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Abstract. In this paper we consider an improved version of earlier published asymmetric encryption

protocol based on matrix power function (MPF). Recently, a linear algebra attack on earlier version

of this protocol was found. This attack allows an attacker to break suggested protocol in polynomial

time.

Here we show that the improved version of our encryption protocol is not vulnerable to the de-

clared linear attack, while retaining its effective realization in embedded systems.
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1. Introduction

Matrix power function (MPF) was first introduced in late 2000’s. This function proved

to be useful for application in symmetric and asymmetric cryptography, since all actions

are performed with small integers. This means that no additional co-processors have to

be used to perform actions with large elements as opposed to RSA encryption or elliptic

curves cryptography.Examples of these protocols can be found in Sakalauskas and Luksys

(2012), Sakalauskas et al. (2008), Mihalkovich and Sakalauskas (2012), Sakalauskas and

Mihalkovich (2014). The constructed protocols belong to non-commuting cryptography,

which currently is of special interest to researchers. However, to our knowledge none of

the protocols of this branch have been proven to be based on candidate one-way functions

relying on NP-complete problems.

Formally, MPF can be defined as a function of matrix Q as a parameter and matri-

ces (X,Y ) as function arguments parameters denoted by FQ(X,Y ) and expressed by the

formula

FQ(X,Y ) = E

where E is a matrix representing the function value. In this paper we mainly focus on

papers (Sakalauskas et al., 2008; Mihalkovich and Sakalauskas, 2012; Sakalauskas et al.,
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2017) and (Liu et al., 2016). In the latter paper authors present an attack based on linear

algebra, which can be applied to protocols, presented in Sakalauskas et al. (2008) and

Mihalkovich and Sakalauskas (2012) to break them in polynomial time. Our aim is to

prove that the latest version of the so-called matrix power asymmetric cipher (MPAC),

presented in Sakalauskas et al. (2017), is resistant to the declared attack, thus repairing

the flaw found. Also, due to provable security of the latest version of MPAC protocol, we

are making a conjecture that the recovery of decryption key is a hard problem.

2. Our Previous Work

Let us consider a commutative multiplicative semigroup S of multiplicative order t .

Hence the powers of elements of S can be defined in a commutative numeric ring Zt ,

where addition and multiplication are defined modulo t . Previously in Sakalauskas et al.

(2017) we defined this group as Sylow subgroup Ŵp,n ⊂ Zn of prime multiplicative or-

der p combined with an ideal J p,n given by J p,n = jŴp,n, where j is an idempotent

of the semigroup Zp. Due to prime multiplicative order p of the platform semigroup

Ŵ
♯
p,n = Ŵp,n ∪ Jp,n, all the powers of elements of this algebraic structure are contained

in a power field Zp .

We construct a semigroup of square m×m matrices with entries defined in semigroup

Ŵp,n and denote it by MŴp,n . Analogously we construct a ring of square m × m matrices

MZn with entries of these matrices defined in numerical field Zp.

The two-sided MPF (or MPF for short) for a fixed parameter matrix MŴp,n is denoted

as follows:

XQY = E, (1)

where matrices X = {xij } and Y = {yij } are defined in a power ring MZp and matrix

Q = {qij } is defined in a platform semigroup MŴp,n . The entries of matrix e = {eij } are

calculated in the following way:

eij =

m
∏

k=1

m
∏

l=1

q
xikylj

kl . (2)

We will refer to matrices X and Y as matrix powers or power matrices, Q as a base

matrix and E as a matrix power value.

The following main properties of MPF were presented and proven in Sakalauskas and

Luksys (2012):

(

XQ
)Y

= X
(

QY
)

= XQY , (3)

X
(

UQV
)Y

= (XU)Q(V Y ) = XUQV Y . (4)

The idea of using MPF to perform asymmetric key exchange was initially proposed in

Sakalauskas et al. (2008). The suggested protocol resembles a famous approach of Diffie

and Hellman (1976).
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According to the initial idea, two protocol parties, called Alice and Bob, agree on

the public platform semigroup Zp hence implying the power ring Zp−1. Both parties

also agree on two sets of commuting matrices 〈L〉 ⊂ MZp and 〈R〉 ⊂ MZp generated by

matrices L and R respectively. Furthermore the base matrix Q ∈ MZp is generated and

published online.

To perform asymmetric key exchange Alice and Bob select their private keys – pairs

of matrices X ∈ 〈L〉, Y ∈ 〈R〉 for Alice and U ∈ 〈L〉,V ∈ 〈R〉 for Bob. Their public keys

are obtained using MPF, i.e. A =X QY for Alice and B =U QV for Bob. Hence we have:

PrKA = (X,Y ), PuKA = A,

PrKB = (U,V ), PuKB = B,

where PrK and PuK denote private and public key respectively.

Upon exchanging their public keys, Alice and Bob can agree on a common key K

calculated as follows:

K =X BY =(XU) Q(V Y ) =(UX) Q(YV ) =U AV ,

since matrices X, U and Y , V commute.

However, it is shown in Liu et al. (2016), that this asymmetric key exchange is vul-

nerable to a certain linear algebra attack. Furthermore, their idea also holds in case of

asymmetric encryption proposed in Mihalkovich and Sakalauskas (2012).

We now recall an improved version of MPAC presented in Sakalauskas et al. (2017).

Alice and Bob agree on the public platform semigroup Ŵ
♯
p,n hence implying the power

field Zp . Furthermore, the base matrix Q ∈ MŴp,n , as well as two non-commuting power

matrices Z1,Z2 ∈ MZp , are generated and published publicly for both parties to use.

To perform MPAC protocol Alice generates her private and public data using the fol-

lowing steps:

• She randomly selects non-singular secret matrix X ∈ MZp ;

• Alice selects a random function u(x1, x2), where variables are non-commuting and

coefficients are in Zp. Using this function Alice calculates matrix U = u(Z1,Z2);

• She computes matrices XZ1X
−1 = A1, XZ2X

−1 = A2, XQU = E.

Hence Alice obtained her data: a private key PrKA = (X,u(x1, x2)), which she keeps a

secret, and a public key PuKA = (A1,A2,E), which is certificated and published online.

To encrypt a secret message M Bob takes Alice’s public key PuKA and performs the

following actions:

1. Bob chooses randomly a non-singular matrix Y ∈ MZp ;

2. He selects a random function v(x1, x2), where variables are non-commuting and

coefficients are in Zp . Using this function he calculates matrix V = v(Z1,Z2).

Then Bob takes matrices A1 and A2 and computes a matrix W = v(A1,A2) =

Xv(Z1,Z2)X
−1 = XV X−1;
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3. He raises matrix XQU to the obtained power matrix W on the left and obtains
XV QU since WX = XV ;

4. He raises the result matrix to the power matrix Y on the right and obtains XV QUY

= K , which can then be converted to a bit string;

5. Bob computes the ciphertext C = K ⊕ M , where ⊕ is bitwise sum modulo 2 of all

entries of bit stings K and M;

6. Bob computes three matrices (Y−1Z1Y = B1, Y−1Z2Y = B2, V QY = F) which

we denote by encryptor ε and sends it to Alice together with C.

Upon receiving the encryptor ε Alice performs the following actions to decrypt Bob’s

message:

1. She uses matrices B1 and B2 and her secret function u(x1, x2) to compute

u(B1,B2) = Y−1UY ;

2. Alice raises matrix V QY to the power Y−1UY on the right and then raises the result

matrix to the power X on the left and hence obtains a matrix K = XV QUY and

converts it to a bitstring;

3. Alice can now decrypt a ciphertext C using encryption key K and relation

M = K ⊕ C = K ⊕ K ⊕ M.

The essential modification of the protocol suggested in Mihalkovich and Sakalauskas

(2012) is an extra matrix Z2, which is published as a public parameter. In the next section

we will show that this improvement of the initial protocol is enough to protect secret key

from linear algebra cryptanalysis.

3. The Analysis Linear Algebra Attack

Let us briefly recall the attack presented in Liu et al. (2016).

To break the asymmetric key exchange proposed in Sakalauskas et al. (2008) an at-

tacker has to solve the following system of equations:







XQY = A,

XL = LX,

YR = RY,

(5)

where matrices Q, L, R, A are publicly known. Using convenient discrete logarithm func-

tion this system can be transformed to the following system:







(ldgQ)Y = X−1ldgA,

X−1L = LX−1,

YR = RY.

(6)

The latter system can be solved in polynomial time if at least one of matrices X, Y has

an inverse. The algorithm for solving system (6) uses Kronecker product of matrices and
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stacking matrices X, Y into one long vector. Hence an extra restriction on private matrices

has to be added. Namely, matrices X, Y , U , V have to be singular.

Another way to avoid revealing of private keys in protocol (Sakalauskas et al., 2008)

is to escape the discrete logarithm transformation of system (5). Hence the choice of the

platform semigroup is vital to keep the protocol secure. As of now the platform group

Ŵ
♯
p,n seems to be a safe choice to avoid linear algebra attack since, in general, there is no

common generator of this semigroup, nor is this semigroup isomorphic to the Cartesian

or free product of several cyclic semigroups. For more information on this semigroup the

reader can turn to Sakalauskas et al. (2017), where the security of MPAC is considered.

In their paper (Liu et al., 2016) have also suggested an idea of using non-commuting

(semi)group to define a platform structure, i.e. the entries of base matrix Q should not

commute. While this idea is interesting, it has to be thoroughly studied.

Furthermore, in Mihalkovich and Sakalauskas (2012) we presented an asymmetric

encryption protocol, which unfortunately is not resistant to linear algebra attack described

in Liu et al. (2016). The key-point of this attack is eliminating matrix U by replacing it

with its polynomial expression. Hence the following system of equations has to be solved:















ZX−1 = X−1A,

ZY = YB,

(ldgQ) ·
m−1
∑

i=0

aiZ
i = X−1 · (ldgE).

(7)

The authors of the attack have shown that this can be done in polynomial time.

However, in Sakalauskas and Mihalkovich (2014) and Sakalauskas et al. (2017) we

have improved our protocol by choosing a safer platform semigroup and adding an extra

public parameter, namely a power matrix Z2. The latter improvement is useful since the

matrix U can now be calculated using an abstract random function u(x1, x2). This comes

from the structure of public data, namely matrices A1, A2, B1, B2 of both parties of the

protocol, since

XZ1X
−1 = A1,XZ2X

−1 = A2,

Y−1Z1Y = B1, Y
−1Z2Y = B2

and hence

u(B1,B2) = Y−1u(Z1,Z2)Y = Y−1UY,

v(A1,A2) = Xv(Z1,Z2)X
−1 = XV X−1

regardless of functions u(x1, x2) and v(x1, x2) respectively. An important moment here is

the arbitrary structure of these private functions, i.e. these functions can be obtained using

any combination of additions and multiplications of scalar non-commuting variables x1,

x2. For more clarity let us present several examples of these functions:

x1x2 + 2x2x1; 3x1x2x1 + x1 + 2x2 + x2x1;
(

x2

1
+ 3x1 + 2

)(

x3

2
− 2x2

2
− 1

)

.
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As we can see the exact expressions of private functions are limited only by imagination

of Alice and Bob and play no part in the execution of the MPAC protocol. However, on

the attacker’s side this unknown structure of private functions is an obstacle, which keeps

him from eliminating matrix U . Furthermore, the length of coefficients vector in now

unbounded since the space of all possible private functions is infinite, i.e. functions like

x1x2x1, x2x1x2, x1x
2

2
x3

1
x4

2
x1 as well as their combinations are a legitimate choice.

Note that the suggestion of using singular matrices X, Y , U , V as private key is not

valid in case of MPAC protocol due to conjugation constrains, i.e. matrices X and Y have

to be invertible. Hence the security of MPAC protocol now relies on the correct choice

of platform semigroup and the unknown structure of the private functions u(x1, x2) and

v(x1, x2) respectively.

4. Conclusions

In our paper we presented an analysis of a certain attack suggested in Liu et al. (2016).

While avoidance of this attack for asymmetric key exchange was suggested by authors

themselves, the case of asymmetric encryption is more complicated. The essence of linear

algebra attack on the early version of MPAC is elimination of the private matrix U due to

its polynomial structure, which is publicly known.

We also analysed the resistance to this attack of improved version of Matrix Power

Asymmetric Cipher (MPAC) suggested in Sakalauskas et al. (2017). Based on performed

analysis we can see that the security of this protocol relies on the following facts:

• An attacker has to solve the so-called MPF problem with conjugation constraints;

• By choosing a platform semigroup Ŵ
♯
p,n the transformation of MPF problem using

discrete logarithm function can be avoided;

• By adding an extra matrix Z2 as a public parameter matrices U and V can be calcu-

lated using arbitrary random functions. The space of these functions is unbounded.

So far we do not know the methods of the solution of systems defined by initial MPF

equations, since they are not custom systems of algebraic equations. It is rather a system

of power equations, where unknown variables are the powers of certain elements in semi-

group. Furthermore, the unknown structure of private function is an extra factor, which

has to be considered as well.
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