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Abstract. Radiologists need to find a position of a slice of one computed tomography (CT) scan in
another scan. The image registration is a technique used to transform several images into one coor-
dinate system and to compare them. Such transversal plane images obtained by CT scans are consid-
ered, where ribs are visible, but it does not lessen the significance of our work because many impor-
tant internal organs are located here: liver, heart, stomach, pancreas, lungs, etc. The new method is
developed for registration based on the mathematical model describing the rib-bounded contour. Pa-
rameters of the mathematical model and of distribution of the bone tissue on the CT scan slice form
a set of features describing a particular slice. The registration method applies translation, rotation,
and scaling invariances. Several strategies of translation invariance and options of the unification of
scales are proposed. The method is examined on real CT scans seeking for its best performance.

Key words: image registration, computed tomography, thorax bone tissue, feature-based registration,
image parameterization.

1. Introduction

Image analysis becomes a top technology assisting to make decisions in medicine. Images
come from various sources: radiology, echoscopy, magnetic resonance, thermovision, to-
mography, etc. Many diseases may be diagnosed and their treatment observed using the
computed tomography (CT) that is a technology allowing the inside of objects to be spa-
tially viewed, using computer-processed X-rays. CT scans are 3D images, i.e. a collection
of 2D images (slices), representing human body cross-section with a transversal plane.
Such collections of images require special methods and means to handle graphical data,
e.g. image segmentation, medical modelling, image registration.

The image registration is a technique used to transform several images into one coordi-
nate system. Although it has applications in many fields, the medical image registration is
important among them for aligning and comparing different images (Treigys et al., 2008;
Oliveira and Tavares, 2012). When evaluating the efficiency of treatment or progress of
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the disease, pre- and post-treatment, CT scans must be made (for the same patient) and
compared by aligning (registering) these two (or more) scans or particular slices from the
scans.

In Graf et al. (2011), the problem of registering CT scans in a body atlas has been
considered. It is also required for navigating automatically to certain regions of a scan
or if sub-volumes have to be identified automatically. Various methods are developed for
problems of such type (Emrich et al., 2010; Feulner et al., 2009; Fernández et al., 2014).
An automated method is developed in Shi et al. (2007) in order to identify the correspond-
ing nodules in serial thoracic CT scans for interval change analysis. The method uses rib
centrelines as a reference for the initial nodule registration. The rib anatomy is used as a
reference point in the CT scan analysis. In Kindig and Kent (2013), a model is introduced
to describe the centroidal path of a rib (i.e. the sequence of centroids connecting adjacent
cross-sections) in terms of several physically-meaningful and intuitive geometric parame-
ters in CT scans. This model addresses a critical need for the accurate characterization of
rib geometry in the biomechanics literature. A six-parameter shape model of the human
rib centroidal path using logarithmic spirals is proposed in Holcombe et al. (2016).

When analysing transversal plane images, obtained by computer tomography scans,
the peculiarity of the problem is that parts of different ribs are visible on the same slice. It
is the reason why the models in Kindig and Kent (2013) and Holcombe et al. (2016) cannot
be applied here. The problem arises in selecting a proper function defining a contour,
bounded by the fragments of the rib bone in the slice. These fragments are a result of the
cross-section of a bone with the transverse plane. The slices may be compared using the
bone tissue areas from the cross-section of bones in the slice. The authors in Bilinskas et

al. (2015) and Bilinskas et al. (2017) offer a cardioid-type curve defining the rib-bounded
contour on the slice. However, it is not the only one possible. A snake-type curve may serve
as an alternative (Kass et al., 1988), but computing of such a curve will face problems in
the spine area.

This research deals with CT scan slice registration, based on the mathematical model
that describes the ribs-bounded contour developed in Bilinskas et al. (2017), where a
method for analysing transversal plane images, obtained by computer tomography scans,
is presented. Such a mathematical model was created and the problem of approximation is
solved by finding out the optimal parameters of the model in the least-squares sense. The
authors of paper (Bilinskas et al., 2017) disclose the problems that appear in building the
proper model. Only slices, where ribs are visible, are considered. The methods of analysis
of this part of the body are important because many internal organs are located here: liver,
heart, stomach, pancreas, lungs, etc. The model is flexible and describes the rib-bounded
contour independently of the patient age, sex, and disease.

The registration problem could be solved by using the meta data of the DICOM header
of a CT scan. However, the available information is often error-prone. Güld et al. (2002)
report that several entries in the DICOM header are often imprecise or even completely
wrong.

The goal of this paper is to develop a registration method where the model of the rib-
bounded contour serves as the basis of the similarity criterion of images (slices). In this
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case, we have a method of the feature-based registration. The problem is to find the most
relevant slice in one scan to the chosen slice from another scan of the same patient. Reg-
istration of slices must be done independently of the patient position on the bed and of
the radiocontrast agent injection. Feature-based methods find a correspondence between
image features, such as points (Bouguet, 2000), or even contours (Li et al., 1995). In our
case, parameters of the mathematical model and of distribution of the bone tissue on the
CT scan slice form a set of features describing a particular slice.

2. The Model

In Bilinskas et al. (2017), a method is proposed for bone tissue segmentation and further
developmentof the mathematical model of the tissue configuration in a particular slice. Let
us denote a set of bone tissue pixels of the slice by B = {(b1i, b2i), i = 1,m}. Bilinskas et

al. (2017) is not the only possibility to extract the bone tissue from the slice, see e.g. Banik
et al. (2010), Zhang et al. (2012). The bone tissue is approximated by a mathematical
model. The model consists of two parts. The first part is a modification of cardioid, the
second one is a supplement to reduce the spine influence. The first part of the model is
described as follows:

x(ϕ) = x0 + aρ(ϕ) cosϕ cos θ − bρ(ϕ) sinϕ sinϕ, (1)

y(ϕ) = y0 + aρ(ϕ) cosϕ sin θ + bρ(ϕ) sinϕ cosθ, (2)

ρ(ϕ) =
(

1 + cos(ϕ − π/2)
)s

− c sinl
(

(ϕ + π/2)/2
)

. (3)

Here s defines the spine cave ‘strength’, c is the ‘strength’ of subtrahend for breastbone,
l is the steepness of subtrahend for breastbone, a and b are horizontal and vertical zoom
respectively, θ is the rotation of the human body, and (x0, y0) is the starting point (the
‘spike’ point of the model, see Fig. 1).

The second part of the model is a line-segment bounded by two points

a) (x0, y0),

b)
(

x0 + (y0 − miny) sin θ; y0 − (y0 − miny) cosθ
)

,
(4)

where miny = minϕ(y0 + bρ(ϕ) sinϕ). This part was used seeking a better accuracy of
model (1)–(3).

Mathematical model (1)–(4) is defined by an array of 8 parametersM = 〈s, c, l, a, b, θ,

x0, y0〉, the values of which are found by least-squares (Bilinskas et al., 2017). The result-
ing model is shown in Fig. 1.

3. The Problem of Registration in CT Image Analysis

Radiologists need to find a position of a slice of one CT scan in another scan. Formally,
having a slice A′ of scan A

′, we should compare it with all the slices in scan A
′′ and find
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Figure 1. An example of CT scan slice with a model curve (

the ‘spike’ point of the model

Fig. 1. An example of CT scan slice with a model curve (red line).

the most similar slice A′′
k , i.e. the nearest slice from scan A

′′ to A′:

k = arg min
A′′

j ∈A
′′
dist

(

A′;A′′
j

)

. (5)

Here the function dist is a similarity measure of two slices. Some possible functions dist

are discussed below.
A′ and A

′ are called a source or a reference slice and scan, respectively. A′′ and A
′′

are called a target slice and scan, respectively.

4. Data for Slice Registration

For image registration, we need discrete points of the curve of model (1)–(3). Denote the
sequence of points by C. If ϕ runs through the interval [−π/2; 3π/2)with a step 2π/n, we
get the sequence C = (Ci = (xi, yi), i = 0, n − 1) of points of the curve (1)–(2), where
xi , yi are defined by Eq. (1) and (2) respectively, xi = x( 2π

n
i) and yi = y( 2π

n
i). The length

of the sequence C is n because the second part of the model (a line segment) is not used
here.

Some registration methods need weights of model curve points. Weights are gathered
by distributing bone tissue points among the curve points (xi, yi), i = 0, n − 1. n groups
of bone tissue points are formed. Model points (xi, yi), i = 0, n − 1 have weights W =

(w0,w1, . . . ,wn−1), where wi is the number of bone tissue points in the ith group; the
ith group contains points closer to the model point (xi, yi) than (xj , yj ), ∀j 6= i . Without
loss of generality, further we will use W = (w0,w1, . . . ,wn−1) as normalized weights,
where

∑n−1
i=0 wi = 1.

Finally, for each slice, we have a set of bone tissue pixels (points) B , the sequence C

of discrete points of the curve of model (1)–(3), array M of 8 parameters describing the
mathematical model, and weights W of model curve points. Registration is applied to two
slices. Denote B , C, M , and W of the source slice by B ′, C

′, M ′, and W ′, and that of
target slice by B ′′, C

′′, M ′′, and W ′′, e.g. W ′ = (w′
0,w

′
1, . . . ,w

′
n−1) are the weights of

the source slice model, and W ′′ = (w′′
0 ,w′′

1 , . . . ,w′′
n−1) are the weights of the target slice

model.
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5. Registration

The registration method below applies translation, rotation, and scaling invariance. These
invariances are usual in the image registration (Szeliski, 2006). However, their realization
depends on a particular target area.

The comparison of slices is based on:

a) the values of parameters describing the mathematical model (1)–(3),
b) the sequence of discrete points of the curve of model (1)–(3),
c) the weights of points of the curve.

5.1. Rotation Invariance

Model (1)–(3) has a parameter θ , describing the rotation of a patient with respect to the
bed. This parameter indicates the rotation of the model curve about the point (x0, y0) as
well. Rotation invariance is realized rotating the model curve about the point (x0, y0)

by the angle −θ . This procedure should be applied both to source and target slices.
The revised parameters of the models become M ′ = 〈s′, c′, l′, a′, b′,0, x ′

0, y
′
0〉 and M ′′ =

〈s′′, c′′, l′′, a′′, b′′,0, x ′′
0 , y ′′

0 〉. Without loss of generality and seeking for simplicity of no-
tation, we redefine C by the sequence of points after the rotation described above, where
entire points from C are rotated by −θ about (x0, y0). Therefore, in the further text, the
sequences after rotations of source and target slices are denoted as C

′ = ((x ′
i, y

′
i), i =

0, n − 1) and C
′′ = ((x ′′

i , y ′′
i ), i = 0, n − 1), respectively.

5.2. Scale Invariance

Most often the compared CT scan slices have a different scale. The scale depends on the
parameters of CT scanner. These parameters may vary in different scans. One of such
parameters is the size of a pixel of the image.

In our model, we have scale parameters a and b (see Eqs. (1) and (2)). For comparison
of two slices, the parameters a and b of these slices should be scaled. Large scale invari-
ance may be attained varying a and b. Therefore, the pyramid technique (Burt, 1981) has
no use here. Three options O1, O2, and O3 of the unification of scales are considered
below. Options O2 and O3 are used when DICOM metadata tags are not precise or are
even lost.

The first option O1 is the usage of DICOM metadata tags, indicating the size of pixel.
Let a pixel be quadratic. Denote the width of the source slice pixel by z′, and that of
the target slice pixel by z′′. The revised parameters of the source slice model are M ′ =

〈s′, c′, l′, a′ · z′/z′′, b′ · z′/z′′,0, x ′
0, y

′
0〉. The parameters of target slice remain unchanged:

M ′′ = 〈s′′, c′′, l′′, a′′, b′′,0, x ′′
0 , y ′′

0 〉.
The next two options take into account the specificity of the problem, the source and

target slices are of the same patient. In these cases, the scaling is performed using specific
features of the curve describing the bone tissue:

O2) the maximal width of the region, bounded by the curve,
O3) the area of the region, bounded by the curve.
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If the maximal width is considered (O2), then the target slice model remains as it
stands, and the parameters of the source slice model are revised as follows:

M ′ =
〈

s′, c′, l′, a′ · z, b′ · z,0, x ′
0, y

′
0

〉

,

z = width
(

C
′′
)

/width
(

C
′
)

,

width
(

C
′
)

= max
i

x ′
i − min

i
x ′
i, width

(

C
′′
)

= max
i

x ′′
i − min

i
x ′′
i . (6)

If the area of the region bounded by the curve is considered (O3), then the target slice
model remains as it stands, and the parameters of the source slice model are revised as
follows:

M ′ =
〈

s′, c′, l′, a′ · z, b′ · z,0, x ′
0, y

′
0

〉

,

z =

√

area
(

C
′′
)

/area
(

C
′
)

,

area
(

C
′
)

=
1

2

(

x ′
0y

′
1 − x ′

1y
′
0 + x ′

1y
′
2 − x ′

2y
′
1 + · · · + x ′

n−2y
′
n−1 − x ′

n−1y
′
n−2

+ x ′
n−1y

′
0 − x ′

0y
′
n−1

)

,

area
(

C
′′
)

=
1

2

(

x ′′
0y ′′

1 − x ′′
1 y ′′

0 + x ′′
1y ′′

2 − x ′′
2 y ′′

1 + · · · + x ′′
n−2y

′′
n−1 − x ′′

n−1y
′′
n−2

+ x ′′
n−1y

′′
0 − x ′′

0 y ′′
n−1

)

. (7)

The efficiency of registration is examined experimentally in this paper, using different
options O1, O2 and O3.

Without loss of generality and seeking for simplicity of notation, we redefine C by
the sequence of points after scaling described above. Therefore, in the further text, the se-
quences after scaling the source and target slices are denoted as C

′
=((x ′

i, y
′
i), i = 0, n − 1)

and C
′′

=((x ′′
i , y ′′

i ), i = 0, n − 1), respectively.

5.3. Translation Invariance

There are several reasons generating the necessity to solve the problem of translation in-
variance. The patient lies in various positions on the bed during different scans, and mod-
els, corresponding to target and source slices, differ as usual.

The translation invariance can be realized in two steps: horizontal translation and the
following vertical translation.

The models of bone tissue of the source and target slices have a vertical symmetry: the
axis of symmetry crosses the abscissa axis at x ′

0 and x ′′
0 for the source and target slices,

respectively. The horizontal translation invariance will be ensured by moving the source
slice model as follows:

1x = x ′′
0 − x ′

0. (8)
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Note that x ′′
0 − x ′

0 = 1
n

∑n−1
i=0 (x ′′

i − x ′
i), i.e. 1x is the average of differences of abscis-

sas of the corresponding source and target points of the model curve. The model, corre-
sponding to the source slice, becomes M ′ = 〈s′, c′, l′, a′ · z, b′ · z,0, x ′

0 + 1x,y ′
0〉 that is

equivalent to M ′ = 〈s′, c′, l′, a′ · z, b′ · z,0, x ′′
0 , y ′

0〉.
The problem is more complicated to find optimal 1y to move the source slice model

vertically. The model curve is not symmetric to any horizontal line and the ‘spike’ of the
model may have a different length (y0 − mini yi) as θ = 0: even similar slices can have a
large difference of y0, as the parameter s may slightly compensate it.

Several strategies for finding 1y are developed and examined below.

5.3.1. Pointwise Comparison (PW)

The simplest criterion in search of 1y is such that the distances between the ith source
slice model point and the ith target slice model point were as minimal as possible. The
problem may be formulated as a least-squares one:

min
1y

φ(1y) =

n−1
∑

i=0

(

y ′′
i −

(

y ′
i + 1y

))2
. (9)

Derivative of φ is

dφ

d1y
=

n−1
∑

i=0

2
(

y ′′
i −

(

y ′
i + 1y

))

(10)

and solving dφ
d1y

= 0 yields

1y =
1

n

n−1
∑

i=0

(

y ′′
i − y ′

i

)

, (11)

i.e. 1y is the average of differences of ordinates of the corresponding source and target
points of the model curve.

The method was tested using two CT scans and searching for optimal positions of
slices from the source scan with respect to target scan slices, i.e. applying Eq. (5) to all
slices A′ in scan A

′, where

dist
(

A′;A′′
)

=

n−1
∑

i=0

((

x ′′
i −

(

x ′
i + 1x

))2
+

(

y ′′
i −

(

y ′
i + 1y

))2)
(12)

is the sum of squared distances between the corresponding source and target points of
model curve in Eq. (5). Here, 1x is given in Eq. (8), and 1y is given in Eq. (11).

A pointwise comparison has disadvantages. Figure 2 shows the example of the source
slice model (red line) and the most appropriate target slice model (blue line), indicated by
a radiologist. We notice their insufficient matching. It is because the distances between the
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Fig. 2. Red is the source slice model, blue is the correct target slice model, shifted using (11), and grey is a line
between two corresponding points in different models.

 

 

 

Fig. 3. The same models as in Fig. 2, but with the blue curve shifted slightly above.

corresponding source and target model curve points are used in Eq. (12). By moving the
blue curve upwards, we get much better matching (see Fig. 3), but the distance between
two corresponding points in different models may grow (two such points are connected
with grey line in Figs. 2 and 3). This example indicates that the pointwise comparison is
insufficient to find proper 1y .

5.3.2. Total Least Squares (TLS)

Figure 3 clearly shows that the ith point of the source slice model should be compared
not with the ith point of the target slice model, but with the nearest point on this model.
Therefore, the problem to search for optimal 1y may be formulated as follows:

min
1y

φ(1y) =

n−1
∑

i=0

(

y ′′
i −

(

y ′
(

x ′′
i , y ′′

i ,1x,1y
)

+ 1y
))2

(13)

where y ′(x ′′
i , y ′′

i ,1x,1y) is a function giving the ordinate of the nearest point on the
source model curve (shifted by (1x,1y)) from (x ′′

i , y ′′
i ). As noted above, 1x = x ′′

0 − x ′
0

ensures the horizontal translation invariance. Therefore, it is applied in Eq. (13). In the
experiments, the source model curve was linearly interpolated between the n sampled
points and problem (13) was solved using one-dimensional search.

Let the comparison criterion in Eq. (5) of two slices be as follows:

dist
(

A′;A′′
)

=

n−1
∑

i=0

((

x ′′
i − (x′

(

x ′′
i , y ′′

i ,1x,1y
)

+ 1x)
)2

+
(

y ′′
i − (y ′

(

x ′′
i , y ′′

i ,1x,1y
)

+ 1y)
)2

), (14)
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Fig. 4. Source (a) and target (b) slices of the same position, respectively; models of these slices (c).

where x ′(x ′′
i , y ′′

i ,1x,1y) is a function the value of which is an abscissa of the nearest
point on the source model curve (shifted by (1x,1y)) from (x ′′

i , y ′′
i ).

Some matching examples imply that the result could be improved even more. For ex-
ample, the models of the source (Fig. 4a) and target (Fig. 4b) slices, where the breastbone
is not visible, are expressed in red and blue in Fig. 4c, respectively. The difference be-
tween models is in the top middle part of a model, where there is no bone tissue. These
models are very similar, where the bone tissue is present. Therefore, a disadvantage of the
total least-squares strategy is that it considers, with the same importance, the places of the
model, where there is no bone tissue in the slice.

5.3.3. Weighted Total Least Squares (WTLS)

To solve the problem of the breastbone cave uncertainty, the model curve points, that do
not have the bone tissue nearby, must be not included in the comparison of slices. It is
done by introducing model point weights, as explained in Section 4. The problem for 1y

evaluation becomes as follows:

min
1y

φ(1y) =

n−1
∑

i=0

((

y ′′
i − (y ′

(

x ′′
i , y ′′

i ,1x,1y
)

+ 1y)
)2

×
(

w′′
i − w′

(

x ′′
i , y ′′

i ,1x,1y
))2)

, (15)

where w′(x ′′
i , y ′′

i ,1x,1y) is a function the value of which is the weight of the nearest
point on the source model curve (shifted by (1x,1y)) from (x ′′

i , y ′′
i ). 1x = x ′′

0 − x ′
0

as above. w′′
i is the weight of the point (x ′′

i , y ′′
i ) with respect to the density of the bone

tissue spread near to this point. In the experiments, the weights w′(x ′′
i , y ′′

i ,1x,1y) for
the source model are linearly interpolated between the sampled points, and problem (15)
was solved using one-dimensional search.

The comparison criterion of two slices is as follows:

dist
(

A′;A′′
)

=

n−1
∑

i=0

(((

x ′′
i − (x ′

(

x ′′
i , y ′′

i ,1x,1y
)

+ 1x)
)2

+
(

y ′′
i −

(

y′
(

x ′′
i , y ′′

i ,1x,1y
)

+ 1y
))2)

×
(

w′′
i − w′

(

x ′′
i , y ′′

i ,1x,1y
))2)

. (16)



448 M.J. Bilinskas et al.

 02 &(+%
&&, Δ+

+)

 

, Δ+, Δ�).

Fig. 5. Division of the model curve into top (blue line) and bottom (red line) parts.

The one dimensional search for finding 1y may be pointed out as the main disadvan-
tage of the weighted total least squares strategy.

5.3.4. Weighted Ordinary Least Squares (WOLS)

In this strategy, the problem for 1y evaluation is as follows:

min
1y

φ(1y) =

n−1
∑

i=0

(

y ′′
i −

(

y ′
(

x ′′
i ,1x

)

+ 1y
))2

w′′
i · w ′

(

x ′′
i ,1x

)

. (17)

Here y ′(x ′′
i ,1x) is the function the value of which is the ordinate of the source model

curve (shifted by 1x) at the abscissa point x ′′
i , dependently whether the ith point (x ′′

i , y ′′
i )

of the target model is on top or bottom of the model curve. 1x = x ′′
0 − x ′

0 as above. w′′
i is

the weight of the point (x ′′
i , y ′′

i ) with respect to the density of the bone tissue spread near

to this point. w
′
(x ′′

i ,1x) is the weight of the point of the source model curve (shifted
by 1x) at the abscissa point x ′′

i , dependently whether the ith point (x ′′
i , y ′′

i ) of the target
model is on top or bottom of the model curve.

In the experiments, the values of functions y ′(x ′′
i ,1x) and w ′(x ′′

i ,1x) were obtained
via a linear interpolation of the known values from the source model. Top and bottom
parts were extracted for functions y ′ and w ′ as follows. When i runs from 0 to n − 1, the
points (xi, yi) lie on the top of the slice model curve starting from such smallest i (denote
it by i∗), where xi+1 < xi , and ending with such i (denote it by i∗∗), where xi+1 > xi .
The bottom curve consists of all the remaining points and has two points (xi∗, yi∗) and
(xi∗∗, yi∗∗) common to the top curve. The criterion whether the point (xi, yi) lies on the
bottom or top of the slice model is illustrated in Fig. 5.

Equation (17) can be solved analytically, yielding equation (18):

1y =

∑n−1
i=0 (y ′′

i − y ′(x ′′
i ,1x))w′′

i · w ′(x ′′
i ,1x)

∑n−1
i=0 w′′

i · w ′(x ′′
i ,1x)

. (18)

The comparison criterion of two slices is as follows:

dist
(

A′;A′′
)

=

n−1
∑

i=0

(

w′′
i − w ′

(

x ′′
i , y ′′

i ,1x,1y
))2

. (19)

Note that in Eq. (19) only the weights of model curve points are used.
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Table 1
Results of the pointwise comparison (PW) with

different scale invariance options.

εmean σ εmax

O1 6.575 8.405 36.25
O2 9.102 11.627 47.50
O3 9.648 11.976 47.50

Table 2
Results of the total least-squares (TLS) with different

scale invariance options.

εmean σ εmax

O1 9.974 9.226 38.75
O2 10.052 14.607 60.00
O3 8.737 13.507 60.00

6. Experiments

Scans of the same patient are examined, where the relative position of one scan is known
with respect to the other one. Two pairs of scans with different slice thickness have been
examined. The first source scan has 96 slices, the target scan has 106 slices, and slice
thickness is 1.25 mm. The second source scan has 53 slices, the target scan has 49 slices,
and slice thickness is 2.5 mm. During experiments with the first pair of scans, for each
source slice, the most similar slice was found out in the target scan. The correct slice in
the target scan is known in advance. Therefore, the registration error may be set to be
the absolute difference in millimetres (mm) between the positions on the human body
longitudinal axis of two target slices, determined by Eq. (5) and the correct one.

While examining our new registration method, for each source slice, the registration
error has been evaluated applying four different strategies PW, TLS, WTLS and WOLS
of translation invariance and three options O1, O2, and O3 of the unification of scales
(see Sections 5.2 and 5.3). The results were averaged through all the source slices. They
are the mean error εmean, the error standard deviation σ , and the maximum error εmax.
The results are presented in Tables 1–4 for various strategies of translation invariance of
the first pair of CT scans. The results of weighted ordinary least-squares with invariance
option O3 on the second pair of CT scans with 2.5 mm slice thickness are presented in
Table 5.

In addition, the experiments were carried out using Pyramidal Implementation of the
Lucas Kanade Feature Tracker (Bouguet, 2000) to find features and match them and the
RANSAC method (Fischler and Bolles, 1981) in order to find the transformation matrix. It
is realized by the estimateRigidTransform function of OpenCV library.2 This function
is applied to two slices (grayscale images) and the estimated transformation matrix is
applied to a set of bone tissue pixels of the target slice (denote the result by B∗). Finally,

2
opencv.org.
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Table 3
Results of the weighted total least-squares (WTLS)

with different scale invariance options.

εmean σ εmax

O1 0.977 0.604 2.50
O2 0.469 0.657 2.50
O3 0.703 0.740 3.75

Table 4
Results of the weighted ordinary least-squares

(WOLS) with different scale invariance options.

εmean σ εmax

O1 0.508 0.614 1.25
O2 0.326 0.549 1.25
O3 0.339 0.555 1.25

Table 5
Results of the weighted ordinary least-squares

(WOLS) with invariance option O3 of a pair of CT
scans with 2.5 mm slice thickness.

εmean σ εmax

O3 0.102 0.245 2.5

Table 6
Results of the estimateRigidTransform.

εmean σ εmax

28.53 15.54 48.75

two sets of bone tissue pixels B ′ and B∗ are compared, dist(B ′;B∗) = (|B ′|−|I |+|B∗|−

|I |)/(|B ′| + |B∗|), where I is the intersection of B ′ and B∗, | · | is the cardinality of
the set. Here the intersection is assumed as the pixel-wise logical AND operator of two
binary images B ′ and B∗. The function dist(B ′;B∗) returns values from interval [0; 1].
The experiments have shown that the examined combinationof Pyramidal Implementation
of the Lucas Kanade Feature Tracker and RANSAC method is not very accurate, it leads
to very poor registration results, as shown in Table 6.

7. Overview of the Results and Conclusions

This research is devoted to the analysis of transversal plane images, obtained by computer
tomography scans. A method of the feature-based registration has been developed, where
the model of the rib-bounded contour serves as the basis of the similarity criterion of im-
ages (slices). The model is flexible and describes the rib-bounded contour independently
of the patient age, sex, and disease. We consider the slices where ribs are visible because
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many important internal organs are located here. The registration method applies trans-
lation, rotation, and scaling invariances. Several strategies of translation invariance and
options of the unification of image scales are proposed. The method is examined on real
CT scans seeking for its best performance. It works well independently of the radiocontrast
injection.

The experiments have proved the efficiency of the new registration method, where the
configuration of bone tissue is taken into account in the form of a mathematical model.
εmean values in Tables 5 and 6 indicate that such an approach is much more accurate as
compared with a combination of Pyramidal Implementation of the Lucas Kanade Feature
Tracker and RANSAC method. εmean = 0.5 mm is an acceptable error.

The results in Tables 1–4 indicate that the pointwise comparison and total least-squares
strategies fall behind to the weighted total least-squares and weighted ordinary least-
squares strategies. These two last strategies have a common peculiarity: they use weights
of model curve points, where the weights are evaluated in dependenceof the distributionof
bone tissue points on the slice. The best strategy uses the weighted ordinary least-squares.
The results of the weighted ordinary least-squares strategy are very good both for 1.25 and
2.5 mm slice thickness. Note that this strategy is little dependent on the scale invariance
options. This fact leads to the final conclusion that the weights of model curve points play
the key role in the efficient registration of thorax CT scan slices.
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