380 5.375 5.398 9.089
24 46.177 4.490 3.797 8.665
30 46.225 4.490 3.845 8.713

16 15 48.214 4.631 42.640 5.375 5.574 9.666
24 46.502 4.162 3.862 10.534
30 46.494 3.974 3.854 11.560

compression ratio and preserve reconstructed image quality was proposed. The main idea
of this kind of adaptation is to adjust quantization levels for block processing depend-
ing on whether the observed block contains an edge or not. The authors have designed
the system that preserves the edge information, since artifacts near edges are a common
phenomenon and edges are considered as a very important feature of an image. From
Mathews and Nair (2015) it can be seen that their model achieves PSQNR = 36.9919 dB
and compression ratio CR = 3.1087 for the standard test grayscale image Lena whereas
PSQNR = 36.3085 dB and compression ratio CR = 2.8586 for the standard test grayscale
image Street is achieved. If we calculate the total average bit-rate from those CR values,
we get R = 2.5734 bpp for Lena and R = 2.7986 bpp for Street. On the other hand, by pro-
cessing these images with the proposed algorithm for the case N = 32, L = 16 and σ̂ = 30

(the highest obtained gain) we obtain the following performance– Lena: PSQNR = 46.624

dB and R = 3.721 bpp; Street: PSQNR = 46.258 dB, R = 3.852 bpp. By comparing these
results with the corresponding one published in Mathews and Nair (2015), we can con-
clude that our model achieves higher PSQNR but also higher average bit-rate. In order to
compare the PSQNR/R ratio, it should be noted that PSQNR value increases/decreases
for 5.5 dB by changing the total average bit-rate for 1 bpp (Savic et al., 2012). This way,
by transforming the results from Mathews and Nair (2015) to the same bit-rates as ours,
we get corresponding performance: Lena – PSQNR = 43.3037 dB, R = 3.721 bpp; Street
– PSQNR = 42.1022 dB, R = 3.852 bpp. By comparing these transformed results with
the corresponding one from the model that we propose, it can be concluded that the pro-
posed design achieves gain for image Lena GainLena = 3.3203 dB and for image Street
GainStreet = 4.1558 dB.

Next, we provide comparison to the results published in Savic et al. (2015), where an
application of linear prediction and dual-mode quantization in classic BTC algorithm is



720 N. Simić et al.

 

16 

32 

 PSQNR

16  42.3193

32  47.4487

(a) (b)

 ∆

16    

32    

 

)15

 [dB] [bpp] 

16     0.0266 

32     0.0248 

dB,1

(c) (d)

Fig. 7. Standard test grayscale images: (a) Parrot; (b) Clown; (c) Fruits; (d) Girl.

presented. The obtained results in Savic et al. (2015) for N = 16, which is the most suitable
configuration since linear prediction provides better performance for lower bit-rates, is
PSQNR = 32.83 dB and R = 2.71 bpp. On the other hand, from Table 3 it can be seen
that for N = 16, L = 8 and σ̂ = 15 we have PSQNR = 42.831 dB and R = 3.8694 bpp.
By transforming the results from Savic et al. (2015), taking into account aforementioned
PSQNR/R rule, we have obtained PSQNR = 39.2067 dB and R = 3.8694 bpp. Finally,
we can conclude that the proposed model achieves gain of Gaineswa = 42.83139.2067 =
3.6243 dB in comparison to the model that incorporates linear prediction from Savic et

al. (2015).
In the end, we provide a comparison of the obtained theoretical results obtained for the

considered set of ten standard test grayscale images (Tables 1 and 2) with the experimental
results for standard test grayscale images that do not belong to the set used for model
making. This way we want to show generality of the proposed analytical model and closed-
form expressions. Experiments are done for 4 standard test grayscale images – Parrot,
Clown, Fruits and Girl. These images are shown in Fig. 7.

In Table 4 obtained average experimental results (denoted with PSQNRex and Rex)
and corresponding theoretical results obtained by using the proposed analytical model
(denoted with PSQNRth and Rth) are shown.

In Table 4, with 1PSQNR and 1R are denoted the absolute error rates between cor-
responding experimental and theoretical results. By observing Table 4, it can be unam-
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Table 4
System performance for standard test grayscale images from Fig. 7. (L = 8; σ̂ = 15).

N PSQNRex Rex PSQNRth Rth 1PSQNR [dB] 1R [bpp]

16 42.4828 3.7235 42.3193 3.7501 0.1635 0.0266
32 47.1250 4.7145 47.4487 4.7393 0.3237 0.0248

 

(a) (b)

;8; =

 

)15

(c) (d)

Fig. 8. Reconstructed standard test grayscale images from Fig. 7 (N = 16; L = 8; σ̂ = 15): (a) Parrot; (b) Clown;
(c) Fruits; (d) Girl.

biguously seen that the proposed analytical model predicts system performance very well
(1PSQNR ≪ 1 dB, 1R ≪ 0.2 bpp) even for the wider set of standard test grayscale im-
ages, whose statistical properties were not taken into consideration and model designing.
The reconstructed images obtained by processing with the proposed algorithm are shown
in Fig. 8. It can be noticed that the visual difference between reconstructed and original
images almost does not exist and that there is not any noticeable geometric irregularity
such as block effect.

5. Conclusions

BTC algorithm as one of the core techniques for image processing has been modified and
upgraded in a number of papers. Also, there are various modifications that are application
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dependent and they provide satisfactory results in comparison to the other techniques.
However, the deficiency of analytical models for performance analysis motivated us to
provide a model as well as an improved system design for grayscale image compression.
In this study, we have developed the analytical model based on application of Inverse
Gaussian distribution. The proposed closed-form solutions for PSQNR and the total aver-
age bit-rate provide matching with the experimental results for various values of system
parameters within the range of 1 dB and 0.2 bpp, respectively.

Furthermore, the experimental results show that the proposed design provides bet-
ter performance of reconstructed images in comparison to the other solutions based on
the fixed piecewise uniform quantizer. Firstly, comparing with Savic et al. (2012), it was
shown that experimental gain is provided for various system configurations and it is be-
tween 3.826 dB and 11.56 dB. Moreover, the proposed application of Golomb–Rice en-
coding provides gain even comparing to the other techniques such as adaptation and lin-
ear prediction. Comparing the achieved results with the corresponding one from Mathews
and Nair (2015) for two standard test images Lena and Street, we have shown that the
proposed system provides gain up to 4.1558 dB. This way, we have concluded that the
proposed design achieves better PSQNR/R ratio in comparison to edge-based adaptation.
Also, we have shown that the proposed design provides gain of 3.6243 dB in comparison
to the algorithm which apply linear prediction scheme (Savic et al., 2015). The proposed
method has very low complexity and it provides much lower processing time. In future
work, we will intend to research possible application of the proposed quantizer to the other
algorithms that incorporate transform coding as well as to provide analytical models for
different image processing algorithms due to its deficiency.
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