
INFORMATICA, 2017, Vol. 28, No. 3, 525–545 525
 2017 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2017.143

From Process Models to Concurrent Systems
in Alvis Language

Marcin SZPYRKA∗, Grzegorz J. NALEPA, Krzysztof KLUZA
AGH University of Science and Technology, Department of Applied Computer Science

al. A. Mickiewicza 30, 30-059 Krakow, Poland

e-mail: mszpyrka@agh.edu.pl, gjn@agh.edu.pl, kluza@agh.edu.pl

Received: July 2016; accepted: March 2017

Abstract. Business Process Model and Notation (BPMN) is the leading visual notation used for
modelling business processes. This paper shows how the Alvis modelling language can be used for
formal analysis of BPMN models. Alvis supports graphical modelling of interconnections among
subsystems called agents as well as a high-level programming specification for describing the agents’
behaviour. Its advantage is the possibility of formal verification using proven model checking tech-
niques. We propose a translation from the BPMN model to the Alvis representation, which is dis-
cussed and evaluated using an illustrative example of a process for evaluation of a student assign-
ment. Thanks to the translation it is possible to perform formal verification of a BPMN model in
a high-level concurrent environment. As opposed to some low-level representations, such as Petri
nets, semantics of Alvis is close to the original BPMN model. Moreover, if a concurrent system be-
haviour is specified using a BPMN model, it is possible to generate a formal model (a preliminary
implementation) of the system.

Key words: business process model verification, Alvis modelling language, concurrent model,
formal verification, Business Process Model and Notation (BPMN).

1. Introduction

Modelling of business processes can be considered on two distinct levels. One concern-
ing visual specification and another related to the verification of processes. BPMN is a
predominant visual notation used for processes specification and is used as the starting
point for the research presented in the paper. Because BPMN is not provided with a for-
mal semantics, interpretation of a certain business model may be ambiguous. Thus, to
verify a model in a formal way, it must be translated onto another formalism. A survey of
transformation methods developed for BPMN is presented in Section 2. The most popular
formalism used as the aim of such transformations are Petri nets (Lohmann et al., 2009).
However, some modelling patterns (Russell et al., 2006) are hard to handle in Petri nets,
e.g. multi-choice, in which execution of a number of branches is chosen. Moreover, it can
lead the resulting net to become hard to read or to use Petri net classes, for which analy-
sis may be infeasible. A critical analysis of the approach based on translation of BPMN

*Corresponding author.

526 M. Szpyrka et al.

diagrams onto YAWL (and finally coloured Petri nets) can be found in Börger (2012).
It seems that new methods of expressing BPMN models in a formal way are still worth
attention.

In this paper, we introduce a translation from BPMN to the Alvis modelling lan-
guage (Szpyrka et al., 2011a) in order to verify BPMN models formally. Alvis combines
the advantages of formal methods and practical modelling languages. Alvis provides a
user-friendly syntax from engineers’ point of view, and the visual modelling language
(communication diagrams) that is used to define communication among agents. The main
difference between Alvis and industry programming languages is a possibility of formal
verification of Alvis models using model checking techniques. A short position paper con-
cerning this approach was previously presented during the Intelligent Distributed Com-
puting 2011 conference (Szpyrka et al., 2011b). Since then, we extended and evaluated
the model. Thus in this paper a complete discussion of our approach is given. One of the
main advantages of this approach is the similarity between BPMN and Alvis models. The
Alvis model resembles the original BPMN one from the graph structure point of view.
Thus, after a verification of the Alvis model, it is easy to link the model properties to
the properties of the original BPMN model. Moreover, due to the high level programming
language used to define behaviour of Alvis components (agents), it is easy to encode more
complex BPMN constructions in the Alvis code layer in order to avoid complex structure
of the graphical layer.

The paper focuses on the control-flow perspective of BPMN, i.e. it deals with the order
in which activities and events are allowed to occur. An Alvis states are represented using a
labelled transition system (LTS) graph. Execution of any language statement is expressed
as a transition between formally defined states (Szpyrka et al., 2014). In other words, an
LTS graph precisely mimics all activities and events of the corresponding BPMN model.
The LTS graph is used to verify model properties using model checking techniques (Baier
and Katoen, 2008).

The rest of the paper is organized as follows. In Section 2 the BPMN notation is briefly
described. Moreover, related works in the area of BPMN mode are presented. In Section 3,
a short presentation of selected Alvis features that are essential from the considered prob-
lem point of view is given. The transformation method from BPMN to Alvis is described
in Section 4. A BPMN use case describing a student project evaluation process is pre-
sented in Section 5. Using the case study the verification approach for the BPMN models
using Alvis is demonstrated. Conclusion and future work are described in the final section.

2. Related Works in BPMN Formalization

A business process (White and Miers, 2008) (BP) can be defined as a collection of related,
structured tasks that producea specific service or product (serve a particular goal) for a par-
ticular customer. Business Process Model and Notation (BPMN) (Allweyer, 2010), devel-
oped by the Business Process Management Initiative, is a visual notation for modelling
business processes. The notation uses a set of predefined graphical elements to depict

From Process Models to Concurrent Systems in Alvis Language 527

a business process and how it is performed. For the purpose of this research, only a sub-
set of BPMN elements is considered. The current version of BPMN (version 2.0) (OMG,
2011) defines three basic types of sub-models to cover various aspects of processes (pro-
cess, choreography and collaboration sub-models) and provides five diagram types to ex-
press different issues of these sub-models:

1. Private (internal) process model – describing the ways in which operations within
the organization are carried out to accomplish the intended objectives,

2. Public (collaborative) process model – showing the operations on the higher ab-
straction levels in the context of collaboration between the B2B participants,

3. Choreography model – defining the expected behaviour between interacting busi-
ness participants in the process, especially focusing on activities of message ex-
changing between them,

4. Collaboration model – focusing on interaction between participants and exchanged
messages,

5. Conversation model – specifying the logical relation of message exchanges.

In our research, the internal BP Model is considered. There are four basic categories
of elements used to model such processes: flow objects (activities, gateways, and events),
connecting objects (sequence flows, message flows, and associations), swimlines, and ar-
tifacts.

A task is a type of activity and is represented in the diagram with a rounded-corner
rectangle. A model defines the ways in which individual tasks are carried out. Gateways,
represented with diamond shapes, determine forking and merging of the sequence flow
between flow objects in a process, depending on some conditions. Events denote some-
thing that happens in the process and they are represented with circles. The icon within the
circle depicts the event type, e.g. an envelope for message event, a clock for timer event.

BPMN does not specify how to define lower level logic. Such logic can be specified
in other forms, such as rules, especially modelled in decision tables. Such decision tables
can be specified using Decision Model and Notation (DMN) (OMG, 2015), a recent spec-
ification from OMG. Although the DMN specification is extensive, it does not clarify all
the methodological issues concerning modelling using DMN. Some additional considera-
tions how to use DMN and take advantage of the FEEL expressions can be found in Silver
(2016). The DMN decision tables itself can be formally analysed, e.g. directly using geo-
metric algorithms for detection of overlapping rules and of missing rules (Calvanese et al.,
2016) or translated into other representation such as XTT2 for checking such properties
as completeness, consistency or subsumption of rules (Nalepa et al., 2011a).

From our point of view, a major challenge is that as BPMN models are generally not
formalized, they can not be verified using formal language verifiers. Thus, such models
have to be transformed into a formal language, and then some properties of such models
can be verified. Before introducing our original approach we discuss related works in this
area.

One of such approaches (Lam, 2010) transforms BPMN models to the New Symbolic
Model Verifier (NuSMV) language in order to do a model-checking analysis. This ap-

528 M. Szpyrka et al.

proach has formal foundations and addresses the correctness issue of the transformation.
It requires to encode properties of a model using Computation Tree Logic (CTL) formulas.

There are many solutions which focus on checking of selected properties of the BPMN
model using approaches based on Petri nets. Raedts et al. presented an approach (Raedts et

al., 2007) which transforms BPMN models to Petri nets, and these to the mCRL2 process
algebraic language. It allows for using the mCRL2 tool-set for verification of the model
e.g. revealing the states from where no transitions are enabled (the so-called deadlocks).
However, the revealed deadlocks are not directly pointed out in the source BPMN model.
So, they have to be manually identified in the BPMN models, what can slow the process
of result interpretation.

A similar approach (Dijkman et al., 2007), proposed by Dijkman et al., focuses on
mapping the BPMN model to Petri Net Markup Language (PNML). After transformation,
the ProM tool can semantically analyse the model and check it for absence of dead tasks
and incomplete process executions. The approach does not support the OR-join gateways.

Ou-Yang and Lin proposed a Petri-net-based approach (Ou-Yang and Lin, 2008) which
evaluates the feasibility of a BPMN model, e.g. to reveal deadlocks and infinite loops. The
approach consists in manual translating of the BPMN model to the Modified BPEL4WS
representation, and then to Coloured Petri-net XML (CPNXML). The CPNXML repre-
sentation can be then verified using CPN Tools. The approach has some major limitations,
such as limited assessment criteria, and lack of support of the multiple merge and split
conditions.

Similar research concerns the translation of BPMN models to Yet Another Workflow
Language (YAWL) (van der Aalst and ter Hofstede, 2005) was presented in Decker et

al. (2008) and formally specified in Ye et al. (2008). The model after translation can be
checked using a YAWL-based verification tool. The recent research in this field, conducted
by Wynn et al. (2009), allows for verification of YAWL models with advanced constructs,
such as cancellations or OR-joins. It uses mapping of a model to an extended Petri net in
order to verify the following properties: soundness, weak soundness, irreducible cancel-
lation regions, and immutable OR-joins. The research concerns the processes modelled
in YAWL, but according to the authors, it can be easily applicable to BPMN models. As
the abovementioned YAWL approaches consider only the one way (BPMN to YAWL)
transformation, the errors revealed in the YAWL model can not be easily tracked in the
original BPMN model. Badica et al. consider formalized models using Role Activity Di-
agrams for BP business process verification (Badica and Badica, 2011a) as well as in-
cluding logic-based ones in similar multi-agent approaches (Badica and Badica, 2011b).
Other formalized approaches in modelling complex heterogeneous information systems
include (Stepaniuk et al., 2005).

Several limitations of the existing solutions are summarized in Table 1. In the existing
solutions, including our approach, only a subset of BPMN models is capable to be verified
(or possible for transformation).Thus, most of the solutions do not support more advanced
BPMN constructs. Our solution supports OR-joins as well as multiple merge and split
conditions. Moreover, to the best of our knowledge, only our solution takes into account
the interaction with external participants (presented as black box pools in BPMN models).

From Process Models to Concurrent Systems in Alvis Language 529

Table 1
Related BPMN verification solutions

Paper Formal language Limitations

(Aguilar et al., 2011) Promela – only properties manually defined using LTL formula
can be checked

– no visualization of the formal language

(Lam, 2010) NuSMV → CTL – only properties manually defined using CTL formula
can be checked

– no visualization of the formal language

(Raedts et al., 2007) Petri nets → mCRL2 – lack of support for OR-joins

(Dijkman et al., 2007) Petri nets → PNML – lack of support for OR-joins

(Ou-Yang and Lin,
2008)

BPEL4WS → CPNXML – limited assessment criteria
– lack of support of the multiple merge and split

conditions

(Decker et al., 2008),
(Ye et al., 2008)

YAWL → Petri nets – lack of support for OR-joins

(Wynn et al., 2009) YAWL → Petri nets – errors revealed in the YAWL model can not be easily
tracked in the BPMN model

The main drawback of other solutions is that it is difficult to map the resulting model
back to the BPMN one. It is not straightforward to find the corresponding structure in the
BPMN model when an error is revealed in the model after translation. From the structure
point of view the Alvis model resembles the original BPMN one, thus after verification
of the Alvis model, it is easy to link the model properties to the properties of the original
BPMN model.

3. Alvis Modelling Language

Alvis (Szpyrka et al., 2011a, 2014; Matyasik et al., 2016) combines the advantages of
formal methods and practical modelling languages. The main differences between Alvis
and more classical formal methods, like Petri nets and process algebras, include the syn-
tax that is more user-friendly from engineers’ point of view, and the visual modelling
language (communication diagrams Szpyrka et al., 2016) that is used to define commu-
nication among agents. The main difference between Alvis and industry programming
languages is a possibility of formal verification of Alvis models using model checking
techniques.

An Alvis model is a system of agents that usually run concurrently, communicate with
each other, compete for shared resources etc. An agent denotes any distinguished part of
the system under consideration with a defined identity persisting in time. To describe all
dependencies among agents Alvis uses two model layers: graphical and code one. The
code layer is used to define the behaviour of individual agents. Each agent is described
with source code implemented using Alvis statements (Szpyrka et al., 2011a). From the
code layer point of view, agents are divided into active and passive ones. Active agents

530 M. Szpyrka et al.
✻ ▼✳ ❙③♣②&❦❛ ❡* ❛❧✳

active agent

passive agent

hierarchical agent

ports

one-way connection

two-way connection

input procedure call

output procedure call

• delay t;

• exec x = expression;

• exit;

• in p x;

• in (t) p x;

• in (t) p x {

success {...}

fail {...} }

• jump label;

• loop (g) {...}

• loop (every t) {...}

• loop {...}

• null;

• out p x;

• out (t) p x;

• out (t) p x {

success {...}

fail {...} }

• proc (g) p {...}

• select {

alt (g1) {...}

alt (g2) {...} ... }

• start A;

Agents Communication channels Code statements

❋✐❣✳ ✶✳ ❊❧❡♠❡♥%& ♦❢ ❆❧✈✐& ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡

&✐&%✐♥❣ ✐♥ %✐♠❡✳ ❚♦ ❞❡&❝3✐❜❡ ❛❧❧ ❞❡♣❡♥❞❡♥❝✐❡& ❛♠♦♥❣ ❛❣❡♥%& ❆❧✈✐& ✉&❡& %✇♦ ♠♦❞❡❧

❧❛②❡3&✿ ❣3❛♣❤✐❝❛❧ ❛♥❞ ❝♦❞❡ ♦♥❡✳ ❚❤❡ ❝♦❞❡ ❧❛②❡' ✐& ✉&❡❞ %♦ ❞❡✜♥❡ %❤❡ ❜❡❤❛✈✐♦3

♦❢ ✐♥❞✐✈✐❞✉❛❧ ❛❣❡♥%&✳ ❊❛❝❤ ❛❣❡♥% ✐& ❞❡&❝3✐❜❡❞ ✇✐%❤ &♦✉3❝❡ ❝♦❞❡ ✐♠♣❧❡♠❡♥%❡❞ ✉&✲

✐♥❣ ❆❧✈✐& &%❛%❡♠❡♥%& ✭❙③♣②3❦❛ ❡(❛❧✳✱ ✷✵✶✶❛✮✳ ❋3♦♠ %❤❡ ❝♦❞❡ ❧❛②❡3 ♣♦✐♥% ♦❢ ✈✐❡✇✱

❛❣❡♥%& ❛3❡ ❞✐✈✐❞❡❞ ✐♥%♦ ❛❝(✐✈❡ ❛♥❞ ♣❛--✐✈❡ ♦♥❡&✳ ❆❝(✐✈❡ ❛❣❡♥(- ♣❡3❢♦3♠ &♦♠❡ ❛❝✲

%✐✈✐%✐❡& ❛♥❞ ❡❛❝❤ ♦❢ %❤❡♠ ❝❛♥ ❜❡ %3❡❛%❡❞ ❛& ❛ %❤3❡❛❞ ♦❢ ❝♦♥%3♦❧ ✐♥ ❛ ❝♦♥❝✉33❡♥%

♦3 ❞✐&%3✐❜✉%❡❞ &②&%❡♠✳ 1❛--✐✈❡ ❛❣❡♥(- ❞♦ ♥♦% ♣❡3❢♦3♠ ❛♥② ✐♥❞✐✈✐❞✉❛❧ ❛❝%✐✈✐%②✱ ❜✉%

♣3♦✈✐❞❡ ❛ ♠❡❝❤❛♥✐&♠ ❢♦3 %❤❡ ♠✉%✉❛❧ ❡①❝❧✉&✐♦♥ ❛♥❞ ❞❛%❛ &②♥❝❤3♦♥✐③❛%✐♦♥✳ ❚❤❡

❣'❛♣❤✐❝❛❧ ❧❛②❡' ✭❝♦♠♠✉♥✐❝❛%✐♦♥ ❞✐❛❣3❛♠ ✭❙③♣②3❦❛ ❡(❛❧✳✱ ✷✵✶✻✮✮ ✐& ✉&❡❞ %♦ ❞❡✜♥❡

✐♥%❡3❝♦♥♥❡❝%✐♦♥& ✭❝♦♠♠✉♥✐❝❛%✐♦♥ ❝❤❛♥♥❡❧&✮ ❛♠♦♥❣ ❛❣❡♥%&✳ ❈♦♠♠✉♥✐❝❛%✐♦♥ ❞✐❛✲

❣3❛♠ ✐& ❛ ❤✐❡3❛3❝❤✐❝❛❧ ❣3❛♣❤ ✇❤♦&❡ ♥♦❞❡& ♠❛② 3❡♣3❡&❡♥% ❜♦%❤ ❦✐♥❞& ♦❢ ❛❣❡♥%&

✭❛❝(✐✈❡ ♦3 ♣❛--✐✈❡✮ ❛♥❞ ♣❛3%& ♦❢ %❤❡ ♠♦❞❡❧ ❢3♦♠ %❤❡ ❧♦✇❡3 ❧❡✈❡❧✳ ❚❤❡ ❞✐❛❣3❛♠& ❛❧✲

❧♦✇ ♣3♦❣3❛♠♠❡3& %♦ ❝♦♠❜✐♥❡ &❡%& ♦❢ ❛❣❡♥%& ✐♥%♦ ♠♦❞✉❧❡& %❤❛% ❛3❡ ❛❧&♦ 3❡♣3❡&❡♥%❡❞

❛& ❛❣❡♥%& ✭❝❛❧❧❡❞ ❤✐❡'❛'❝❤✐❝❛❧ ♦♥❡-✮✳ ❆ &✉3✈❡② ♦❢ ❆❧✈✐& ❣3❛♣❤✐❝❛❧ ✐%❡♠& ❛♥❞ ❝♦❞❡

&%❛%❡♠❡♥%& ✐& ❣✐✈❡♥ ✐♥ ❋✐❣✳ ✶✳

❆ &%❛%❡ ♦❢ ❛♥ ❆❧✈✐& ♠♦❞❡❧ ✐& 3❡♣3❡&❡♥%❡❞ ❛& ❛ &❡I✉❡♥❝❡ ♦❢ ❛❣❡♥%& &%❛%❡&✳ ❚♦

❞❡&❝3✐❜❡ %❤❡ ❝✉33❡♥% &%❛%❡ ♦❢ ❛♥ ❛❣❡♥% ❛ ❢♦✉3✲%✉♣❧❡ ✐& ✉&❡❞ ✭❙③♣②3❦❛ ❡(❛❧✳✱ ✷✵✶✹✮✿

❛❣❡♥% ♠♦❞❡✱ ♣3♦❣3❛♠ ❝♦✉♥%❡3✱ ❝♦♥%❡①% ✐♥❢♦3♠❛%✐♦♥ ❧✐&% ❛♥❞ ♣❛3❛♠❡%❡3&✬ ✈❛❧✉❡&

%✉♣❧❡ ✭&❡❡ ❋✐❣✳ ✷✮✳ ❆♥ ❛❝%✐✈❡ ❛❣❡♥% ❝❛♥ ❜❡ ✐♥ ♦♥❡ ♦❢ %❤❡ ❢♦❧❧♦✇✐♥❣ ♠♦❞❡&✿ ✜♥✐-❤❡❞

✭❋✮✱ ✐♥✐(✭■✮✱ '✉♥♥✐♥❣ ✭❳✮ ❛♥❞ ✇❛✐(✐♥❣ ✭❲✮✱ ✇❤✐❧❡ ❛ ♣❛&&✐✈❡ ❛❣❡♥% ❝❛♥ ❜❡ ❡✐%❤❡3 ✐♥

✇❛✐(✐♥❣ ✭❲✮ ♦3 ✐♥ (❛❦❡♥ ✭❚✮ ♠♦❞❡✳ ❚❤❡ ♣3♦❣3❛♠ ❝♦✉♥%❡3 ♣♦✐♥%& ♦✉% %❤❡ ❝✉33❡♥%

&%❛%❡♠❡♥% ♦❢ ❛♥ ❛❣❡♥% ✐✳❡✳ %❤❡ ♥❡①% &%❛%❡♠❡♥% %♦ ❜❡ ❡①❡❝✉%❡❞ ♦3 %❤❡ &%❛%❡♠❡♥%

%❤❛% ❤❛& ❜❡❡♥ ❡①❡❝✉%❡❞ ❜② ❛♥ ❛❣❡♥% ❜✉% ♥❡❡❞& ❛ ❢❡❡❞❜❛❝❦ ❢3♦♠ ❛♥♦%❤❡3 ❛❣❡♥% %♦

❜❡ ❝♦♠♣❧❡%❡❞✳ ❚❤❡ ❝♦♥%❡①% ✐♥❢♦3♠❛%✐♦♥ ❧✐&% ❝♦♥%❛✐♥& ❛❞❞✐%✐♦♥❛❧ ✐♥❢♦3♠❛%✐♦♥ ❛❜♦✉%

%❤❡ ❝✉33❡♥% &%❛%❡ ♦❢ ❛♥ ❛❣❡♥% ❡✳❣✳ ✐❢ ❛♥ ❛❣❡♥% ✐& %❤❡ ✇❛✐(✐♥❣ ♠♦❞❡✱ ❝♦♥%❛✐♥&

✐♥❢♦3♠❛%✐♦♥ ❛❜♦✉% ❡✈❡♥%& %❤❡ ❛❣❡♥% ✐& ✇❛✐%✐♥❣ ❢♦3✳ ❋✐♥❛❧❧②✱ ❛ ♣❛3❛♠❡%❡3&✬ ✈❛❧✉❡&

Fig. 1. Elements of Alvis modelling language.
❋!♦♠ ♣!♦❝❡'' ♠♦❞❡❧' *♦ ❝♦♥❝✉!!❡♥* '②'*❡♠' ✐♥ ❆❧✈✐' ❧❛♥❣✉❛❣❡ ✼

model’s agents
︷ ︸︸ ︷

((am1, pc1, ci1, pv1), . . . ,

active agent
︷ ︸︸ ︷

(ami, pci, cii, pvi), . . . ,

passive agent
︷ ︸︸ ︷

(amj , pcj , cij , pvj), . . . , (amn, pcn, cin, pvn))

I – init

F – finished

W – waiting

X – running

agent mode

current

statement

order number

program
counter

extra information

about state

e.g. called procedures

context
information

current values

of agent’s

parameters

parameters
values

W – waiting

T – taken

agent mode

❋✐❣✳ ✷✳ ❘❡♣#❡$❡♥&❛&✐♦♥ ♦❢ ❛♥ ❆❧✈✐$ ♠♦❞❡❧ $&❛&❡

&✉♣❧❡ ❝♦♥&❛✐♥$ &❤❡ ❝✉##❡♥& ✈❛❧✉❡$ ♦❢ &❤❡ ❛❣❡♥& ♣❛#❛♠❡&❡#$✳

❙&❛&❡$ ♦❢ ❛♥ ❆❧✈✐$ ♠♦❞❡❧ ❛♥❞ &#❛♥$✐&✐♦♥$ ❛♠♦♥❣ &❤❡♠ ❛#❡ #❡♣#❡$❡♥&❡❞ ✉$✐♥❣

❛ ❧❛❜❡❧❡❞ &#❛♥$✐&✐♦♥ $②$&❡♠ ✭▲❙❚ ❣#❛♣❤ ❢♦# $❤♦#&✮✳ ❆ ▲❚❙ ❣#❛♣❤ ✐$ ❛♥ ♦#❞❡#❡❞

❣#❛♣❤ ✇✐&❤ ♥♦❞❡$ #❡♣#❡$❡♥&✐♥❣ $&❛&❡$ ♦❢ &❤❡ ❝♦♥$✐❞❡#❡❞ $②$&❡♠ ❛♥❞ ❡❞❣❡$ #❡♣#❡✲

$❡♥&✐♥❣ &#❛♥$✐&✐♦♥$ ❛♠♦♥❣ $&❛&❡$✳ ▲❚❙ ❣#❛♣❤$ ❛#❡ ❛ ✉♥✐✈❡#$❛❧ ♠❡&❤♦❞ ♦❢ ❛ $&❛&❡

$♣❛❝❡ #❡♣#❡$❡♥&❛&✐♦♥ ❛♥❞ ❛#❡ ♦♠♥✐♣#❡$❡♥& ✐♥ ❢♦#♠❛❧ ♠♦❞❡❧✐♥❣ ❧❛♥❣✉❛❣❡$✳ ❉✐✛❡#✲

❡♥& ❧❛♥❣✉❛❣❡$ ❧✐❦❡ A❡&#✐ ♥❡&$✱ &✐♠❡ ❛✉&♦♠❛&❛✱ ♣#♦❝❡$$ ❛❧❣❡❜#❛$ ❡&❝✳ ✉$❡ ❞✐✛❡#❡♥&

♠❡&❤♦❞$ ♦❢ ❞❡$❝#✐❜✐♥❣ ♥♦❞❡$ ❛♥❞ ❡❞❣❡$ ✐♥ ▲❚❙ ❣#❛♣❤$✳ ❚❤❡② ❛❧$♦ ✉$❡ ❞✐✛❡#❡♥&

♥❛♠❡$ ❢♦# &❤❡♠ ❡✳❣✳ #❡❛❝❤❛❜✐❧✐&② ❣#❛♣❤$ ✐♥ A❡&#✐ ♥❡&$✱ ❜✉& &❤❡ ❣❡♥❡#❛❧ $&#✉❝&✉#❡

♦❢ &❤❡$❡ ❣#❛♣❤$ ✐$ $&✐❧❧ &❤❡ $❛♠❡✳ ■♥ $♣✐&❡ ♦❢ &❤❡ ❛✈❛✐❧❛❜✐❧✐&② ♦❢ ❞❡❞✐❝❛&❡❞ &♦♦❧$

❞❡$✐❣♥❡❞ ❢♦# $♣❡❝✐✜❝ ❢♦#♠❛❧✐$♠$✱ &❤❡#❡ ❛#❡ ❛❧$♦ ✉♥✐✈❡#$❛❧ &♦♦❧$ ❢♦# ✈❡#✐✜❝❛&✐♦♥ ♦❢

▲❚❙ ❣#❛♣❤$ #❡❣❛#❞❧❡$$ ♦❢ &❤❡ ❢♦#♠❛❧✐$♠ &❤❛& ✐$ &❤❡ $♦✉#❝❡ ♦❢ $✉❝❤ ❛♥ ▲❚❙ ❣#❛♣❤

❣❡♥❡#❛&✐♦♥✳ ❯$✉❛❧❧②✱ $✉❝❤ &♦♦❧$ ✉$❡ ♠♦❞❡❧ ❝❤❡❝❦✐♥❣ &❡❝❤♥✐F✉❡$ ❢♦# ❛♥ ▲❚❙ ❣#❛♣❤

✈❡#✐✜❝❛&✐♦♥ ✭❇❛✐❡# ❛♥❞ ❑❛&♦❡♥✱ ✷✵✵✽✮✳

❆❧✈✐$ ▲❚❙ ❣#❛♣❤$ ❝❛♥ ❜❡ ✈❡#✐✜❡❞ ✉$✐♥❣ &❤❡ ❈❆❉A &♦♦❧❜♦① ✭●❛#❛✈❡❧ ❡! ❛❧✳✱

✷✵✵✼✮✳ ❈❆❉A ♦✛❡#$ ❛ ✇✐❞❡ $❡& ♦❢ ❢✉♥❝&✐♦♥❛❧✐&✐❡$✱ #❛♥❣✐♥❣ ❢#♦♠ $&❡♣✲❜②✲$&❡♣ $✐♠✉✲

❧❛&✐♦♥ &♦ ♠❛$$✐✈❡❧② ♣❛#❛❧❧❡❧ ♠♦❞❡❧✲❝❤❡❝❦✐♥❣✳ ❆❧✈✐$ ❈♦♠♣✐❧❡# ♣#♦✈✐❞❡$ ❛ ♣♦$$✐❜✐❧✐&②

&♦ ❡①♣♦#& ❛♥ ▲❚❙ ❣#❛♣❤ ✐♥&♦ &❤❡ ❈❆❉A ❆❧❞❡❜❛#❛♥ ❢♦#♠❛&✳ ❚❤❡♥✱ $✉❝❤ ❛ ❣#❛♣❤ ❝❛♥

❜❡ ❝♦♥✈❡#&❡❞ ✐♥&♦ ❇❈● ✭❇✐♥❛#② ❈♦❞❡❞ ●#❛♣❤$✮ ❢♦#♠❛& &❤❛& ✐$ ♦♥❡ ♦❢ ❛❝❝❡♣&❛❜❧❡

✐♥♣✉& ❢♦#♠❛&$ ❢♦# ❈❆❉A ❚♦♦❧❜♦①✳ ❚❤❡ ❝♦♥✈❡#$✐♦♥ ♠❡&❤♦❞ ✐$ ♣#♦✈✐❞❡❞ ❜② ♦♥❡ ♦❢

❈❆❉A &♦♦❧$✳ ❚❤❡ ❇❈● ❢♦#♠❛& ✐$ ✐♥❞❡♣❡♥❞❡♥& ❢#♦♠ ❛♥② ♣❛#&✐❝✉❧❛# ♠♦❞❡❧✲❜❛$❡❞

✈❡#✐✜❝❛&✐♦♥ &❡❝❤♥✐F✉❡❀ ✐& ❝❛♥ ❜❡ ✉$❡❞ ❡✐&❤❡# ❜② &♦♦❧$ ♣❡#❢♦#♠✐♥❣ ❣#❛♣❤ ❝♦♠♣❛#✐✲

$♦♥ ❛♥❞ #❡❞✉❝&✐♦♥ ♠♦❞✉❧♦ ❡F✉✐✈❛❧❡♥❝❡ #❡❧❛&✐♦♥$✱ ♦# ❜② &♦♦❧$ ❝❤❡❝❦✐♥❣ ♣#♦♣❡#&✐❡$

❡①♣#❡$$❡❞ ✐♥ &❡♠♣♦#❛❧ ❧♦❣✐❝$✳ ❖♥❡ ♦❢ ❈❆❉A &♦♦❧$ ❝❛❧❧❡❞ ❡✈❛❧✉❛!♦(♣#♦✈✐❞❡$ ♦♥✲

&❤❡✲✢② ♠♦❞❡❧ ❝❤❡❝❦✐♥❣ ♦❢ #❡❣✉❧❛# ❛❧&❡#♥❛&✐♦♥✲❢#❡❡ ✲❝❛❧❝✉❧✉$ ❢♦#♠✉❧❛$ ✭❊♠❡#$♦♥✱

✶✾✾✼❛✱ ▼❛&❡❡$❝✉ ❛♥❞ ❙✐❣❤✐#❡❛♥✉✱ ✷✵✵✵✮✳ ❚❤❡ ❆❧✈✐$ ❧❛♥❣✉❛❣❡ ✐$ $✉♣♣♦#&❡❞ ❜② ❆❧✈✐$

❚♦♦❧❦✐& $♦❢&✇❛#❡ &❤❛&✱ ❛♠♦♥❣ ♦&❤❡# &❤✐♥❣$✱ ♣#♦✈✐❞❡$ ❆❧✈✐$ ❊❞✐&♦# ✉$❡❞ ❢♦# ❞❡✈❡❧✲

♦♣✐♥❣ ♠♦❞❡❧$ ❛♥❞ ❆❧✈✐$ ❈♦♠♣✐❧❡# ✉$❡❞ &♦ ❣❡♥❡#❛&❡ ▲❚❙ ❣#❛♣❤$

✶

✳

✶

❤!!♣✿✴✴❛❧✈✐)✳❦✐)✳❛❣❤✳❡❞✉✳♣❧

Fig. 2. Representation of an Alvis model state.

perform some activities and each of them can be treated as a thread of control in a concur-
rent or distributed system. Passive agents do not perform any individual activity, but pro-
vide a mechanism for the mutual exclusion and data synchronization. The graphical layer

(communication diagram Szpyrka et al., 2016) is used to define interconnections (commu-
nication channels) among agents. Communication diagram is a hierarchical graph whose
nodes may represent both kinds of agents (active or passive) and parts of the model from
the lower level. The diagrams allow programmers to combine sets of agents into modules
that are also represented as agents (called hierarchical ones). A survey of Alvis graphical
items and code statements is given in Fig. 1.

A state of an Alvis model is represented as a sequence of agents states. To describe the
current state of an agent a four-tuple is used (Szpyrka et al., 2014): agent mode, program
counter, context information list and parameters’ values tuple (see Fig. 2). An active agent
can be in one of the following modes: finished (F), init (I), running (X) and waiting (W),
while a passive agent can be either in waiting (W) or in taken (T) mode. The program

From Process Models to Concurrent Systems in Alvis Language 531

counter points out the current statement of an agent, i.e. the next statement to be executed
or the statement that has been executed by an agent but needs a feedback from another
agent to be completed. The context information list contains additional information about
the current state of an agent, e.g. if an agent is in the waiting mode, ci contains informa-
tion about events the agent is waiting for. Finally, a parameters’ values tuple contains the
current values of the agent parameters.

States of an Alvis model and transitions among them are represented using a labelled
transition system (LTS graph for short). An LTS graph is an ordered graph with nodes rep-
resenting states of the considered system and edges representing transitions among states.
LTS graphs are a universal method of a state space representation and are omnipresent in
formal modelling languages. Different languages like Petri nets, time automata, process
algebras etc. use different methods of describing nodes and edges in LTS graphs. They
also use different names for them, e.g. reachability graphs in Petri nets, but the general
structure of these graphs is still the same. In spite of the availability of dedicated tools
designed for specific formalisms, there are also universal tools for verification of LTS
graphs regardless of the formalism that is the source of such an LTS graph generation.
Usually, such tools use model checking techniques for an LTS graph verification (Baier
and Katoen, 2008).

Alvis LTS graphs can be verified using the CADP toolbox (Garavel et al., 2007). CADP
offers a wide set of functionalities, ranging from step-by-step simulation to massively par-
allel model-checking. Alvis Compiler provides a possibility to export an LTS graph into
the CADP Aldebaran format. Then, such a graph can be converted into BCG (Binary
Coded Graphs) format that is one of acceptable input formats for CADP Toolbox. The con-
version method is provided by one of CADP tools. The BCG format is independent from
any particular model-based verification technique; it can be used either by tools perform-
ing graph comparison and reduction modulo equivalence relations, or by tools checking
properties expressed in temporal logics. One of CADP tools called evaluator provides on-
the-fly model checking of regular alternation-free µ-calculus formulas (Emerson, 1997a;
Mateescu and Sighireanu, 2000). The Alvis language is supported by Alvis Toolkit soft-
ware that, among other things, provides Alvis Editor used for developing models and Alvis
Compiler used to generate LTS graphs.2

4. BPMN to Alvis Translation

The most fundamental rule of the transformation algorithm is to treat each activity, event
and black box pools in a BPMN model as an active agent in Alvis (Szpyrka et al., 2011a).
Thus, an Alvis model structure is similar to the corresponding BPMN model and errors
found in an Alvis model can be easily located in the corresponding BPMN one. Moreover,
a split gateway is merged with its preceding activity and a merge gateway is merged with
its succeeding activity. Other BPMN elements are usually represented in Alvis as agents’
ports and/or sequences of Alvis statements used to describe behaviour of the correspond-
ing agents.

2http://alvis.kis.agh.edu.pl.

532 M. Szpyrka et al.
❋!♦♠ ♣!♦❝❡'' ♠♦❞❡❧' *♦ ❝♦♥❝✉!!❡♥* '②'*❡♠' ✐♥ ❆❧✈✐' ❧❛♥❣✉❛❣❡ ✾

BPMN object Alvis: communication diagram Alvis: code layer

A A

A B A Bo i

-- agent A

out o;

-- agent B

in i;

A o out o;

Ai in i;

A oi
in i;

out o;

A A
o1

o2

out o1;

out o2;

A

a?

b? A

o1

o2

o3

select {

alt (a) {out o1;}

alt (b) {out o2;}

alt {out o3;}

}

A

a?

b? A

o1

o2

o3o4

select {

alt (a && b) {

out o1;

out o2;

out o4 1; }

alt (a) {

out o1; out o4 2;}

alt (b) {

out o2; out o4 3;}

alt {

out o3; out o4 4;}

}

A A

i2

i1 in i1;

in i2;

A A

i2

i1

loop {

in (0) i1 { success {

jump off; }}

in (0) i2 { success {

jump off; }}

}

off:

❋✐❣✳ ✸✳ ▼❛♣♣✐♥❣ ❇'▼◆ ♦❜❥❡❝./ ♦♥.♦ ❆❧✈✐/ ✭♣❛4. ✶✮

❆ ❜❧❛❝❦ ❜♦① ♣♦♦❧ ✐/ ♠❛♣♣❡❞ ♦♥.♦ ❛♥ ❛❣❡♥. ✇✐.❤ ❛ /❡. ♦❢ ✐♥♣✉. ❛♥❞ ♦✉.♣✉.

♣♦4./ .❤❛. ❝♦44❡/♣♦♥❞ .♦ /❡♥. ❛♥❞ 4❡❝❡✐✈❡❞ ♠❡//❛❣❡/✳ ❙✉❜♣4♦❝❡//❡/ ❛4❡ ♠❛♣♣❡❞

♦♥.♦ ❤✐❡4❛4❝❤✐❝❛❧ ❛❣❡♥./✳ ▼♦4❡♦✈❡4✱ .❤❡ ❧♦♦♣ /.❛.❡♠❡♥. ♠❛② ❜❡ ✉/❡❞ .♦ 4❡♣4❡/❡♥.

❛♥ ❛❝.✐✈✐.② ✇✐.❤ ❛ ❧♦♦♣✳ ❆❝.✐✈✐.✐❡/ ✇✐.❤ ❛ ♠✉❧#✐♣❧❡ ✐♥(#❛♥#✐❛#✐♦♥ ❛..4✐❜✉.❡ ❝❛♥ ❜❡

Fig. 3. Mapping BPMN objects onto Alvis (part 1).

Figures 3 and 4 depict the mapping from BPMN objects to parts of an Alvis model.
The figures present both parts of the communication diagram and essential pieces of code
from the code layer. Active agents are labelled with the name of the corresponding task
or pool. In case of events the agent name may be composed of the name of the event e.g.
message, timer etc. and its order number. We use i and o, with an index if necessary, to

From Process Models to Concurrent Systems in Alvis Language 533✶✵ ▼✳ ❙③♣②&❦❛ ❡* ❛❧✳

BPMN object Alvis: communication diagram Alvis: code layer

A
A

i1

i2

i3 i4

mode :: Int = 0;

in i4 mode;

select {

alt (mode == 1) {

loop {

in (0) i1 { success {

in i2; jump off; }}

in (0) i2 { success {

in i1; jump off; }}}

off:

null;

alt (mode == 2) {

in i1; }

...

A

A

o1

i

o2

...

out o1;

...

in i;

...

out o2;

A A

❋✐❣✳ ✹✳ ▼❛♣♣✐♥❣ ❇'▼◆ ♦❜❥❡❝./ ♦♥.♦ ❆❧✈✐/ ✭♣❛4. ✷✮

❋✐❣✳ ✺✳ ▼❛♣♣✐♥❣ .✇♦ ❝♦♥/❡❝✉.✐✈❡ ❣❛.❡✇❛②/ ♦♥.♦ ❆❧✈✐/

4❡♣4❡/❡♥.❡❞ ❛/ ❛ /❡. ♦❢ ❛❣❡♥./ ❡♥❝❧♦/❡❞ ❜❡.✇❡❡♥ ❛ ♣❛4❛❧❧❡❧ /♣❧✐. ❛♥❞ ♠❡4❣❡ ❣❛.❡✇❛②/✱

✐❢ .❤❡ ♥✉♠❜❡4 ♦❢ ✐♥/.❛♥❝❡/ ♠❛② ❜❡ ❞❡.❡4♠✐♥❡❞ ❛. .❤❡ ❞❡/✐❣♥ .✐♠❡✳ ❲❡ ❞♦ ♥♦. ❞❡❛❧

✇✐.❤ ♠✉❧.✐✲✐♥/.❛♥❝❡ ❛❝.✐✈✐.✐❡/ ✇❤❡4❡ .❤❡ ♥✉♠❜❡4 ♦❢ ✐♥/.❛♥❝❡/ ✐/ ♦♥❧② ❞❡.❡4♠✐♥❡❞

❛. 4✉♥.✐♠❡✳ ❙✐♠✐❧❛4❧② .♦ ❝♦♥/✐❞❡4❛.✐♦♥/ ♣4❡/❡♥.❡❞ ✐♥ ✭❉✐❥❦♠❛♥ ❡! ❛❧✳✱ ✷✵✵✽✮✱ ✐❢ .❤❡

♣✉4♣♦/❡ ♦❢ .❤❡ ♠❛♣♣✐♥❣ ✐/ .♦ ❝❤❡❝❦ ❢♦4 ❞❡❛❞❧♦❝❦/ ✐♥ .❤❡ ♣4♦❝❡// ♠♦❞❡❧✱ ✇❡ ❝❛♥

.4❡❛. ❛ ♠✉❧.✐♣❧❡✲✐♥/.❛♥❝❡ ❛❝.✐✈✐.② ❛/ ❛ /✐♥❣❧❡✲✐♥/.❛♥❝❡ ♦♥❡✳

❋✐♥❛❧❧②✱ ❧❡. ✉/ ❡①♣❧❛✐♥ ❤♦✇ .♦ ❝♦♣❡ ✇✐.❤ ❛ /❡I✉❡♥❝❡ ♦❢ ❣❛.❡✇❛②/✳ ❆♥ ❡①❛♠♣❧❡ ♦❢

♠❛♣♣✐♥❣ .✇♦ ❝♦♥/❡❝✉.✐✈❡ ❣❛.❡✇❛②/ ♦♥.♦ ❆❧✈✐/ ✐/ /❤♦✇♥ ✐♥ ❋✐❣✳ ✺✳ ❇♦.❤ ❣❛.❡✇❛②/

❛4❡ ❝♦♥/✐❞❡4❡❞ .♦❣❡.❤❡4✳ ❚❤❡4❡ ❛4❡ .❤4❡❡ ✢♦✇/ ❧❡❛❞✐♥❣ ❢4♦♠ .❤❡/❡ ❣❛.❡✇❛②/ .❤✉/

.❤❡ ❝♦44❡/♣♦♥❞✐♥❣ ❛❣❡♥. ❝♦♥.❛✐♥/ .❤4❡❡ ♦✉.♣✉. ♣♦4./ ♣❧✉/ ❛♥ ❡①.4❛ ♦✉.♣✉. ♣♦4. ❢♦4

.❤❡ ✐♥❝❧✉/✐✈❡ /♣❧✐. ❣❛.❡✇❛②✳ ❚❤❡ ♣4❡/❡♥.❡❞ ❡①❝❡4♣. ♦❢ ❆❧✈✐/ ❝♦❞❡ ✐/ .❤❡ 4❡/✉❧. ♦❢

❝♦♠❜✐♥❛.✐♦♥ .❤❡ ♣✐❡❝❡/ ♦❢ ❝♦❞❡ ❢♦4 ♣❛4❛❧❧❡❧ ❛♥❞ ✐♥❝❧✉/✐✈❡ /♣❧✐. ❣❛.❡✇❛②/✳

Fig. 4. Mapping BPMN objects onto Alvis (part 2).

denote input and output ports respectively. However, if a flow is labelled, the label may be
used as the corresponding port name.

The process flow between two activities is represented by a valueless signal sent be-
tween the corresponding agents. A start event is mapped onto an active agent with a single
output port. It should be emphasized that more than one connection can lead from the port.
Similarly, an end event is mapped onto an active agent with a single input port. An inter-
mediate event is mapped onto an agent with two ports. The period between executing the
in and out statements denotes the waiting for the event. Intermediate events anchored
to activities are mapped to ports belonging to the corresponding agent. Such an example
is shown in Section 5.

Let us suppose that an activity is followed by a single split gateway. Any split gateway
(and the preceding activity) is mapped onto an agent with an output port for each flow
leading from the gateway. However, the assigned piece of code depends on the gateway
type. In case of a parallel gateway a valueless signal is sent via each output port. In case of
an exclusive gatewayconditions are checked and a valueless signal is sent via one port only.
To cope with an inclusive gateway an extra output port is used (see Fig. 3 port o4). Each
possible behaviour of the considered split inclusive gateway is denoted by an integer that is
sent via the port o4 to the agent that represents the correspondingmerge inclusive gateway.
Thus, the agent “knows” how many and which signals must be collected to proceed.

Suppose, an activity is proceeded by a single merge gateway. Any merge gateway (and
the following activity) is mapped onto an agent with an input port for each flow leading
to the gateway. In case of a parallel gateway a valueless signal is collected via each input
port. In case of an exclusive gateway the agent uses a loop to check to which port a signal
has been provided and collects it. Finally, in case of an inclusive gateway the agent first
collects the extra value and stores it in the mode parameter. Then, it collects all necessary
signals.

534 M. Szpyrka et al.

✶✵ ▼✳ ❙③♣②&❦❛ ❡* ❛❧✳

❋✐❣✳ ✹✳ ▼❛♣♣✐♥❣ ❇'▼◆ ♦❜❥❡❝./ ♦♥.♦ ❆❧✈✐/ ✭♣❛4. ✷✮

A

c?

A

o1

o2

o3o4

out o1;

select {

alt (c) {

out o2;

out o4 1;

}

alt {

out o3;

out o4 2;

}

}

❋✐❣✳ ✺✳ ▼❛♣♣✐♥❣ .✇♦ ❝♦♥/❡❝✉.✐✈❡ ❣❛.❡✇❛②/ ♦♥.♦ ❆❧✈✐/

4❡♣4❡/❡♥.❡❞ ❛/ ❛ /❡. ♦❢ ❛❣❡♥./ ❡♥❝❧♦/❡❞ ❜❡.✇❡❡♥ ❛ ♣❛4❛❧❧❡❧ /♣❧✐. ❛♥❞ ♠❡4❣❡ ❣❛.❡✇❛②/✱

✐❢ .❤❡ ♥✉♠❜❡4 ♦❢ ✐♥/.❛♥❝❡/ ♠❛② ❜❡ ❞❡.❡4♠✐♥❡❞ ❛. .❤❡ ❞❡/✐❣♥ .✐♠❡✳ ❲❡ ❞♦ ♥♦. ❞❡❛❧

✇✐.❤ ♠✉❧.✐✲✐♥/.❛♥❝❡ ❛❝.✐✈✐.✐❡/ ✇❤❡4❡ .❤❡ ♥✉♠❜❡4 ♦❢ ✐♥/.❛♥❝❡/ ✐/ ♦♥❧② ❞❡.❡4♠✐♥❡❞

❛. 4✉♥.✐♠❡✳ ❙✐♠✐❧❛4❧② .♦ ❝♦♥/✐❞❡4❛.✐♦♥/ ♣4❡/❡♥.❡❞ ✐♥ ✭❉✐❥❦♠❛♥ ❡! ❛❧✳✱ ✷✵✵✽✮✱ ✐❢ .❤❡

♣✉4♣♦/❡ ♦❢ .❤❡ ♠❛♣♣✐♥❣ ✐/ .♦ ❝❤❡❝❦ ❢♦4 ❞❡❛❞❧♦❝❦/ ✐♥ .❤❡ ♣4♦❝❡// ♠♦❞❡❧✱ ✇❡ ❝❛♥

.4❡❛. ❛ ♠✉❧.✐♣❧❡✲✐♥/.❛♥❝❡ ❛❝.✐✈✐.② ❛/ ❛ /✐♥❣❧❡✲✐♥/.❛♥❝❡ ♦♥❡✳

❋✐♥❛❧❧②✱ ❧❡. ✉/ ❡①♣❧❛✐♥ ❤♦✇ .♦ ❝♦♣❡ ✇✐.❤ ❛ /❡I✉❡♥❝❡ ♦❢ ❣❛.❡✇❛②/✳ ❆♥ ❡①❛♠♣❧❡ ♦❢

♠❛♣♣✐♥❣ .✇♦ ❝♦♥/❡❝✉.✐✈❡ ❣❛.❡✇❛②/ ♦♥.♦ ❆❧✈✐/ ✐/ /❤♦✇♥ ✐♥ ❋✐❣✳ ✺✳ ❇♦.❤ ❣❛.❡✇❛②/

❛4❡ ❝♦♥/✐❞❡4❡❞ .♦❣❡.❤❡4✳ ❚❤❡4❡ ❛4❡ .❤4❡❡ ✢♦✇/ ❧❡❛❞✐♥❣ ❢4♦♠ .❤❡/❡ ❣❛.❡✇❛②/ .❤✉/

.❤❡ ❝♦44❡/♣♦♥❞✐♥❣ ❛❣❡♥. ❝♦♥.❛✐♥/ .❤4❡❡ ♦✉.♣✉. ♣♦4./ ♣❧✉/ ❛♥ ❡①.4❛ ♦✉.♣✉. ♣♦4. ❢♦4

.❤❡ ✐♥❝❧✉/✐✈❡ /♣❧✐. ❣❛.❡✇❛②✳ ❚❤❡ ♣4❡/❡♥.❡❞ ❡①❝❡4♣. ♦❢ ❆❧✈✐/ ❝♦❞❡ ✐/ .❤❡ 4❡/✉❧. ♦❢

❝♦♠❜✐♥❛.✐♦♥ .❤❡ ♣✐❡❝❡/ ♦❢ ❝♦❞❡ ❢♦4 ♣❛4❛❧❧❡❧ ❛♥❞ ✐♥❝❧✉/✐✈❡ /♣❧✐. ❣❛.❡✇❛②/✳

Fig. 5. Mapping two consecutive gateways onto Alvis.

A black box pool is mapped onto an agent with a set of input and output ports that
correspond to sent and received messages. Subprocesses are mapped onto hierarchical
agents. Moreover, the loop statement may be used to represent an activity with a loop.
Activities with a multiple instantiation attribute can be represented as a set of agents en-
closed between a parallel split and merge gateways, if the number of instances may be
determined at the design time. We do not deal with multi-instance activities where the
number of instances is only determined at runtime. Similarly to considerations presented
in Dijkman et al. (2008), if the purpose of the mapping is to check for deadlocks in the
process model, we can treat a multiple-instance activity as a single-instance one.

Finally, let us explain how to cope with a sequence of gateways. An example of map-
ping two consecutive gateways onto Alvis is shown in Fig. 5. Both gateways are considered
together. There are three flows leading from these gateways thus the corresponding agent
contains three output ports plus an extra output port for the inclusive split gateway. The
presented excerpt of Alvis code is the result of combination of the pieces of code for
parallel and inclusive split gateways.

5. Case Study

A BPMN use case describing a student project evaluation process is used in this section
to illustrate the BPMN to Alvis translation method. The diagram shown in Fig. 6 depicts
the evaluation process of a student’s project for the Internet technologies course. This is
a slightly reworked version of the BPMN model presented in Szpyrka et al. (2011b). The
process is applied to the website evaluation. At the beginning, the syntax is automatically
checked. Every website code in XHTML needs to be a well-formed XML and valid w.r.t.
XHTML DTD. If the syntax of the project file is correct, preliminary content checking
is performed. Then, if the project contains expected elementary tags (e.g. at least several
headings, an image and a table), it can be evaluated and a grade can be given according
to some specified evaluation rules (Nalepa et al., 2011b). On the other hand, if the project
contains any syntax error or lacks some basic required content, it is requested to be com-
pleted. After receiving the completed project, the whole process starts from the syntax

From Process Models to Concurrent Systems in Alvis Language 535

$
%&

'
"
(
%

$)(%*+
,*-.'*%./(

01"-.2.(*1)
3/(%"(%
34"35.(6

7"8&" %9:/1
3/2;-"%.(6

;1/<"3%

=,*-&*%./(9/:9*
 %&'"(%> 9!/15

=+;"3%.(69:/1
%4"93/2;-"%"'

;1/<"3%

;* "'
2. .(6

?* .3
3/(%"(%

 &?2.% 1"8&" % 1" &?2.%

!*.%.(6
%.2"
"+;.1"'

)(%*+9"11/1

3/2;-"%"'
;1/<"3%
1"3".,"'

61*'"

Fig. 6. An example of the student’s project evaluation process.
✶✷ ▼✳ ❙③♣②&❦❛ ❡* ❛❧✳

❋✐❣✳ ✼✳ ❆❧✈✐$ ♠♦❞❡❧ ♦❢ *❤❡ $*✉❞❡♥*✬$ ♣0♦❥❡❝* ❡✈❛❧✉❛*✐♦♥ ♣0♦❝❡$$ ✭❝♦♠♠✉♥✐✲

❝❛*✐♦♥ ❞✐❛❣0❛♠✮

❋✐❣✳ ✽✳ ▼♦❞❡❧✐♥❣ ❛♥❞ ✈❡0✐✜❝❛*✐♦♥ ♣0♦❝❡$$ ✇✐*❤ ❆❧✈✐$

♠♦❞❡❧✱ ✐*$ ♣✐❡❝❡ ♦❢ ❝♦❞❡ *❤❛* 0❡$✉❧*$ ❢0♦♠ *❤❡ *0❛♥$❢♦0♠❛*✐♦♥ ♠❡*❤♦❞ ✐$ ♣✉* ✐♥$✐❞❡

❛ ❧♦♦♣ $*❛*❡♠❡♥*✳ ❚❤❡ ❜❡❤❛✈✐♦0 ♦❢ ❛ $*✉❞❡♥* ✐$ ❜❛$❡❞ ♦♥ *❤❡ ❢♦❧❧♦✇✐♥❣ ❛$$✉♠♣*✐♦♥✳

❆ $*✉❞❡♥* $✉❜♠✐*$ ❛ ♣0♦❥❡❝*$ ♦♥❝❡ ❛♥❞ ✇❛✐*$ ❡✐*❤❡0 ❢♦0 ❛ ❣0❛❞❡ ♦0 ❢♦0 ❛ 0❡?✉❡$*

❢♦0 ♣0♦❥❡❝* 0❡$✉❜♠✐**✐♥❣✳ ❚❤❡ ♣0♦❥❡❝* ❝❛♥ ❜❡ 0❡$✉❜♠✐**✐♥❣ ♦♥❧② ♦♥❝❡✳

✻✳ ▼♦❞❡❧ ❱❡-✐✜❝❛1✐♦♥ ❚❤❡ $❝❤❡♠❡ ♦❢ *❤❡ ♠♦❞❡❧✐♥❣ ❛♥❞ ✈❡0✐✜❝❛*✐♦♥ ♣0♦❝❡$$

✇✐*❤ ❆❧✈✐$ ✐$ $❤♦✇♥ ✐♥ ❋✐❣✳ ✽ ✭❙③♣②0❦❛ ❡$ ❛❧✳✱ ✷✵✶✸✮✳ ❋0♦♠ ❛ ✉$❡0 ♣♦✐♥* ♦❢ ✈✐❡✇✱ ✐*

Fig. 7. Alvis model of the student’s project evaluation process (communication diagram).

checking again. However, if the completed project is not received in time, the process is
terminated (thus, the author does not get a credit).

The communication diagram for the corresponding Alvis model is given in Fig. 7.
Abbreviation of activities’ names are used as agents names. The code layer for the model
is shown in Fig. 9. Taking into account the transformation method presented in Figs. 3
and 4 some modifications are introduced to the communication diagram. The modelled
process starts with a student’s activity (submitting a project) and may end with a student’s

536 M. Szpyrka et al.

✶✷ ▼✳ ❙③♣②&❦❛ ❡* ❛❧✳

❋✐❣✳ ✼✳ ❆❧✈✐$ ♠♦❞❡❧ ♦❢ *❤❡ $*✉❞❡♥*✬$ ♣0♦❥❡❝* ❡✈❛❧✉❛*✐♦♥ ♣0♦❝❡$$ ✭❝♦♠♠✉♥✐✲

❝❛*✐♦♥ ❞✐❛❣0❛♠✮

Design of

communication diagram

Implementation

of code layer

Model design

︸ ︷︷ ︸

Alvis Editor

︸ ︷︷ ︸

Alvis Compiler

Alvis→Haskell

Requirements /

properties

Implementation

of filter functions

Specification of re-

quirements (µ calculus,

LTL and CTL logics)

︸ ︷︷ ︸

text editor

Verification

Verification with

filter functions

Model checking with

CADP or/and nuXmv

︸ ︷︷ ︸

LTS

︸ ︷︷ ︸

GHC, CADP, nuXmv

❋✐❣✳ ✽✳ ▼♦❞❡❧✐♥❣ ❛♥❞ ✈❡0✐✜❝❛*✐♦♥ ♣0♦❝❡$$ ✇✐*❤ ❆❧✈✐$

♠♦❞❡❧✱ ✐*$ ♣✐❡❝❡ ♦❢ ❝♦❞❡ *❤❛* 0❡$✉❧*$ ❢0♦♠ *❤❡ *0❛♥$❢♦0♠❛*✐♦♥ ♠❡*❤♦❞ ✐$ ♣✉* ✐♥$✐❞❡

❛ ❧♦♦♣ $*❛*❡♠❡♥*✳ ❚❤❡ ❜❡❤❛✈✐♦0 ♦❢ ❛ $*✉❞❡♥* ✐$ ❜❛$❡❞ ♦♥ *❤❡ ❢♦❧❧♦✇✐♥❣ ❛$$✉♠♣*✐♦♥✳

❆ $*✉❞❡♥* $✉❜♠✐*$ ❛ ♣0♦❥❡❝*$ ♦♥❝❡ ❛♥❞ ✇❛✐*$ ❡✐*❤❡0 ❢♦0 ❛ ❣0❛❞❡ ♦0 ❢♦0 ❛ 0❡?✉❡$*

❢♦0 ♣0♦❥❡❝* 0❡$✉❜♠✐**✐♥❣✳ ❚❤❡ ♣0♦❥❡❝* ❝❛♥ ❜❡ 0❡$✉❜♠✐**✐♥❣ ♦♥❧② ♦♥❝❡✳

✻✳ ▼♦❞❡❧ ❱❡-✐✜❝❛1✐♦♥ ❚❤❡ $❝❤❡♠❡ ♦❢ *❤❡ ♠♦❞❡❧✐♥❣ ❛♥❞ ✈❡0✐✜❝❛*✐♦♥ ♣0♦❝❡$$

✇✐*❤ ❆❧✈✐$ ✐$ $❤♦✇♥ ✐♥ ❋✐❣✳ ✽ ✭❙③♣②0❦❛ ❡$ ❛❧✳✱ ✷✵✶✸✮✳ ❋0♦♠ ❛ ✉$❡0 ♣♦✐♥* ♦❢ ✈✐❡✇✱ ✐*

Fig. 8. Modelling and verification process with Alvis.

activity (collecting the grade), thus, the starting agent (Message) contains an input port
(submit) and one of the ending agents (End1) contains an output port (grade).

Let us focus on the code layer. The pick function is used to choose at random one value
from its argument (a list of items). The function is used to introduce the indeterminism into
the Alvis model. If an agent belongs to a loop in the BPMN model, its piece of code that
results from the transformation method is put inside a loop statement. The behaviour of a
student is based on the following assumption. A student submits a project once and waits
either for a grade or for a request for project resubmitting. The project can be resubmitted
only once.

6. Model Verification

The scheme of the modelling and verificationprocess with Alvis is shown in Fig. 8 (Szpyrka
et al., 2013). From a user point of view, it starts from designing a model using prototype
modelling environment called Alvis Editor. The designed model is stored using XML file
format. Then it is translated into Haskell (O’Sullivan et al., 2008) source code and its
Haskell representation is used to generate the LTS graph. The generated LTS graphs can
be verified using the CADP Toolbox.3

We use Haskell as a middle-stage representation of an Alvis model in a similar way as
CPN Tools use SML to generate reachability graphs for coloured Petri nets. The main dif-
ference between these approaches is that Alvis users have access to the generated Haskell
source files and may include some extra Haskell code into them. The internal representa-
tion of an LTS graph is a Haskell list of model states. Lists are the most used data structures
in Haskell (O’Sullivan et al., 2008) and the language provides a lot of built-in functions
to manipulate them. The most important one, from the Alvis point of view, is the filter

3For details see the CADP evaluator site http://cadp.inria.fr/man/evaluator.html.

From Process Models to Concurrent Systems in Alvis Language 537
❋!♦♠ ♣!♦❝❡'' ♠♦❞❡❧' *♦ ❝♦♥❝✉!!❡♥* '②'*❡♠' ✐♥ ❆❧✈✐' ❧❛♥❣✉❛❣❡ ✶✸

❛❣❡♥$ ❙$✉❞❡♥$ ④

♦✉$ *✉❜♠✐$❀

❧♦♦♣ ④

✐♥ ✭✵✮ 4❡5✉❡*$ ④ *✉❝❝❡** ④

♦✉$ 4❡*✉❜♠✐$❀

✐♥ ❣4❛❞❡❀

❡①✐$❀ ⑥⑥

✐♥ ✭✵✮ ❣4❛❞❡ ④ *✉❝❝❡** ④

❡①✐$❀ ⑥⑥

⑥

⑥

❛❣❡♥$ ▼❡**❛❣❡ ④

✐♥ *✉❜♠✐$❀

♦✉$ ♦❀

⑥

❛❣❡♥$ ❙②♥$❛①❱❛❧✐❞❛$✐♦♥ ④

♥ ✿✿ ■♥$ ❂ ✵❀

✐♥ ✐❀

❧♦♦♣ ④

♥ ❂ ♣✐❝❦ ❬✶ ✱✷❪❀

*❡❧❡❝$ ④

❛❧$ ✭♥ ❂❂ ✶✮ ④ ♦✉$ ♣❛**❡❞❀ ⑥

❛❧$ ✭♥ ❂❂ ✷✮ ④ ♦✉$ ❡44♦4❀ ⑥

⑥

✐♥ ♣4♦❥❡❝$❀

⑥

⑥

❛❣❡♥$ F4❡❧✐♠✐♥❛4②❈♦♥$❈❤❡❝❦ ④

♥ ✿✿ ■♥$ ❂ ✵❀

❧♦♦♣ ④

✐♥ ♣❛**❡❞❀

♥ ❂ ♣✐❝❦ ❬✶ ✱✷❪❀

*❡❧❡❝$ ④

❛❧$ ✭♥ ❂❂ ✶✮ ④

♦✉$ ♠✐**✐♥❣❝♦♥$ ❀⑥

❛❧$ ✭♥ ❂❂ ✷✮ ④ ♦✉$ ♦❀ ⑥

⑥

⑥

⑥

❛❣❡♥$ ❘❡5✉❡*$❈♦♠♣F4♦❥ ④

❧♦♦♣ ④

❧♦♦♣ ④

✐♥ ✭✵✮ ❡44♦4 ④

*✉❝❝❡** ④ ❥✉♠♣ ♦❢❢❀ ⑥⑥

✐♥ ✭✵✮ ♠✐**✐♥❣❝♦♥$ ④

*✉❝❝❡** ④ ❥✉♠♣ ♦❢❢❀ ⑥⑥

⑥

♦❢❢✿

♦✉$ 4❡5✉❡*$❀

♦✉$ ♦❀

⑥

⑥

❛❣❡♥$ ❊①♣❡❝$✐♥❣❈♦♠♣F4♦❥ ④

♥ ✿✿ ■♥$ ❂ ✵❀

❧♦♦♣ ④

✐♥ ✐❀

♥ ❂ ♣✐❝❦ ❬✶ ✱✷❪❀

*❡❧❡❝$ ④

❛❧$ ✭♥ ❂❂ ✶✮ ④

*$❛4$ ❊♥❞✶❀

♦✉$ $✐♠❡♦✉$❀

❡①✐$❀ ⑥

❛❧$ ✭♥ ❂❂ ✷✮ ④

✐♥ 4❡*✉❜♠✐$❀

*$❛4$ ❙②♥$❛①❱❛❧✐❞❛$✐♦♥❀

♦✉$ ♣4♦❥❡❝$❀ ⑥ ⑥

⑥

⑥

❛❣❡♥$ ❊✈❛❧✉❛$✐♦♥ ④

✐♥ ✐❀ ♦✉$ ♦❀

⑥

❛❣❡♥$ ❊♥❞✶ ④

✐♥ $✐♠❡♦✉$❀

⑥

❛❣❡♥$ ❊♥❞✷ ④

✐♥ ✐❀ ♦✉$ ❣4❛❞❡❀

⑥

❋✐❣✳ ✾✳ ❆❧✈✐$ ♠♦❞❡❧ ♦❢ *❤❡ $*✉❞❡♥*✬$ ♣0♦❥❡❝* ❡✈❛❧✉❛*✐♦♥ ♣0♦❝❡$$ ✭❝♦❞❡ ❧❛②❡0✮

$*❛0*$ ❢0♦♠ ❞❡$✐❣♥✐♥❣ ❛ ♠♦❞❡❧ ✉$✐♥❣ ♣0♦*♦*②♣❡ ♠♦❞❡❧✐♥❣ ❡♥✈✐0♦♥♠❡♥* ❝❛❧❧❡❞ ❆❧✈✐$

❊❞✐'♦)✳ ❚❤❡ ❞❡$✐❣♥❡❞ ♠♦❞❡❧ ✐$ $*♦0❡❞ ✉$✐♥❣ ❳▼▲ ✜❧❡ ❢♦0♠❛*✳ ❚❤❡♥ ✐* ✐$ *0❛♥$❧❛*❡❞

✐♥*♦ ❍❛$❦❡❧❧ ✭❖✬❙✉❧❧✐✈❛♥ ❡' ❛❧✳✱ ✷✵✵✽✮ $♦✉0❝❡ ❝♦❞❡ ❛♥❞ ✐*$ ❍❛$❦❡❧❧ 0❡♣0❡$❡♥*❛*✐♦♥ ✐$

✉$❡❞ *♦ ❣❡♥❡0❛*❡ *❤❡ ▲❚❙ ❣0❛♣❤✳ ❚❤❡ ❣❡♥❡0❛*❡❞ ▲❚❙ ❣0❛♣❤$ ❝❛♥ ❜❡ ✈❡0✐✜❡❞ ✉$✐♥❣

*❤❡ ❈❆❉I ❚♦♦❧❜♦①

✷

✳

❲❡ ✉$❡ ❍❛$❦❡❧❧ ❛$ ❛ ♠✐❞❞❧❡✲$*❛❣❡ 0❡♣0❡$❡♥*❛*✐♦♥ ♦❢ ❛♥ ❆❧✈✐$ ♠♦❞❡❧ ✐♥ $✐♠✐❧❛0

✇❛② ❛$ ❈I◆ ❚♦♦❧$ ✉$❡ ❙▼▲ *♦ ❣❡♥❡0❛*❡ 0❡❛❝❤❛❜✐❧✐*② ❣0❛♣❤$ ❢♦0 ❝♦❧♦0❡❞ I❡*0✐ ♥❡*$✳

✷

❋♦" ❞❡%❛✐❧))❡❡ %❤❡ ❈❆❉. ❡✈❛❧✉❛%♦')✐%❡ ❤$$♣✿✴✴❝❛❞♣✳✐♥4✐❛✳❢4✴♠❛♥✴❡✈❛❧✉❛$♦4✳❤$♠❧✳

Fig. 9. Alvis model of the student’s project evaluation process (code layer).

function that takes a predicate and a list and then returns the list of elements that sat-
isfy the predicate. In the considered approach predicates are called filtering functions.
They are usually implemented using the Haskell pattern matching mechanism. It should
be emphasized that filtering functions give only some extra possibilities of the LTS graph
exploration.

Finally, the source code is compiled with GHC compiler. The results of the received
program execution are the LTS graph for the given model (Aldebaran or dot format) and
the report of the model verification with included filtering functions. Analysis of Alvis
models can be realized using the CADP evaluator tool. In such approach, a specification

538 M. Szpyrka et al.

of requirements is given as a set of µ-calculus formulas (Mateescu and Sighireanu, 2000;
Emerson, 1997b; Kozen, 1983), and the tool is used to check whether the LTS graph
satisfies them. It should be emphasized that this is an action based approach. A µ-calculus
formula concerns actions labels while states of considered model are represented using
their numbers only.

The input language of the CADP evaluator tool is an extension of the alternation-
free µ-calculus. The logic is built from three types of formulas: action, regular and state

formulas. An action formula is built from action names, regular expressions substituted for
action names, Boolean constants true and false and the propositional logic operators: not,
or, and, implies and equ (equivalence). Regular formulas represent regular expressions
over action sequences. The µ logic uses nil to denote the empty word and the following
regular expression operators: . (dot) – concatenation operator, | – choice operator, ∗ – the
transitive and reflexive closure operator, and + – the transitive closure operator. Finally,
a state formula is built of: propositional variables, Boolean constants true and false, the
propositional logic operators, the possibility (〈 〉) and necessity ([]) modal operators and
minimal (µ) and maximal (ν) fixed point operators.

Approaches based on translation to Petri nets usually focus on fairness or liveness
properties. However, these properties are mostly studied as ones of infinite runs, which in
practice do not occur in real-life business processes. Analysis of presence or absence of
some actions or relationships between occurrences of some actions seem to be more im-
portant for such cases. To illustrate the possibilities of verification of a model’s properties
with the evaluator let us consider a few properties encoded in µ:

• [true∗]〈true〉true – it is always possible to do next step (no deadlocks).
• [true∗.”out(Student.submit)”.true∗.”out(Student.submit)”]false – it is not possible

to submit the project twice.
• [true∗.”out(Student.submit)”]µX.(〈true〉true∧[¬(”out(RequestCompProj.request)”

∨ ”out(End2.grade)”)]X) – after submitting a project a grade or request for resub-
mitting is received in a finite number of steps.

The evaluator tool takes an LTS graph encoded in the BGC format and a file with a µ cal-
culus formula and checks whether the formula holds for the system. The tool is equipped
with diagnostic generation algorithms, which construct both examples and counterexam-
ples for a given formula. The CADP Toolbox can handle LTS graphs with 2

44 elements.
The first property is false, while the second and third hold for the Alvis model. The

result is required for the model because we expect that any sequence of actions leads to a
final state so the presence of final states is desirable.

The second approach to models verification takes advantage of the Haskell language
features and lets the user to improve the generated model. Alvis Compiler generates a
Haskell source file for a model and user-defined filter functions may be included into this
file. Because of the very simple to use and flexible Haskell pattern matching mechanism, it
is easy to select states that meet a given specification. Some of the functions are universal
and can be included into any model, so it is possible to import them from an external
Haskell module. However, most of these functions are based on the considered model

From Process Models to Concurrent Systems in Alvis Language 539
❋!♦♠ ♣!♦❝❡'' ♠♦❞❡❧' *♦ ❝♦♥❝✉!!❡♥* '②'*❡♠' ✐♥ ❆❧✈✐' ❧❛♥❣✉❛❣❡ ✶✺

❞❡❛❞❙$❛$❡ ✿✿ ◆♦❞❡ ✲❃ ❇♦♦❧

❞❡❛❞❙$❛$❡ ✭♥✱ /✱ ❧/✮ ❂ ❧/ ❂❂ ❬❪

❢✐♥✐/❤❡❞❙$✉❞❡♥$ ✿✿ ◆♦❞❡ ✲❃ ❇♦♦❧

❢✐♥✐/❤❡❞❙$✉❞❡♥$ ✭♥✱✭✭❋✱✵✱❡♠♣$② ✱✭✮✮✱❛✷✱❛✸✱❛✹ ✱❛✺✱❛✻ ✱❛✼✱❛✽ ✱❛✾✮✱❧/✮ ❂ ❚F✉❡

❢✐♥✐/❤❡❞❙$✉❞❡♥$ ❴ ❂ ❋❛❧/❡

✲✲ ❢✐❧$❡F ❢✉♥❝$✐♦♥ ❝❛❧❧✐♥❣✿

JF❡❧✉❞❡✳❢✐❧$❡F ❞❡❛❞❙$❛$❡ ❧$/

JF❡❧✉❞❡✳❢✐❧$❡F ❢✐♥✐/❤❡❞❙$✉❞❡♥$ ❧$/

✲✲ ❛ /$❛$❡ ❢♦✉♥❞ ❜② $❤❡ ❢✐♥✐/❤❡❞❙$✉❞❡♥$ ❢✉♥❝$✐♦♥

❙$✉❞❡♥$✿ ✭❋✱✵✱❬❪✱✭✮✮

▼❡//❛❣❡✿ ✭❋✱✵✱❬❪✱✭✮✮

❙②♥$❛①❱❛❧✐❞❛$✐♦♥✿ ✭❳✱✼✱❬❪✱✶✮

JF❡❧✐♠✐♥❛F②❈♦♥$❈❤❡❝❦✿ ✭❳✱✶✱❬❪✱✷✮

❘❡U✉❡/$❈♦♠♣JF♦❥✿ ✭❳✱✶ ✱❬❪✱✭✮✮

❊①♣❡❝$✐♥❣❈♦♠♣JF♦❥✿ ✭❳✱✶✱❬❪✱✵✮

❊✈❛❧✉❛$✐♦♥✿ ✭❋✱✵ ✱❬❪✱✭✮✮

❊♥❞✶✿ ✭❳✱✶✱❬❪✱✭✮✮

❊♥❞✷✿ ✭❋✱✵✱❬❪✱✭✮✮

❋✐❣✳ ✶✵✳ ❋✐❧#❡%✐♥❣ ▲❚❙ ❣%❛♣❤ ✇✐#❤ ❍❛0❦❡❧❧

♣♦00✐❜❧❡ #♦ 0✉❜♠✐# #❤❡ ♣%♦❥❡❝# #✇✐❝❡✳

✑ ✑

✑ ✑ ✑ ✑ ✕ ❆❢#❡%

0✉❜♠✐##✐♥❣ ❛ ♣%♦❥❡❝# ❛ ❣%❛❞❡ ♦% %❡>✉❡0# ❢♦% %❡0✉❜♠✐##✐♥❣ ✐0 %❡❝❡✐✈❡❞ ✐♥ ❛

✜♥✐#❡ ♥✉♠❜❡% ♦❢ 0#❡♣0✳

❚❤❡ ❡✈❛❧✉❛%♦' #♦♦❧ #❛❦❡0 ❛♥ ▲❚❙ ❣%❛♣❤ ❡♥❝♦❞❡❞ ✐♥ #❤❡ ❇●❈ ❢♦%♠❛# ❛♥❞ ❛ ✜❧❡

✇✐#❤ ❛ ❝❛❧❝✉❧✉0 ❢♦%♠✉❧❛ ❛♥❞ ❝❤❡❝❦0 ✇❤❡#❤❡% #❤❡ ❢♦%♠✉❧❛ ❤♦❧❞0 ❢♦% #❤❡ 0②0#❡♠✳

❚❤❡ #♦♦❧ ✐0 ❡>✉✐♣♣❡❞ ✇✐#❤ ❞✐❛❣♥♦0#✐❝ ❣❡♥❡%❛#✐♦♥ ❛❧❣♦%✐#❤♠0✱ ✇❤✐❝❤ ❝♦♥0#%✉❝# ❜♦#❤

❡①❛♠♣❧❡0 ❛♥❞ ❝♦✉♥#❡%❡①❛♠♣❧❡0 ❢♦% ❛ ❣✐✈❡♥ ❢♦%♠✉❧❛✳ ❚❤❡ ❈❆❉H ❚♦♦❧❜♦① ❝❛♥ ❤❛♥❞❧❡

▲❚❙ ❣%❛♣❤0 ✇✐#❤ ❡❧❡♠❡♥#0✳

❚❤❡ ✜%0# ♣%♦♣❡%#② ✐0 ❢❛❧0❡✱ ✇❤✐❧❡ #❤❡ 0❡❝♦♥❞ ❛♥❞ #❤✐%❞ ❤♦❧❞ ❢♦% #❤❡ ❆❧✈✐0 ♠♦❞❡❧✳

❚❤❡ %❡0✉❧# ✐0 %❡>✉✐%❡❞ ❢♦% #❤❡ ♠♦❞❡❧ ❜❡❝❛✉0❡ ✇❡ ❡①♣❡❝# #❤❛# ❛♥② 0❡>✉❡♥❝❡ ♦❢ ❛❝#✐♦♥0

❧❡❛❞0 #♦ ❛ ✜♥❛❧ 0#❛#❡ 0♦ #❤❡ ♣%❡0❡♥❝❡ ♦❢ ✜♥❛❧ 0#❛#❡0 ✐0 ❞❡0✐%❛❜❧❡✳

❚❤❡ 0❡❝♦♥❞ ❛♣♣%♦❛❝❤ #♦ ♠♦❞❡❧0 ✈❡%✐✜❝❛#✐♦♥ #❛❦❡0 ❛❞✈❛♥#❛❣❡ ♦❢ #❤❡ ❍❛0❦❡❧❧

❧❛♥❣✉❛❣❡ ❢❡❛#✉%❡0 ❛♥❞ ❧❡#0 #❤❡ ✉0❡% #♦ ✐♠♣%♦✈❡ #❤❡ ❣❡♥❡%❛#❡❞ ♠♦❞❡❧✳ ❆❧✈✐0 ❈♦♠♣✐❧❡%

❣❡♥❡%❛#❡0 ❛ ❍❛0❦❡❧❧ 0♦✉%❝❡ ✜❧❡ ❢♦% ❛ ♠♦❞❡❧ ❛♥❞ ✉0❡%✲❞❡✜♥❡❞ ✜❧#❡% ❢✉♥❝#✐♦♥0 ♠❛② ❜❡

✐♥❝❧✉❞❡❞ ✐♥#♦ #❤✐0 ✜❧❡✳ ❇❡❝❛✉0❡ ♦❢ #❤❡ ✈❡%② 0✐♠♣❧❡ #♦ ✉0❡ ❛♥❞ ✢❡①✐❜❧❡ ❍❛0❦❡❧❧ ♣❛##❡%♥

♠❛#❝❤✐♥❣ ♠❡❝❤❛♥✐0♠✱ ✐# ✐0 ❡❛0② #♦ 0❡❧❡❝# 0#❛#❡0 #❤❛# ♠❡❡#0 ❛ ❣✐✈❡♥ 0♣❡❝✐✜❝❛#✐♦♥✳

❙♦♠❡ ♦❢ #❤❡ ❢✉♥❝#✐♦♥0 ❛%❡ ✉♥✐✈❡%0❛❧ ❛♥❞ ❝❛♥ ❜❡ ✐♥❝❧✉❞❡❞ ✐♥#♦ ❛♥② ♠♦❞❡❧✱ 0♦ ✐# ✐0

♣♦00✐❜❧❡ #♦ ✐♠♣♦%# #❤❡♠ ❢%♦♠ ❛♥ ❡①#❡%♥❛❧ ❍❛0❦❡❧❧ ♠♦❞✉❧❡✳ ❍♦✇❡✈❡%✱ ♠♦0# ♦❢ #❤❡0❡

❢✉♥❝#✐♦♥0 ❛%❡ ❜❛0❡❞ ♦♥ #❤❡ ❝♦♥0✐❞❡%❡❞ ♠♦❞❡❧ ❙!❛!❡ #②♣❡ ❛♥❞ ♠✉0# ❜❡ ❞❡✜♥❡❞ ❢♦% ❛

♠♦❞❡❧ ✐♥❞✐✈✐❞✉❛❧❧②✳ ❊①❛♠♣❧❡0 ♦❢ 0✉❝❤ ✜❧#❡%✐♥❣ ❢✉♥❝#✐♦♥0 ❛%❡ ❣✐✈❡♥ ✐♥ ❋✐❣✳ ✶✵✳ ❚❤❡

✜%0# ♦♥❡ 0❡❧❡❝#0 ❞❡❛❞❧♦❝❦0 ✐✳❡✳ 0#❛#❡0 ✇✐#❤ ❡♠♣#② ❧✐0# ♦❢ ♦✉#♣✉# ❛%❝0✳ ❚❤❡ 0❡❝♦♥❞

❢✉♥❝#✐♦♥ 0❡❧❡❝# 0#❛#❡0 ✇✐#❤ #❤❡ ❙%✉❞❡♥% ❛❣❡♥# ✐♥ ✜♥✐-❤❡❞ ♠♦❞❡✳ ❖♥❡ ♦❢ #❤❡ 0#❛#❡0

Fig. 10. Filtering LTS graph with Haskell.

State type and must be defined for a model individually. Examples of such filtering
functions are given in Fig. 10. The first one selects deadlocks, i.e. states with empty list
of output arcs. The second function select states with the Student agent in finished mode.
One of the states found by this function is included into the listing from Fig. 10.

The presented Haskell approach to LTS graph verification is mostly oriented on states,
but in fact the method is not limited neither to states only nor to actions. We can use
both at the same time, for example, searching for some specified parts of an LTS graph.
Moreover, the Haskell approach can be used to implement user defined verification algo-
rithms that are not provided by verification toolbox. For example, this is a good path to
test user-defined non-standard verification procedures fast. Moreover, Haskell expressive-
ness allows to fit even quite complex algorithms in a few lines of code as compared to
imperative languages.

The similarity between the structure of a BPMN diagram and the structure of the cor-
responding Alvis communication diagram allows relatively easy to identify parts of the
original diagram, which are responsible for the occurrence of errors. Let us consider the
last µ property, but slightly modified:

[

true∗.”out(Student.submit)”
]

µX.
(

〈true〉true ∧
[

¬
(

”out(End2.grade)”
)]

X
)

,

i.e. after submitting a project a grade is received in a finite number of steps.
The property does not hold for the model and suitable counterexample may be gen-

erated by the CADP toolbox. The counterexample takes the form of a path from the cor-
responding LTS graph. Its initial part is shown in Fig. 11. Analysing the counterexample
returned by CADP (especially labels of edges), we can identify all the agents that are
involved in the path. The labels contain both names of agents and names of statements.

540 M. Szpyrka et al.
✶✻ ▼✳ ❙③♣②&❦❛ ❡* ❛❧✳

0

1

out(Student.submit)

2

in(Message.submit)

3

out(Message.o)

4

in(SyntaxValidation.i)

5

loop(SyntaxValidation)

6

exec(SyntaxValidation)

7

select(SyntaxValidation)

❋✐❣✳ ✶✶✳ ❈♦✉♥$❡&❡①❛♠♣❧❡ ✭✐♥✐$✐❛❧ ♣❛&$✮

❢♦✉♥❞ ❜② $❤✐4 ❢✉♥❝$✐♦♥ ✐4 ✐♥❝❧✉❞❡❞ ✐♥$♦ $❤❡ ❧✐4$✐♥❣ ❢&♦♠ ❋✐❣✳ ✶✵✳

❚❤❡ ♣&❡4❡♥$❡❞ ❍❛4❦❡❧❧ ❛♣♣&♦❛❝❤ $♦ ▲❚❙ ❣&❛♣❤ ✈❡&✐✜❝❛$✐♦♥ ✐4 ♠♦4$❧② ♦&✐❡♥$❡❞

♦♥ 4$❛$❡4✱ ❜✉$ ✐♥ ❢❛❝$ $❤❡ ♠❡$❤♦❞ ✐4 ♥♦$ ❧✐♠✐$❡❞ ♥❡✐$❤❡& $♦ 4$❛$❡4 ♦♥❧② ♥♦& $♦

❛❝$✐♦♥4✳ ❲❡ ❝❛♥ ✉4❡ ❜♦$❤ ❛$ $❤❡ 4❛♠❡ $✐♠❡ ❢♦& ❡①❛♠♣❧❡ 4❡❛&❝❤✐♥❣ ❢♦& 4♦♠❡ 4♣❡❝✐✜❡❞

♣❛&$4 ♦❢ ❛♥ ▲❚❙ ❣&❛♣❤✳ ▼♦&❡♦✈❡&✱ $❤❡ ❍❛4❦❡❧❧ ❛♣♣&♦❛❝❤ ❝❛♥ ❜❡ ✉4❡❞ $♦ ✐♠♣❧❡♠❡♥$

✉4❡& ❞❡✜♥❡❞ ✈❡&✐✜❝❛$✐♦♥ ❛❧❣♦&✐$❤♠4 $❤❛$ ❛&❡ ♥♦$ ♣&♦✈✐❞❡❞ ❜② ✈❡&✐✜❝❛$✐♦♥ $♦♦❧❜♦①✳

❋♦& ❡①❛♠♣❧❡✱ $❤✐4 ✐4 ❛ ❣♦♦❞ ♣❛$❤ $♦ $❡4$ ✉4❡&✲❞❡✜♥❡❞ ♥♦♥✲4$❛♥❞❛&❞ ✈❡&✐✜❝❛$✐♦♥

♣&♦❝❡❞✉&❡4 ❢❛4$✳ ▼♦&❡♦✈❡&✱ ❍❛4❦❡❧❧ ❡①♣&❡44✐✈❡♥❡44 ❛❧❧♦✇4 $♦ ✜$ ❡✈❡♥ G✉✐$❡ ❝♦♠♣❧❡①

❛❧❣♦&✐$❤♠4 ✐♥ ❛ ❢❡✇ ❧✐♥❡4 ♦❢ ❝♦❞❡ ❛4 ❝♦♠♣❛&❡❞ $♦ ✐♠♣❡&❛$✐✈❡ ❧❛♥❣✉❛❣❡4✳

❚❤❡ 4✐♠✐❧❛&✐$② ❜❡$✇❡❡♥ $❤❡ 4$&✉❝$✉&❡ ♦❢ ❛ ❇I▼◆ ❞✐❛❣&❛♠ ❛♥❞ $❤❡ 4$&✉❝$✉&❡ ♦❢

$❤❡ ❝♦&&❡4♣♦♥❞✐♥❣ ❆❧✈✐4 ❝♦♠♠✉♥✐❝❛$✐♦♥ ❞✐❛❣&❛♠ ❛❧❧♦✇4 &❡❧❛$✐✈❡❧② ❡❛4② $♦ ✐❞❡♥$✐❢②

♣❛&$4 ♦❢ $❤❡ ♦&✐❣✐♥❛❧ ❞✐❛❣&❛♠✱ ✇❤✐❝❤ ❛&❡ &❡4♣♦♥4✐❜❧❡ ❢♦& $❤❡ ♦❝❝✉&&❡♥❝❡ ♦❢ ❡&&♦&4✳

▲❡$ ✉4 ❝♦♥4✐❞❡& $❤❡ ❧❛4$ ♣&♦♣❡&$②✱ ❜✉$ 4❧✐❣❤$❧② ♠♦❞✐✜❡❞✿

✑ ✑ ✑ ✑

✐✳❡✳ ❛❢$❡& 4✉❜♠✐$$✐♥❣ ❛ ♣&♦❥❡❝$ ❛ ❣&❛❞❡ ✐4 &❡❝❡✐✈❡❞ ✐♥ ❛ ✜♥✐$❡ ♥✉♠❜❡& ♦❢ 4$❡♣4✳

❚❤❡ ♣&♦♣❡&$② ❞♦❡4 ♥♦$ ❤♦❧❞ ❢♦& $❤❡ ♠♦❞❡❧ ❛♥❞ 4✉✐$❛❜❧❡ ❝♦✉♥$❡&❡①❛♠♣❧❡ ♠❛②

❜❡ ❣❡♥❡&❛$❡❞ ❜② $❤❡ ❈❆❉I $♦♦❧❜♦①✳ ❚❤❡ ❝♦✉♥$❡&❡①❛♠♣❧❡ $❛❦❡4 $❤❡ ❢♦&♠ ♦❢ ❛ ♣❛$❤

❢&♦♠ $❤❡ ❝♦&&❡4♣♦♥❞✐♥❣ ▲❚❙ ❣&❛♣❤✳ ■$4 ✐♥✐$✐❛❧ ♣❛&$ ✐4 4❤♦✇♥ ✐♥ ❋✐❣✳ ✶✶✳ ❆♥❛❧②③✐♥❣

$❤❡ ❝♦✉♥$❡&❡①❛♠♣❧❡ &❡$✉&♥❡❞ ❜② ❈❆❉I ✭❡4♣❡❝✐❛❧❧② ❧❛❜❡❧4 ♦❢ ❡❞❣❡4✮✱ ✇❡ ❝❛♥ ✐❞❡♥✲

Fig. 11. Counterexample (initial part).

Moreover, in the case of a communication between agents, the labels include not only
the type of communication statement (in or out), but also the name of the port used for
communication. Thus, we have information about all the agents involved in the path, per-
formed statements, and communication between them. The considered counterexample
may be represented graphically as shown in Fig. 12. The gray trace points out agents and
their ports involved in the counterexample.

Because agents correspond to tasks in a BPMN diagram, and gateways and events are
represented by ports and snippets of source code, we can accurately reproduce the gray
trace in the original BPMN diagram. The translation method shown in Figs. 3 and 4 ap-
plied to the given example may be described with a log file that contains dependencies
between components of both diagrams (BPMN and Alvis). A snippet of such a log file is
shown in Fig. 13. Based on the translation log BPMN elements involved in the counterex-
ample are identified as shown in Fig. 14.

The considered counterexample represents the scenario when after the request for
project resubmitting the waiting time expired so the grade is not provided. In the gen-
eral case, based on the numbers of states returned by CADP, we can filter the states from
the complete LTS graph. Analysis of the states, especially the current parameter values,
may also explain the cause of the undesirable behaviour of the model.

From Process Models to Concurrent Systems in Alvis Language 541

Fig. 12. Communication diagram with the trace of the counterexample.

Fig. 13. Part of translation log file.

7. Summary

Business process models find applications in many systems. In some mission-critical
cases, e.g. control systems, process models should be formally analysed. The analysis
of the formal aspects of a model allows for its optimization and verification. Furthermore,
it may be useful in the assessment of the quality of the models. To perform such an analy-
sis, translations of the process model to a formal specification should be considered. The
original contribution of this paper is the introduction of a method for translation of models
from BPMN to the Alvis language.

As opposed to some low-level representations, such as Petri nets, structure of the Alvis
model is close to the original BPMN model. In comparison to the related works, our
approach allows for verification of models containing OR-joins and external participants.
The advantage of our solution is that errors revealed in the Alvis model can be easily
tracked in the BPMN model. This is why it can be especially useful for practical modelling

542 M. Szpyrka et al.

$
%&

'
"
(
%

$)(%*+
,*-.'*%./(

01"-.2.(*1)
3/(%"(%
34"35.(6

7"8&" %9:/1
3/2;-"%.(6

;1/<"3%

=,*-&*%./(9/:9*
 %&'"(%> 9!/15

=+;"3%.(69:/1
%4"93/2;-"%"'

;1/<"3%

;* "'
2. .(6

?* .3
3/(%"(%

 &?2.% 1"8&" % 1" &?2.%

!*.%.(6
%.2"
"+;.1"'

)(%*+9"11/1

3/2;-"%"'
;1/<"3%
1"3".,"'

61*'"

 &?2.%

$)(%*+
,*-.'*%.,*-.'*%.

.2.(
3/(%

;* "'

$)(%*+
,*-.'*%.

.2.(*1)
"(%

34"35.(6

.2.(
3/(%"(%
34"35.(6

2. .(6
?* .3

3/(%"(%

7"8&
3/2;

;1/<

7"8&" %9

1"8&" %

7"8&" %9
3/2;

" %9:/1
-"%.(6

;1/<"3%

=+;"3%.(
%4"93/2;

;1/<

3%.(" %9
-"%.

7"8&" %9
3/2;-"%.

;1/<"3%

3%.(
3/2;-"%"
;1/<"3%

3%.(=+;"3%.(
3/2;
;1/<"3%

"+;.1"'

Fig. 14. BPMN diagram with the trace of the counterexample.

of BPMN models. The presented method is evaluated using an illustrative example of a
process model. In spite of the fact that the considered example contains only selected
BPMN items, the translation method can be extended, e.g. to cope with subprocesses,
iterations, multiplicity etc.

The transformation of a BPMN model into an Alvis model allows for performing its
formal verification. For this purpose, we use the Alvis model to automatically generate
an LTS graph (Labelled Transition System). There are two possible approaches to the
formal verification of an LTS graph. An LTS graph is generated with Haskell implemented
algorithms and a designer has access to its source code so user-defined Haskell function for
the LTS graph analysis can be included into the model. Moreover, external tools like CADP
toolbox or nuXmv can be used to verify the model using model checking techniques.

As future work, we consider a more complex modelling and verification approach
which uses formalized attributive language for representing rules in decision tables or
networks, such as the XTT2 rule language (Nalepa et al., 2011c). XTT2 rules (and tables)
can be formally analysed using the so-called HalVA verification framework (Nalepa et al.,
2011a). In this approach table-level verification would be performedwith HalVA (Kluza et

al., 2011) and the global verification would be provided with translation to Alvis model.
Furthermore, the process models integrated with rules can be visually designed using
our customized editor (Kluza et al., 2012), and possibly executed in a hybrid runtime
environment (Nalepa et al., 2013; Jasiul et al., 2014).

References

Aguilar, J.C.P., Hasebe, K., Mazzara, M., Kato, K. (2011). Model Checking of BPMN Models for Reconfigurable

Workflows. Tech. Rep. CS-TR-1274, Newcastle University.
Allweyer, T. (2010). BPMN 2.0. Introduction to the Standard for Business Process Modeling. BoD, Norderstedt.

From Process Models to Concurrent Systems in Alvis Language 543

Badica, A., Badica, C. (2011a). Formal verification of business processes represented as role activity diagrams.
In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (Eds.), Proceedings of the 2011 Federated Conference on

Computer Science and Information Systems (FedCSIS), pp. 277–280.
Badica, A., Badica, C. (2011b). FSP and FLTL framework for specification and verification of middle-agents.

Applied Mathematics and Computer Science, 21(1), 9–25.
Baier, C., Katoen, J.P. (2008). Principles of Model Checking. The MIT Press, London.
Börger, E. (2012). Approaches to modelling business processes: a critical analysis of BPMN, workflow patterns

and YAWL. Software and System Modeling, 11(3), 305–318.
Calvanese, D., Dumas, M., Laurson, U., Maggi, F.M., Montali, M., Teinemaa, I. (2016). Semantics and analysis

of DMN decision tables. In: Business Process Management: 14th International Conference, BPM 2016, Rio

de Janeiro, Brazil, September 18–22, 2016. Proceedings, Vol. 9850, pp. 217–233.
Decker, G., Dijkman, R., Dumas, M., García-Bañuelos, L. (2008). Transforming BPMN Diagrams into YAWL

nets. In: Dumas, M., Reichert, M., Shan, M.C. (Eds.), Business Process Management, Lecture Notes in

Computer Science, Vol. 5240. Springer, pp. 386–389.
Dijkman, R.M., Dumas, M., Ouyang, C. (2007). Formal Semantics and Automated Analysis of BPMN Process

Models. Preprint 7115. Tech. rep., Queensland University of Technology, Brisbane, Australia.
Dijkman, R., Dumas, M., Ouyang, C. (2008). Semantics and analysis of business process models in BPMN.

Information and Software Technology, 50(12), 1281–1294.
Emerson, E. (1997a). Model checking and the Mu-calculus. In: DIMACS Series in Discrete Mathematics. Amer-

ican Mathematical Society, pp. 185–214.
Emerson, E.A. (1997b). Model checking and the Mu-calculus. In: Immerman, N., Kolaitis, P.G. (Eds.), De-

scriptive Complexity and Finite Models, DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, Vol. 31. American Mathematical Society, pp. 185–214.
Garavel, H., Lang, F., Mateescu, R., Serwe, W. (2007). CADP 2006: a toolbox for the construction and analysis

of distributed processes. In: Computer Aided Verification, LNCS, Vol. 4590. Springer-Verlag, pp. 158–163.
Jasiul, B., Śliwa, J., Gleba, K., Szpyrka, M. (2014). Identification of malware activities with rules. In: Ganzha,

M., Maciaszek, L.A., Paprzycki, M. (Eds.), Proceedings of the 2014 Federated Conference on Computer

Science and Information Systems (FedCSIS), Annals of Computer Science and Information Systems, Vol. 2.
IEEE, pp. 101–110.

Kluza, K., Maślanka, T., Nalepa, G.J., Ligęza, A. (2011). Proposal of representing BPMN diagrams with XTT2-
based business rules. In: Brazier, F.M., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (Eds.), Intel-

ligent Distributed Computing V. Proceedings of the 5th International Symposium on Intelligent Distributed

Computing – IDC 2011, Delft, the Netherlands – October 2011, Studies in Computational Intelligence, Vol.
382. Springer-Verlag, pp. 243–248.

Kluza, K., Kaczor, K., Nalepa, G.J. (2012). Enriching business processes with rules using the oryx BPMN editor.
In: Rutkowski, L., et al. (Eds.), Artificial Intelligence and Soft Computing: 11th International Conference,

ICAISC 2012: Zakopane, Poland, April 29–May 3, 2012, Lecture Notes in Artificial Intelligence, Vol. 7268.
Springer, pp. 573–581.

Kozen, D. (1983). Results on the propositional µ-calculus. Theoretical Computer Science, 27(3), 333–354.
Lam, V.S.W. (2010). Formal analysis of BPMN models: a NuSMV-based approach. International Journal of

Software Engineering and Knowledge Engineering, 20(7), 987–1023.
Lohmann, N., Verbeek, E., Dijkman, R. (2009). Petri net transformations for business processes – a survey.

Transactions on Petri Nets and Other Models of Concurrency, 2, 46–63.
Mateescu, R., Sighireanu, M. (2000). Efficient On-the-Fly Model-Checking for Regular Alternation-Free µ-

Calculus. Tech. Rep. 3899, INRIA.
Matyasik, P., Szpyrka, M., Wypych, M., Biernacki, J. (2016). Communication between agents in Alvis language.

In: Proceedings of Mixdes 2016, the 23nd International Conference Mixed Design of Integrated Circuits and

Systems. Łódź, Poland, pp. 448–453.
Nalepa, G., Bobek, S., Ligęza, A., Kaczor, K. (2011a). HalVA – rule analysis framework for XTT2 rules. In:

Bassiliades, N., Governatori, G., Paschke, A. (Eds.), Rule-Based Reasoning, Programming, and Applica-

tions, Lecture Notes in Computer Science, Vol. 6826. Springer, Berlin, Heidelberg, pp. 337–344.
Nalepa, G.J., Kluza, K., Ernst, S. (2011b). Modeling and analysis of business processes with business rules. In:

Beckmann, J. (Ed.), Business Process Modeling: Software Engineering, Analysis and Applications. Business

Issues, Competition and Entrepreneurship. Nova Science Publishers, pp. 135–156.
Nalepa, G.J., Kluza, K., Kaczor, K. (2013). Proposal of an inference engine architecture for business rules and

processes. In: Rutkowski, L., et al. (Eds.), Artificial Intelligence and Soft Computing: 12th International

544 M. Szpyrka et al.

Conference, ICAISC 2013: Zakopane, Poland, June 9–13, 2013. Lecture Notes in Artificial Intelligence,
Vol. 7895. Springer, pp. 453–464.

Nalepa, G.J., Ligęza, A., Kaczor, K. (2011c). Formalization and modelling of rules using the XTT2 method.
International Journal on Artificial Intelligence Tools, 20(6), 1107–1125.

OMG (January 2011). Business Process Model and Notation (BPMN): Version 2.0 Specification. Tech. Rep.
formal/2011-01-03, Object Management Group.

OMG (September 2015). Decision Model and Notation (DMN): Version 1.0. Specification. Tech. Rep.
formal/2015-09-01, Object Management Group.

O’Sullivan, B., Goerzen, J., Stewart, D. (2008). Real World Haskell. O’Reilly Media, Sebastopol, CA, USA.
Ou-Yang, C., Lin, Y.D. (2008). BPMN-based business process model feasibility analysis: a Petri net approach.

International Journal of Production Research, 46(14), 3763–3781.
Raedts, I., Petković, M., Usenko, Y.S., van derWerf, J.M., Groote, J.F., Somers, L. (2007). Transformation of

BPMN models for Behaviour Analysis. In: Augusto, J.C., Barjis, J., Nitsche, U.U. (Eds.), MSVVEIS. IN-
STICC Press, pp. 126–137.

Russell, N., terHofstede, A., van derAalst, W., Mulyar, N. (2006). Workflow Control-Flow Patterns. A Revised

View. Tech. Rep. Report BPM-06-22, BPM Center.
Silver, B. (2016) DMN Method and Style. Cody-Cassidy Press.
Stepaniuk, J., Bazan, J.G., Skowron, A. (2005). Modelling complex patterns by information systems. Funda-

menta Informaticae, 67(1–3), 203–217.
Szpyrka, M., Matyasik, P., Mrówka, R. (2011a). Alvis – modelling language for concurrent systems. In: In-

telligent Decision Systems in Large-Scale Distributed Environments, SCI, Vol. 362. Springer-Verlag, pp.
315–342.

Szpyrka, M., Nalepa, G., Ligęza, A., Kluza, K. (2011b). Proposal of formal verification of selected BPMN
models with Alvis modelling language. In: Intelligent Distributed Computing V – Proceedings of the 5th

International Symposium on Intelligent Distributed Computing, Studies in Computational Intelligence, Vol.
382. Springer, pp. 249–255.

Szpyrka, M., Matyasik, P., Wypych, M. (2013). Generation of labelled transition systems for Alvis models using
Haskell model representation. In: Proceedings of the 22nd International Workshop on Concurrency, Spec-

ification and Programming (CS&P 2013), CEUR Workshop Proceedings, Vol. 1032. Warsaw, Poland, pp.
409–420.

Szpyrka, M., Matyasik, P., Mrówka, R., Kotulski, L. (2014). Formal description of Alvis language with α0

system layer. Fundamenta Informaticae, 129(1–2), 161–176.
Szpyrka, M., Matyasik, P., Biernacki, J., Biernacka, A., Wypych, M., Kotulski, L. (2016). Hierarchical commu-

nication diagrams. Computing and Informatics, 35(1), 55–83.
van derAalst, W.M.P., terHofstede, A.H.M. (2005). YAWL: yet another workflow language. Information Systems,

30(4), 245–275.
White, S.A., Miers, D. (2008). BPMN Modeling and Reference Guide: Understanding and Using BPMN. Future

Strategies Inc., Lighthouse Point, Florida, USA.
Wynn, M., Verbeek, H., Aalst, W.v.d., Hofstede, A.t., Edmond, D. (2009). Business process verification – finally

a reality! Business Process Management Journal, 1(15), 74–92.
Ye, J., Sun, S., Wen, L., Song, W. (December 2008). Transformation of BPMN to YAWL. In: 2008 International

Conference on Computer Science and Software Engineering, Vol. 2. pp. 354–359.

From Process Models to Concurrent Systems in Alvis Language 545

M. Szpyrka is a full-time professor at AGH University of Science and Technology in
Krakow, Poland (Department of Applied Computer Science). He is the author of over 120
publications, from the domains of formal methods, software engineering and knowledge
engineering. His fields of interest also include theory of concurrency, systems security
and functional programming. He is the leader of the Alvis Project. He is a member of the
IEEE Computer Society and the Polish Artificial Intelligence Society (PSSI).

G.J. Nalepa holds a position of professor in AGH UST in Krakow, Poland, Department
of Applied Computer Science. Since 1995 he has been actively involved in number of
research projects, including Regulus, Mirella, Adder, HeKatE, INDECT, BIMLOQ, Pros-
ecco. He is the author of over 200 papers from the domains of knowledge and software
engineering, and intelligent systems. His fields of interest also include computer security
and operating systems. He formulated a new design and implementation approach for rule-
based systems called XTT (eXtended Tabular Trees). He is involved in many conferences
and workshops. In 2011 he published a monograph Semantic Knowledge Engineering.
A Rule-Based Approach. He is the President of the Polish Artificial Intelligence Society
(PSSI). He is a member of IEEE, and KES International.

K. Kluza holds a position of assistant professor in AGH UST in Krakow, Poland, Depart-
ment of Applied Computer Science. His main scientific interests focus on software and
knowledge engineering, especially business processes and business rules. He obtained
MSc in Automatics and Robotics in 2009 at AGH University, Krakow, and MA in Cul-
tural Studies in 2010 at Jagiellonian University, Krakow. In 2015, he obtained PhD in
Computer Science at AGH University. He published over 50 papers related to knowledge
and software engineering. Krzysztof Kluza is also a Secretary of the Board of the Polish
Artificial Intelligence Society.

