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1. Introd uction. In recent years artificial neural networks 
(ANN) have become one of the most 'frequentelyused classification 
techniques in pattern recognition. A classification error of ANN 
classifier is low, a recognition speed is high both in sequential and 
paralel implementation. A typical ANN classifier consists of several 
layers of neurons (see Fig. 1). Each (say 11th) neuron has several 
(say d) inputs i l • i 2 ••••• id. one output 0fJ. andperforms an operation, 

Op = Jp(netp), (1) 

where netp = E!=l wPcricr + WPo.· WP1' WP2"':' WPo are weights of p. 
th neuron and JP is' a nondecreasing and differentiable activation 
function, e.g. 

(2) 
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Fig. 1. An ANN.With Two Hidden Layers. 

The input nodes of the ANN classifier correspond to the com­
ponents of the feature vector to be classified. The inputs to the 
neurons in each of the hidden layers consist of the outputs of the 
preceeding layers. The neurons in' the output layer are usually 
associated with pattern class labels. . 

The important design issues in building an ANN classifier are 
to find an appropriate network topology (number of hidden layers, 
number of neurons in each layer) and to learn the· weight~ Wij for 
each neuron from the given training samples. If an one-layer ANN 
classifier with a single neuron and hard limiting threshold activa­
tion function (a simple perceptron) is used, then a simple linear 
discriminant function is realized and the resulting decision surface 
is a hyperplane [43]. On the other hand, a J)lultilayer ANN with 
soft limiting threshold activation function can realize an arbitrarily 
complex decision surface [12, 27, 41, 42, 67]. A number of methods 
exist to train an ANN [10, 23, 24~ 28, 42, 43, 59, 66]. The trainin~ 
methods used to design ANN classifier differ in the error function 
(3), in the type of the activation function JP (net) and in an op­
timization technique used to determine the weights in the neural 
net. Let O{J be the ~tual output and t{J be the desired output of 
the fJ·h neuron on in the output layer of ANN. The most popular 
error function is the mean square erro,r function, defined as 
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where n is the nUln ber of training samples and k is the number of 
neu.rons in 'the output layer, and e:O del1ot~ the error function. 

IAstead ·~qt)are function JoPP"- tpp )2' one '~n USe '3, modulus 
functlon~ In many training algorithms, the weights wo~ Wt. .•• , Wd 

are-changed only;when a training vector' Xpis~incor.rettly'cl'lS~fied 
(error-correction algorithm) [61,63]. For example, i.a,1the relaxation 
algorithm REL, 

~,', '.. . . ,~,- t " . ,1 .'; t 

~hen ; X p; is incqrrectlYr'.,cla$Sifi.ed,) , (4' 
o~e~w,~, '1,,' 'c,",'" ), ,.,' 

~nd in'the,;fixed increment algorithm 'F.IX'· r;:' ,,":, I'l,! 

• . l' I" .' ~'~~,,;.~ •. '.' ~ :.:.: .... )1:-

e:(c) = {Iel, whe"n ~It ~ in~le~tqr j:l~ifi~~,": . $: (5) 
0, oth~rwISe. "'" , 

. '''''' . l \~:');':'.:.; ~..\l :f, ' 'f'" ; ... ~ ", '" '~._ 

When one wants ~in~mize aqemp,i,rical prpl?itbUi~)';~f, tni~classifi-
cation a hard-limiting threshold function ,;.1" 

( ) _' { 1',' wlien x~ is i~~or~e~iry c1~sifiea', " ", ' (~) 
, .', E C - 0 'th ". , /\1 ,1 ~ .r l \,J.: , 0 erwlse, .",,' . > 

• ..";;" 1 ' 

shouldbeemployed. ., " r '. t" J' . :: . 

In their. classlcc,tl p<\per },tllIllelhprt, .l.Iinton an4 WilJiaQ!s [~~] 
reca,mmende,d t<>, use activation f,:!nction (3) and tht; valu~s o{ 0,1 
andQ,9 as thef~rge,ts~ The ~rror f~nctiol) p,lot,of s!lch MS Ep versus 
n~tp'i~ pr~sented in l~ig: 2,. " " " ' ." . 
. " "the standard l~a~ning p~~edure used t.~ find.weigh~s 'WfJa il}­

vplyes tl,le ;p_resenta.ti~n of ~ set. ~f pai.rs of in~ut and output p~tter~s 
and" ashangingthe' ~eights acC9rding to a.valu~ of the, pattern er-

• " ~ ~ T ,,# t. " ' .'. '.'.' . '" 

J:QI\ fUQction, A ~equential pH~s~nta.tiQn 9f all training vectors'~ill 
be called a learning sweep or t~aining pass. Usua.lly ~everal ten~or 

, ~¥~n :t,h~usands of learning sweep;'are required in order tofin~,the 
~;ights. -'. ..'" '. ' . .," .. . 
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, Fig. 2,_ . Pattern error function M SE, of the output layer versus 
net,. 

Thus the feed forward ANN classifiers and training methods 
used to design ANN pattern recognition system differ in: 

1) an ANN architecture (number of inputs er, number of out­
puts k,number of hidden, layers and number of neurons on 
these layers, connections between the neurons), 

2) a type of l>'tt~rn error function £(c)~ 
3) a type of,activation function f(net), 

" 4) an optillfisation technique used to minimise t.he error func-
I 

tion. 
I 

An information, used to design ANN pattern recognizer con-
sists of: a) prior ~nformation about the pattern recognition problem 
to be solved, b) training samples. 

The prior information is used to choose the ANN architecture 
and the training algorIthm; the training samples are used to specify 
values of weights of the ANN classifier \vith the given architecture . 

.. The ANN classifi'er can be analyzed as a special class of statis­
tical pattern classifiers which are derived from the training samples 
or data-driven, such as ,Parzen-window classifiers and k-NN classi­
fie~s [14}. It is well known that, in a finite training sample case, 
the expected classification error EPn of a statistical pattern das­
sifier increases due to an inexact determination of the para.me~,ers 

I ,', '","f; ::>;,' .. 
of the classifier. Th,e finite number of training samples causes. the 
followi'ng practical difficuJties and constraints [8, '14, 15, 29, 31,34, 
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.49, 54, 64]; 
, 1. The resubstitution error rate estimate has an optimistic bias. 
2. A peaking in classification performance is observed as'the 

number of features increases. ~ 
3. A need to use a simpleda.ssification algoritQm instead of a 

complex one. 
4. A need to reduce the number of.features. 
5. A need to find an optimal value of the smoothing parameter 

in the Parzen window classifier. 
6. A need to determine an optimal value of the number of near­

est neighbors (K) in the k-NN classifier. 
7. To balance the plug-in sample di~crimiilant functions in the 

case of unequal numbers of training samples per class. 
The ANN classifiers are also constructed primarily from train­

ing samples. Therefore they will also suffer from most of the finite 
sample problems mentioned above. 

The purpose of this paper is to analyze the small sample effects 
that occur in the design of the ANN classifiers. 

In Sec. 2 'we present some known results concerning the influ­
ence of the number of training samples on the a.ccura:cyof several 
parametric and nonparametric sta.tistical classifiers. These res:ults 
will be useful in analyzing similar small sample affects for the ANN 
classifiers. In Sec. 3 we discuss the classification accuracy and train­
ing time of the ANN classifiers. Sec. 4 deals wit"h' the problem of 
classification error estimation. In Sec. 5 and 6 we analyze the peak­
ing phenomena which .arise due to an increase in the number of 
inputs and the number of hidden layer nodes in multilayer ANN 
classifiers. Sec. 7 consists of discussion and suggestions for future 
research. 

~. Effects of finite number of training samples on the 
performance of statistical pattern classifiers •. It is generally 
recognized that more complex classification rules are more sensivite 
to training sample size [15, 21, 29, 42, 49, 54, 64]. In order to 
determine a complexity of the classification rules ma.ny a.uthors 
[3, 4, 5, 40, 64} use a measure of richness of a class of classificat,ion ' 



rules r called Vapnik-Chervonenkis (VC) dimension whidi is closfdy 
~ated:. t,o a. . maximal num~r of ways to" djviden.·:d~dimensional 

. vectors into tl\'{O pads by any rule from the class . .!i.r;Blu}ner et al. 
[5] have proved a folowing theorem. , ...... ,~! . 

'. Ifth~.:VC dimensiono.f a. set of classification .rules jsV"then for 
any cOnfidence level 6 < 1, generalisation error's limit.e-<>,.O,. training 
sa.mple error f> 0 and training sample size n, greater. than: 

(7) 

~he~e i., =,1 - tIe the p'roba.pility, ~hat there e;1Cists a c.lassific<£tion 
rule ina. cl~s r with, th~ general~sation error Pt> I: is at most h. 

,>M~~i authors [3~5,49]~gree vc dimensi~n V for the two­
,lay~r f~ fot,w~rd ANN.~\assifierwith d input. and h neurons in the 
hidden layer is equal to . 

;, (h+l)d, ' (8) 

i.t:~, ,a. ~umberof weights w to be de'termi'ned from the" tp¥ning 
sanl:plesi.: .... ". ," . - . ·c, 

r '£qdations7ia.pd'8 expre~s qualit~tive a'nd quanti·tative rel~tio~ 
l>et~een' th~ co~p~ity of the classification rule, trainil}g sample 
size, trainingatid gerieralisati6n elassificatio"n errors. E.g., for the 
ANN with 'twoiilputs (d b: 2) three neurons in the hidden layer 
(h = 3)/ when tr3.ining sample' error f = 0.05, the g~neL'aIisa.ti'on 
et-ror's limit' I: = 0.15, the reliability 6 = 0:5 w~ have' i '= p,6667, . 
"y = 8 and n:::: max (333, 10 523)=10 523 samples...· " .... ~ 

'F6r th~ ANN classifier with'd = 20, h = 20 when f = ().018, 
I: == 0.05, 6 = 0.5 We have i = 0:64, Y = 420 ~nd n '= ma:x- .(i08~, 
2 185 606) = 2 185 606 samples. ' 

, Numerous simulation studies show, howe~er, that above'the­
oretical estimates ·of the .number of training ,sanrples" required ·to 
~hieve valid gen~ralk ation are too, high. E.g., for ANN withd=2, 
h = 3, f = 0 we got the generalisation' er~r Pt = 0.06 whh sig~ 
nificantely smaller I;luJilber of training vecto.rs(n= ·SO). Baum'f3] 
report~dexperiments·with d = 20, h= 20;,e = 0.016'anQ p{=·o.bs 
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when n =8800. Possible reasons of too high values of n in theoret-
'ical Eq. 7 are that a derivation of these equations requires a 'u'se 
of some upper bounds several times, the equations arederivecl for 
most unfavorable conditions. In real applications of the ANNclas­
sifiers conditions are not so unfavorable, therefore even qualitativ~ 
relation between the generalisation error, comple~ity and training 
sa:~ple size can be totaly different than that predicted by Eq. 7 
and 8. 

In this context an analysis done in statistical patternrecogni~ 
tion using traditional methods o{ multivariate statistical analysis 
become very· im portant. 

One of the most popular and simple~t statisttcal patterJl Clas­
sifier is the Fisher linear discriminant function (LDf) 

tl 

g(%) = 1: WfJZ~ + Wo == net, 
fJ=l . 

(9) 

whereZl. Z2 ••••• %tl denote the d features, and Wo. Wt. ...• 'Wtlare con­
stants, 

For a two-class problem, if g(X) '> 0 then the feature vector 
X = (Z1. ,2:2, •.• ,Zd)T is allocated to class 71'1, otherwise to class 71'2. 

The linear discriminant function . linearly maps the training pat .. 
terns from each class on the real line defined by the \yeight vec­
tor W = (WO.Wl,W2, ... ,wa)T, Fisher [19] chose the weight vector 
su>ch that the mean squared deviation of the projected training 
patterns around their clCl$s mean vectors (within-class scatter) is 
minimized with respect to the seperation between the class mean 
vectors (between-class scatter). The weights ofthisLDF'are iden­
. tical to those obtained from the' 'plug-in' decision rule for 'the case 
of two Gaussian class-conditional, density functions when'the un .. 
known mean vectors and the common covariance matrix are re­
placed by their sample estimates. The same, 'weight vector can also 
be obtained by the least-mean-square-error adaptation algor!thm 
for an equal number of observations (N1 == N2) from both classes [22, 
36]. Therefore, the linear discriminant function is, hi fact, an one­
layer perceptron with a linear activation fmiction !(net) := net and 
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trained by the standard delta rule learning algorithm [59]. (where 
• MSEcrjterion is minimised). 

The stand!lrd LDF has been analyzed by a number of authors 
[17~ 45, 46, 55, 68]. The e~pected probability of misclassification, 
EPN, of LDF can be written as 

EPN = Q1P{9(X) 50! X E 11"1} + Q2P{9(X) < 0 ! X E 1I"1}' (10) 

where q1 and q2 are prior probabilities of classes 11"1 and 11"2, re­
spectively. The expected probability of rnisclassification, EP .. , (the 
generalisa.tion error in the ANN terminology) of the LDF depends 
on the number of training samples per class Nl and N2, dimen­
sionality of the feature vector d, and the asymptotic probability of 
misclassification, Poo (Table 1). • 

Pikelis [46], Wyman, Young and Turner [68] compared a num­
ber of asymptotic expansions of the expected probabilty of Il.lis­
classification for LDF and found that Deev's expansion [13] is very 
exact. In the cas~ of Gaussi~n class-conditional density functions 
with a common qOvariance matrix, the first term on the right hand 
side of Eq. 10 cait be computed as follows [13] 

P{g(X) > 0IX E 11"2} 

-4J{~~ ,1+~~ } 
~ '2',1 N!±Na-1NJ1Nat1(1+lYrl.!!&d~l) , 

, V N1+N;-d l+Na -x;NiI'{Jr 

(11) 

where N. is the number of training samples from class 1I".,4J(c) is 
Laplace's probability integral and 62 is, the, squared Mahalanobis 
distance, 62 = (PI - P2)' z:-l(Pl - jJ2)' The other term in Eq. 10 
P{g(X) 5 O!XErd =1- P{g(X) > 0IX E 1I"tl can be obtained from 
Eq. 11 by interchanging Ni and N2 • , 

Eq. 11 shows t,hat if d - (NI + N2 - 2), i.e., when the estimated 
cova,ri~nce matri .. x~omes ,ingular, the mi~~lassification ern~' in- ' 
creases enormously, Due to thenonlinear nature of the Laplace 
integral ;(c), the term'3 
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Table 1. The values of the relative increase in the expected 
probability of misclassification ~=, EPn/Poo of ,stan­
dard linear discriminant function for two (jaussian' 
,classes with common covariance m(l.tri';c 

Poo 0.2 0.1 0.03 0.01 0.001 d 
N\b 1.68 2~56 3.76 4.65 5.50 

2 2.00 3.26 8;27 20.6 59.3 
3 1.64 2.22 4.15 8.00 17.9 
6 1.31 1.50 2.00 2.74 4.07 
15 1.12 1.17 1.30 1.4~ 1.66 ' 3 
30 1.06 1.08 1.14 1.20 1.27 
150 1.01 1.02 1.03 1.04 1.05 
3· 2.11 3.64 9.90 25.7 76.1 
4 1.80 2.56 5.62 11.9 28.9 
5 1.69 2.21 4.01 7.37 15.4 
10 1.32 1.51 2.00 2.66 3.78 5 
25 1.13 1.18 1.31 1.45, 1.64 
50 1.06 1.09 1.14 1.20 1.27 
250 1.01 1.02 1.03 " 1.04 1.05 
5 2.04 3.38 8.57 20.9 58.2 
6 1.85 2.78 ' 6.00 18.8 30.9 

.8 1.63 2.19 3.87 6.84 13.5 
16 1.32 1.51 1.97 2.59 3.58 8 
40 1.13 1.18 1.31 1.45 1.63 
80 1.07 ' 1.09 1.14 1.20 1.27 
400 1.01 1.02 1.03 1.04 1.05 
30 2.05 3.39 ' 8.40 19.8 52.0 
50 1.62 ' 2.15' , 3:61 5.95 ' 10.6 
100 1.33 1.51 1.93 2.47 3.27 50 
250 1.14 1.19 1.31 1.44 1.61 
1000 1.04' 1.05 1.07 1.10 ' 1.13 
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(N~~:j) (d~I). i=3-i, i=1,2 

will increase the classification error when Nl ¥= N2 • This degrad~­
tion in classification performance due t.O unequal numbers of train­
ing samples from different classes is more pronounced in higher 
dimensional cases. when a quadratic discriminant function is used 
[50,54]. 

The generalisation error of the ANN classifier depends on the 
type of error criteria gO used inthe training process. Smith [61] de­

_ rived an approximate formula to calculate the expected probability 
of misclassification of MSE, REL and FIX adaptation algorith.-ns 
for linear discriminant functions. . . . 

(12) 

where parameters Aa and .. S a depend on the type; Q, of the error 
function (MSE, R"EL, FIX) and on the asymptotic probability of 
misclassification (,ee Tabl~ 2). 

Table 2. The toefficients A rt.nd 1J in Eq. 12 [61] 
I . 
I 

Algorithm MSE REJ.. . FIX 
c Poo A B A B A B 

1.0 0.309 .0880 .4400 .0886 . .0441 .0152 .505 
2.0 0.159 :1210 .2420 .. 1400 .2610 .1960 .317 
4.0 0.023 .0540 .0675 .1680 .1820 .2180 .232 

Note, theoretically MSE criieria' correspond to' the standard 
FiSher LDF. Consider a cllt.8sificationprohlem for which the Maha­
lanobis distance 6 :;: 2, dimensioriality d = 10, and training sample 
size N = Nl = N2 ~ 20, then Eq. 12 results in EPf!s~ =0.2165 for 
the stand~rd delta rule with MSE criterion (the exact value from 
Pikelis' Table [46) .ipO.219 and Deev's [13] ~ain term in Eq. 11 
gives O.217)j,EP~E~ = 0.221 for the relaxation error criteria (I.-i. 4), 
and EP!IX = 0.235 for the fixed increment '~riteria (Eq. 5). With 
an increase in the Mahalanobis distance c (or a decrease in the 
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-asymptotic probability of niisclassifieation Poo), a role of training 
samples distant from a classification hyperplane'in determining the 
weights of the linear discriminant functibn is diminished and, as a 
result, the differences between the expected errors EP~SB,EP:-BL 
and EP!IX increase. When one useS minimum empirical classifi­
cation error criteria (Eq. 6), the classification error is significantly 
higher than that of the classifiers which use the MSE, REL and FIX 
criteria [64]. Therefore," the standard delta rule where the mean­
square-error criterion is minimized is the most preferable learning 
rule to design linear classifiers in terms of theil' sensitivity to the 
training sample size. " 

The above results concerning the linear discriminant function 
are valid when only a single layer ANN performs the classification, 
and when the linear activation function I(net) = net is used. When 
one uses asoftlimiting activation:" function in a two-layer ANN, then 
Eq; 1 in fact perf6rms a feature extraction procedure. In the c~e of 
inaccurate determination of the weights C?fthe "f~ature extractors", 
~ftnt~" . " 

d 

Op = I" ( E w"ia + wPo) (13) 
a=l 

a set of new "features" oi, 02, ..• define a. new feature space where 
simple classes can sometimes be comparatively easily separated by 
adjusting the weights of the next . layer of neural elements. If the 
trainin~ algorithm adjusts the weights of the output neural el&- " 
ments first, and if there are only a few hidden layer elements (the 
new "features"), then the ANN can" be comparatively well train~d 
by a small number of training samples even in a extremely high 
dimensional caSe. Here, the sensitivity of two-layer ANN clas~ifiers 
to the finiteness of the training sample size is determined mainly by 
the number of hidden layer neurons. No detailed analysis however 
has been done in this area. 

It is well known that a multi-layer ANN classifier can "form 
complex decision boundaries similar to non parametric Parzen win­
dowor k-NN classifiers [27,41,42]. Therefore, a knowledge of the 
sensitivity' of the non parametric statistical classifiers to the finite-
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ness of the training sample size can serve as a guide in the analysis 
of multi-layer ANN classifiers. Unfortunately, very little is known 
'about the behavior of nonparametric statistical classifiers in the 
finite sample case. 

Raudys [50] obtained some re$ults by means of simulation stud­
ies for non parametric Parzen window classifiers. The classification 
problem involved two multivariate Gaussian populations with iden­
tity covariance matrices. He used the. following window function 

(14) 

where A is the window width, Xp is a training sample, and k' is a 
constant. 

The relative increase in the classification error (EPn / Poo ) is 
presented in Table 3 for two values of the smoothing pa.rameter 
(A = 0.1 and 0.8). The increase in the error rate of PW classifier 
to the training sample size drops when the value of the smoothing 
parameter increases. Wh~n A - 0, PW classifier with the Gaus­
sian window function performs no "smoothing" and P\V classifier 
becomes similar tlO an I-NN classification rule. Thus, values of 
" = EPn / Poo prefented for A = 0.1 are practically the values of " 
for the I-NN cl~sifier .. Note that the increase in the generalisa~ 
tion error rate of the non parametric statistical pattern classifiers 
to the number ofithe training samples increases with an increase in 
number of features' d is more significant than for parametric11SE 
adaptation .rule [541. The decrease of the generalisation error with 
an increase in the training sample size is also slower for nonpara­
metric classifiers (usually of order 1/..jii or 1/ ~). Therefore, in 
order to design complex decision boundaries in a high dimensional 
feature space with the help of non parametric statistical classifiers, 
a large number of training samplesis required. We suspect that in 

. a two-category case, the complex multi-layer ~eural net classifiers 
with a large number o~ bidden neurons and inputs CCi-n have similar 
behavior . 

. The search for the appropriate architecture and the weights 
of an ANN classifier is an optimization problem for a given error 
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Table 3. The values of the relative increase in the expected 
probability of misclassification K = EPn / Poo of Parzen 
window classifier for two Gaussian classes with com­
mon identity covariance matrix. Results are reported 
for two values of the smoothing paramet~r: A = 0.1/0.8, 

. 
2 ,1.97/1.96 3.53/3.51 
3 1.90/1.80 2.92/2.86 
6 1. 78/1.68 2.61/2.51 3 
15 1.64/1~46 2.32/2.18 
30 1.50/1.23 2.15/1.71 
150 1.39/1.06 1.53/1.20 
3 2.15/2,12 3.55}3.51 
5 1.98/1.94 3'.24/3.15 
10 1.87/1.80 3.07/2.87 5 
25 1.71/1.58 2.56/2.38 
50 1.66/1.44 2.16/1.90 
250 1.62/1.12 " ,1.86/1.27 
5 2.28/2.26 4.29/4.21 
8 2.13/2.05 3.48/3.41 
16 1.95/1.90 3.18/3.08 8 
40 1.91/1.76 3.72/2.46 
80 1.84/1.65 2.28/2.10 
400 1.81/1.29 2.14/1.54 

function. This optimization problem itself in fact involves selecting 
a variant of an ANN classifier a~ong a~ immense number of all 
possibl~ ANN classifiers with a given architecture. Raudys [53, 56, 
57] analyzed a problem where the best model needs to be selected 
from an infinite general population CM) of the models. Let the,i-th 
model Mi E M be characterized by some value of the error function 
Pi. and there exists ~n estimate A of Pi. In the ANN design Pi is, 
e.g., MSE found after the minimisation of Eq. 3 and Pi is the gener-
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alisation error. It is assumed that Pt. P2,'" ·are random variables in 
~ some interval (Prnin. Prnax) with a. density function I(P). Similarly, 

'"p;, p" ... are random variables with the conditional density func· 
tic;)O I(A IPi). Due to inaccuracies in the estimatesP;., p;, ... , Pm the 
sei~tion of the best model according to the estimates P;., p;, ... , Pm 
results in an increase in the value of the true error function Ptrue 
compared with the value of the error ~deaJ in an ideal selection 
procedure which uses only exact values Pt.P2,"'Pm, 

The true error Ptrue exceeds the error in ideal selection ~deaJ. 
Both errors Ptrue and P.de~arerandom variables due a random char· 
&cter of best model selection procedure. With increase in number 
of models compared; m, a mean value E~deal appraches minimal 
value Pmin. A mean value EPtrue diminishes too, however a dif­
ference EPtrue - E~deal remains. It is proportional to a standard 
deviation (SD) of the estimates Pt, ... ,Pm.It we use an empirical 
error counting error estimates, then 

SD(Pj ) = . / Pi(l - Pj) , 
. V n 

(15) 

where n is a numqer of samples used to obtain estimatesPj (in ANN 
training procedure Fa is the number of training samples). When 
the number m iJ very great E~deaJ is very close to Pmin, however 
the difference EPN - Pmin constitutes several times of the standard 
deviation: when; e.g., m= 106 and Pmin = 0.2 then EPn - Pmin ~ 
SP(Pj) and when Pmin = 0.01 EPn - Pmin ~(4 + 5)SP(Pj) [53]. 

The theoretica.l values oft he relative increase in the classifica­
tion error due to an inaccurate selection of the best model provide 
only guidelines for real model selection tasks. They show, how­
ever, that when the sample size is very small then the increase in 
the true classification error is rather significant and there is only a 
small chaneethat a good algorithm (model) will be selected .. The 
same coneiusion isvalid for the ANN optimizfl,tion' problem. The 
performance of the complex multi~layer ANN classifier trained on 
a small number .Qf saRlples )Yill differ significantly from that of the 
ANN dassifiet. ideally trained on an arbitrarily large number of 
samples. 
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Above th~retical considerations show the increase in ciassifi­
cation error due to the finiteness of training sample size is propor­
tional to ../1/8. 

Unfortunately, the above theoretical model does not allow us 
to evaluate the· influence of dimensionality, number of hidden layers, 
and other ·parameters of the architecture of a neural net clasifier. 
In' order to get some general view on the influence of the com­
plexity of ANN and the training sample size on th~ generalisation 
error Baum [3] performed special simulation studies. He used a . 
target ANN with 20 inputs and 10 neurons in the hidden layer in 
order to partition20-variate uniformly distributed random vectors 
into two classes. He used these vectors to t~ain another neural 
nets with H = 10,20,40 and 80 neurons <in the hidden layer, For 
H = 10 and training sample size n = 4400 he got the generalisation 
error Pt = 0.108; for H = 20 and n = 2200,4400,8800 he got Pt = 
0.177,0.122,0.050 respectively; for H = 40, n = 4400, 00, 600 he got 
Pt = 0.130, 0.096, 0.062 and for H = 80, n = 4400, 8800, 17600, 35200 
he got Pt = 0.143, 0.123, 0.071, 0.051. He <;dncluded these results are 
roughly consistent with the heuristics Pt = d· h/n, based on theory 
mentioned in the begining of this Sec. (see, e.g., Eq. 7 where nand 
e-generalisation error) are opposite proportional. 

A more careful analysis of Baum's empirical results shows that 
the decrease in the generalisation error Pt with increase in training 
sample size is of order 1/.;n or 1/ {In. what is characteristic to the 
non parametric Parzen window or k-NN classifiers or to training 
procedures where training is performed via selection of the best 
model. Therefore. we have chosen a heuristic of the following form 

(16) 

which with kl =6, k2 = 0.4· and ks = 1/2 appeared to be more 
accurate for Baum's [3] empirical data (there are only two anoma­
lies: for n = 8800 Pt = 0.05 for H = 20 andPf = 0.i23for H == 80). 
Not-e the empirical estimates were greately influenced by imperfect 
training since in all cases zero empirical error ~a.S not achieved. 
Empirical Eq. 16 represents only one type of the target net and 
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(:8Jl 'not pretend for wide generalisations. E.Bauin [3] investigated 
C;Ln influence of.~ complexity of the pattern recognition problem 
(the complexity of the target net in his experiments) and found 
the generalisation" error is more influenced by the complexity of the 
problem than by the complexity of the trainee ANN classifier. 

Above empirical results leads to an interesting conclusion: for 
particularconciete pattern recognition problem quantita.tive and 
even qualitative relations between training sample size n, number 
of dimensions d, number of neurons in hidden layer H and the gen­
eralisation error can be different from that predicted theoreticaly 
for most unfavourable case of real distributions. 

Multi-layer neural network classifiers correspond to a wide 
class .of classification· rules. By changing the shape of activation 
function 1(·) in Eq. I, and the architecture of the ANN, one can 
obtain classification algorithms with different features. The sensi­
tivity (increase in the classification error) of the ANN to the finite­
ness of the training sample size will lie between: 

a) sensitivity of single threshold linear element with the num­
ber offeatures equttl to the number of neurons in the highest hidden 
layer and trainedfby delta adaptation algorithm; 

b) the sensitivity of the I-NN classifier or a classifier formally, 
j , , . 

obtained by minimizing inaccurate sample-based cla.~sification error 
criteria. 

Very little work has been done in the statistical analysis of the 
ANN classification algorithms. 

3. The classification accuracy and training time of ar­
tificial neural networks. It is generally known [42] that tra­
ditional multi-layer artificial neural net classifiers trained by the 
back propagation algorithm require a great number of sweeps of 
the training sample data in order to minimize empirical classifica­
tion error. Other types of artificial neural nets (kernel classifiers, 
exem plar classifiers, decision tree cla~sifiers) do not form a priori 
definite structure of decision boundary and train relatively rapidly 
[42]. Thus, the long training time is one of the principal character­
istiCs of the back propagation classifiers. 
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For a given pattern recognition problem and a fixed set of 
training samples, the complexity of the decision region required 
to obtain a good classification accuracy of the training samples is 

. fixed. Therefor~, an ANN with more hidden layers and more hid­
den units will have more degrees of freedom and will require less 
acc,:!rate determination of the weights of the hidden and output 
units of the neural net. Therefore, in the fixed training sample it 
will be easier to train a complex neural network than a simple one. 
This theoretical observation is supported by numerous experimen­
tal studies [7, 26, 38, 44, 59]. In an analysis of the XOR problem 
with a two-layer neural network, Rumelhart et al. [59] propose an 
empirical equation "to determine the" number, S, of presentations 
of training samples as a function of the number If of the hidden 
nodes: 

S = 280 - 331og2 H. (17) 

Kung and Hwang [38] present a graph of the convergence time 
(i.e., training sweeps) versus the number ot hidden nodes per layer 
when various numbers of hidden layers are used (Fig. 3).· There 
were n = 8 pairs of randomly generated 12-dimensional input pat·· 
terns. They observed that a net with more hidden units per layer 
and with more layers led to a smaller number of training sweeps. 
They also noted an abrupt reduction in the number of training 
sweeps .around n - 1 hidden nodes (n is the number of training 
patterns). This observation agrees with a well-known fact in sta­
tistical pattern recognition theory, that in a. d-dimensional case, a 
hyperplane can discriminate perfectly any d + 1 points with .arbi­
trary class labels {9J. Therefore, when the number of hidden units 
is equal to n-1 there is no need to adjust the weights of the hidden 
layer units! 

With an increase in the number of training samples, thecom­
plexity of the decision boundaries required for perfect discrimina­
tion' of the training samples increases. Therefore, "training times, 
are typically longer when complex decision bounda.ries ate required 
and when networks have more hidden layers" [42]. 
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Fig. 3. The convergence time (Le., number of the training 
sweeps S) versus the number of hidden nodes per layer 
in a three-layer (1) and a five-layer (2) ANN [38]. 

It is generaly }ecognized the error function (3) of the multilayer 
ANN clMsifier is! a multiextremal one. The training sample size 

I 
plays here an important role. Especially a global minimum problem" 
arises i~ a case when we have more parameters to determine than 
the number of training samples. Then random initialisation of the 
weights often leads to a deep local minimum far from the global 
one. A grafical representation of this phenomena is presented in 
Fig. 4a, where we have two graphs of changing of MSE (3) and 
the generalisation error Pt on the line connecting two local minima 
points in multivariate ANN weights space. The training sample 
consisted of n = 8+8 = 16 two-variate vectors distributed uniformly 
on two 21r/3 concentric arcs. ANN had two inputs, 3 neurons in the 
hidden layer and two neurons in the output layer. Note minimum 
points for MSE and Pt. criteria differ in the small training sample 
case. This obser.:vati~n wilt,be important if,} further analysis. In 
larger training sample case n = 40+40 = 80 vectors the local minima 
are not so deep (see Fig.-tb). Therefore an increase in the number 
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of training samples flattens the local minima and makes the weight 
initialisation proble!D more easy to solve. Therefore to avoid the 
difficulty being trapped in t~e local minima of the error function 
we propOse to add a small random noise to training sample vectors 

. in each training sweep or to use specially selected weight vectors 
[58]. Other proposals are: 

1) to mix training vectors in each sweep, 
2) to use ANN with a probabilistic input-output relation, 

3) to utilise a stochastic dynamic by adding a noise term and 
relaxation term to original back propogation learning algorithm 
(see, e.g., [60]). 

At the end of Sec. 2, in the analysis of the accurracy of the 
best classifier selection problem on the basis of inaccurate sample­
based estimates Pt, P2 , ••• , we observed that the difference between 
the true (test sample estimate) classification error of the "best" 
classifier and the ideal one (obtained when' selection is perform ed 
on the basisof exact values Pi ,P2,"') decreases with an increase 
in the number of samples used to obtain the estimates Pt, P2, ... 
Besides the true classification error.Ptrue and the ideal classification 
error P.deal in the! selection process, there exists an apparent error 
Papparent. i.e. the kinimal value among the estimates Pl , P2, ••• , Pm' , 
(here m is the number of classifiers compared empirically). The 
mean value of t~e apparent error (EPapparent) is less than that of 
the ideal error EP.d~a1. 

The difference EPldeal-EPapparent decreases with an increase in 
the number of samples used to obtain estimates Plo P2, ••• , Pm. It 
is important to note that in the best classifier selection problem, 
while using random optimization search procedure, the values of 
the true, ideal, and apparent errors depend on the number m, i.e., 
the size of the set from which the "best" classifier is selected. All 
three error rates decrease with increase in mj th~ apparent error de­
creases fastest, and the true error slowest (see, for example, curves 
in Fig. 5 obtained for some theoretical model of f(P, P). In exper­
iments with feature selection, when the number m is sufficiently 
large, the true error practically ceases to decrease, and ITH.:;lely os-
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Fig. 5~ The mean values of the true EPtru~(l,l'), ideal (2) 
and apparent EPapparent (3,3') in best classifier selec-_ 
tion versus number, rn, of classifiers compared (Beta­
~inomial dist~ibution of (1',;, Pj ) [53]). 

dIlates [53]. Therefore, in finite design sample size, there is no need 
to analyze a very large number of classifiers if they were randomly 
chosen from the set of all possible classifiers. The sa.me conclusion, 
can be drawn for ANN optimization, where the empirical optimi~' 
sation criteria (3) is not accurate due to a finiteness of the training 
sample'size and due an use oran unacurate error function MSE 
instead of probability of misclassification (we can see a. difference 
between MSE and P, easily from Fig. 4a). The optimization itself 
is a selection of the best classifier from the infinitely number 0 

possible classifiers with a given architecture. . Simulation studieS 
confirm this theoretically obtained conclusion. In Fig. 6 we present 
two such pairs of graphs obtained by means of simulation. Similar 
graphs were obtained by Le Cun et al. [10, 18] while solving a 
handwritten digit recognition problem by means of a 3-layer artifi­
cial neural network. 

Therefore,in the ANN training problem, an excessive amount 
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Fig. 6. True (expected=test sample) ~rror (I(B), I(C» and 
apparent (training sample) error (2(B), 2(C» versus 
number of sweeps in the back propagation . algorithm 
(H = 4, d = 12, ntraining = 100, two spherically Gaus­
sian populations N(p" 161)jp, ~ (pil, ... ,p,d)T j data B: 
pij = (_1)' fj, 61= 1j data C: 1'1 = 1'2, 6? = 4,-1). 
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of optimization (~raining) of the neural network weiglitsis not nec­
essary if the traihing sample size is small. The optimal n um ber of 
sweeps required to minimize the true classification error (the t~st 
sample estimate)'depends on the number of training samples. It in­
crease with an increase in sample size; however, theoretical results 
which can be recommended for practical use do not exist yet. 

The above analysis shows that instead of minimizing the ap- . 
parent (training sample) error, one should minimize the true (test 
sample) error. A small oscillation of the empirical error function, 
usuaIly occuring in the training process, is a positive phenomenon. 
Control of the variance of the oscillation of the empirical (training 
sample) error with respect to the training sample size will lead to 
the design of more effective and rapid ANN training algorithms. 

. ~. 0 . ... . ~ 

4. Estimation of the classification error.' A central prob­
lem in cl~sifier design iC;,the estimation of classification error. A 
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number of techhiques exist to estimate the classification error in 
. statistical pattern recognition [21, 25, 30, 62]. It is well known 
that the resubstitution estimate is optimistically biased. Use of 
the resubstitution method to estimate error ra.te of an ANN clas­
sifier in the small design sample case will also result in a biased 
estimate. Therefore, in a finite design sample case, the hold-out 
method (where independent test samples are used to estimate the 
classification error) is preferable. 

Dutta and Shekharo [16] present the resubstitution (.&) and 
hold-out (%) estimates, obtained with a three-layer ANN classifier 
in 6 and 10 variable cases when the total number of training samples 
from 4 classes was 30 and the test sample size was 17. 

PR = 0020 for d = 6 . and PR = 0.016 for d = 10, 

PH = 0.235 for d = 6 and % = 0.116 for d = 10. 
We notice a significant difference between P; and ~ in the 10-

dimeonsional case. The difference (t>; - p;) can se~ve as a criterion 
to evaluate the sufficiency of the number of the training samples. 
Thus, for d = 6 we can conclude that the number of the training 
samples is sufficient, since & = 0.2 and % = 0.235, and for d = 10 
the number of the training samples is not sufficient, since .& = 0.076 
and % = 0.176. 

It is important to remember that the estimates & and ~ are 
random variables. Their standard deviations can be approximately 
evaluated by the following equation [20,47, 51}: 

SD(P;) = (18) 

where E denotes the expection operator and fit is the number of 
observations used to obtain the error estimate P; (here e = R or H). 

In solving practical pattern recognition problems, a researcher 
needs to select the "best" classifier and evaluate its performance 
empirically. Even when independent test samples are used t9 es- 0 

tim~te the classification error of the best classifier, the result will 
still be optimistically biased [53, 56}; the test samples will take the 

. role of additional training samples. If several classifiers are eval-
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uated and compared, then the bias mentioned above can become 
• significant; the bias can exceed the standard deviation (Eq. 18) of 

·the estimate ~used to select the best version [57]. Therefore, one 
. has to remember that in evaluation of the performance of the ANN 
classifier, an independent test sample, never used before, should be 
used to get an unbiased error rate of the final version of the ANN. 

5. Peaking in the classification performance with in­
crease in dimensionality. It is well known that introducing new 
features never increases the classification error of the optimal Bayes 
classifier. However, in a finite training sample case, or when one 
uses an inappropriate statistical model for the real data, the ad­
dition of new features can actually increase the classification er­
ror. The additional discriminatory information provided by the 
new features is outweighed by the increase in the inaccuracy of pa­
rameter estimates needed in the classification rule. Thus a peaking 
phenomenon is observed: addition of ne\v features decreases the 
classification error at first, then the error levels off, and begins to 
increase [1, 14, 15, 29, 32, 34, 39, 40, 49, 52]. The peaking phe­
nomenon is also qbserved in the design of ANN classifiers. A single 
linear threshold flement trained by the delta rule in.a finite train­
ing sample case ,J.,m have the same behaviour as the standard linear 
discriminant fun~tion. In the latter case, the optimal number offea­
tures, dopt , is a function of the asymptotic probability of error POOl 
the number of f~atures d, and the training sample size N. If "best" 
features (providing the most discriminatory information) are added 
first and these best features are significantly better than the worst 
ones, then dopt will be small. If the discriminatory information pro­
vided by the individual features is approximately equal, or if we 
include them in the classifier in a random order then dopt ::::::: N - 1 
[32]. 

When one uses a piecewise linear classifier with H linear hy­
perplanes, then the "effective" training samples used to determine 
the weights of each linear boundary segment is approximately [33] 

._' 0 

'0 N* = N/H, (19) 
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, where N is the 'number of training samples per class. 
A two-layer neural net classifier with a hard-limiting activa­

tiClo function gives a piecewise-linear decision boundary. One can, 
therefore, expect that when H is small, the number of observations 
used to adjust the weights of each hidden layer element will be ap­
proximately equal to N*= NjH, where H is the number of neurons 
in the hidden layer. 

The classification error of a two-layer neural net classifier ide­
ally trained on an arbitrarily large number of training samples will 
not increase with the addition of new features or the number of 
nodes in the input layer. Suppose the asymptotic PMC, poo• of 
this ideally trai~ed two-layet: ANN classifier can be determined by 
the equation [32]: 

Poo = <p(-cSJl-1d ). (20) 

where 0 < cS and 0 < 1 < 1. 
Then, substitution of N* = NjH into Eq. 6 results in 

(1 - ~ )(1 - Id) } 
2dH • 

1 + N62 (1_..,d) 
(21) 

This function has a minimum with respect to d and, therefore, 
the optimal number of features [32] can be written as, 

d t~N _ 1-,*+2(~-2)ln1-1. 
Of' H 41n1[(~-2)ln1-1] 

(22) 

In Fig. 7 we present several graphs tha,t illustrate peaking phe­
nomena. A two-layer ANN classifier with H neurons in the hidden 
layer was trained by back propagation rule with a sigmoidaf acti­
vation function and .was used to classify two spherically Gaussian 
pattern cl~_sses. A set of 1000 independent test samples was used to 
estimate the error rate of the ANN classifier~ Graphs were obtained 
by averaging the results of sixty Monte Carlo trials with different 
training sample sets of fixed size and different initial weights. Sim­
ilar results, which demonstrate the peaking with increase in dimen­
sionality, were obtained by Kohonen et al. [37]. 
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Fig. 1. Expected probability of misclassifi'cation EPn versus 
dimensionality d (Two classes of spherically Gaussian 
data N(pi,I6l), Pi = (PH, ... ,Pid)T; 
data A: 6i = l,pij = (_I)i/';;, H = 2; 
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In a extremtly highdimensional case some, training samples 
will partially be used to determine the weights of each linear bound': 
ary segment and Eq. 22 wil not be valid. Then the sensitivity of 
the two-layer ANN:. classifier to the finiteness of the training sam­
ple size will be determined mainly by the number of hidden layer 
neurons (see discussion at the end of Sec. 2). Here, the dimension­
ality of the input patterns will play a less significant role than in 
the .. ANN classifier with hard-limiting activation function. Graph 
B which was obtained for a case where the discriminiting pbwer of 
the features drops very slowly with the increase in the number of 
features does not peak at all. 

6. Effect of the number of neurons in the hidden layer 
on the performance of a neural net classifier. It is rbvious 
that the classific~tiorf error "of an ideally tr~ined neural net clas­
sifier cannot be increased by introducing new hidder, layer neural 

. .." 
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elements. With'an increase in the number of hidden layer elements, 
the classification error of the idealy trained ANN classifier, POOl will 
fall sharply at first, then the decrease of the classification error Poo 

will slow, and eventually, the addition of new elements will not ef­
fect Poo . Suppose the classification error of an ideally trained ANN 
classifier P~ can be determined by the equation 

(23) 

where H is the number·of elements in the hidden layer, 0 < 6 and 
0<,<1. 

As in previous Sec. 4, we have assumed that the "effective" 
num ber of ob·servations useq to adjust the weights of each of the 
H hidden layer neural elements is determined by Eq. 19. Then, 
by using the hardlimiting threshold activation function and the 
generalized delta back propagation algorithm, the increase in clas­
sification error of the 2-layer ANN classifier due to finiteness of the 
number of training vectors can approximately be determined by 
Eq. 11 with N* = NI H instead of N : 

(24) 

Simple numerical analysis cif Eq. 24 indicates the existence of 
peaking phenomena as the number of hidden layer neural elements 
incr~ases. Several graphs that illustrate the peaking phenomena 
while increasing the number of hidden units for two classes of Gaus-
sian data are presented in Fig. 8. . 

. Equations 19 and 24 are valid only when the number H of 
nets in the hidden layer is small. With an increase in H, differ-

. ent neural elements in the hidden layer will be trained partially 
with the same training samples. Therefore, the "effective" number 
of training samples used to. determine the weights of each linear 
boundary segment N* > NI Il, and addition of the number of hid­
den.nodes H slows down the increase in the expected classification 
error. These theoretical considerations are supported by numer­
ous experimental studies (Fig. 6 [6, 35, 40, 48]). Khotanzad and 
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Fig.S. Expected probability of misclassification EPN versus 
the number of neurons H in the hidden layer 
(Two classes of spherically Gaussian populations, 
N(O, [·4'-1), i = 1,2, number of variablesd = 8, 
training sample size N=10, 50, 100). 

Lu [35] trained a/two-layer ANN classifier to recognize the English 
alphabet. Train~hg data consisted of differently positioned, scaled, 
and oriented 64 iX 64 binary images of each of twenty six Englisn 
characters, 12 images per character., The performance of the ANN 
classifier peaked'at approximately 50 neurons (2% error) in the hid­
den layer, and with an increase in H, saturated at an errorlevel of 
5%. 

7. Discussion. Artificial neural net classifiers can be analyzed 
as a special class of statistical pattern recognition algorithms. In 
the finite training sample case, some kinds of unexpected and coun­
ter intuitive' behaviour can sometimes be observed in the design of 
t'he ANN classifiers. Some of these are listed below. 

. . 
1. Increase in the true (test sample or generalisation) dassi­

, fication wror c9ue to;finiteness of the training sampt .... size; 
2. Optimistic bias in the apparent (training sample) error; 

3. A presence of dee~ local minima of th(> pattern error func-
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tion in small sample case; 

4. An initial sharp decrease of the true classification error till 
some limit, while the apparent (training sample) classifi­
cation ~rror follows to decrease gradually with an increase 
in number of sweeps of the ANN weight adaptation algo­
rithm; 

5. Increase in the number of sweeps required to minimize the 
true and apparent classification error rates of the ANN 
classifier with an increase in the number of training sam­
ples; 

6. An optit:nistic bias iJil the error rate of the best version of 
an ANN classifier selected from several competing models 
based on finite size test sample data; 

7. A peaking in classification performance when increasing 
the number of features and the number of neural elements 
in hidden layers of the ANN classifier. • 

The sensitivity of the generalisation error (GE) of the ANN 
classifier to the finiteness of the training sample size differs from 
that of conventional statistical classifiers. A very simple ANN is 
simila.r to piecwise linear statistical classifier and therefore its gen­
eralisation error is proportional to l/n. Decision boundaries of the 
complex multilayer ANN becomes more similar to boundaries of 
non parametric Parzen window or k-NN classifiers and here increase 
in the qE is proportional to l/n or 1/ ¥n. Contrary to nonparamet­
ric classification rules in the ANN classifiers we haveparametri­
sations in local areas of d-variate space of features 'and thus here 
the increase in the generalisation error often is less expressed ,than 
for nonparametric classifiers case. Therefore the. multi-layer ANN 
classifiers have the desirable property of reducing the sm~ll training 

. sample effects when the number of features,andjor the number of 
neurons in the hidden layer is very large in comparison with the 
training sample size. -

. It is worth paying attention once more to the original 
E.Braum's [3J conclusion, that the increase in the gener~isation 
error of the ANN classifier depends more on the complexity of the 
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pattern recognition problem than on complexity of the trainee ANN 
• classifier. Therefore in advance it is imossible to predict the de­

pendence of the generalisation error of the ANN classifier on the 
number of tra.ining samples. Some amount of experimental studies 
have to be made, or one have to use upper bounds. 

In the multilayer ANN clas~ifier design the weights of the low­
est hidden layer's neurons are features common for all categories. 
They are trained by using training samples of all categories. Thus, 
the number of samples used to train the weights common for all 
the categories is larger than the number of samples used to train 

. the majority of parametric and nOhparametric statistical classifiers, 
where distribution densities of each class usually are estimated sep­
arately. Therefore, we can expect that multilayer ANN classifier 
will outperform conventional statistical classifiers in a high cate­
gory case, and when the number of weights in the output layer is 
not too high. 

A most sucessfullapplication of ANN classifiers to real-world 
problems have been achieved using large networks with large num­
ber of parameters, (tens of thousands and more) to be determined 
in the training pfocess [see, e.g., 18,65]. Estimatic:>nof a large 
number of parameters requires a large number of training samples .. 
In the finite trai:ning sample case the estimation of an excessive 
number of parameters causes undesired effects mentioned above. 
Therefore while choosing the·architecture of the ANN classifier one 
should pay attention to the training sample size. There are sev­
eral approaches which help to reduce a number of parameters to 
be estimated from the training samples [11]. 

.·A first approach is problem depending and consists of use of 
some a prior knowledge about the task and builq it into the net­
work. Although in the general case specifying such knowledge may 
be difficult it appears feasible on some highly regular tasks such as 
image and speech recognition [18]. . 

A second tech,niqlW is problem-independ~nt and consis. in suc­
cessive deletirig "useless" we{ghts during training. This approach is 
similar to successive feature elimination (backwa,ru selection) pro-
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cedure widelY'used in regress~on an statistical pattern recognition. 

A third technique is again problem dependent and consists in 
having several connections (links between neurons) be controlled 
by a single parameter (weight). This technique is especially effec­
tive in image recognition when the multilayer ANN classifier has 
many identical neurons [11, 18]. It seems to "be (:me of the most 
attractive characteristics of the ANN classifiers in comparison with 
conventional statistical classifiers enabling us to reduce the num­
ber of parameters to be adjusted from the training samples data 
dramatically. " 

While designing the ANN pattern recognition systems a pri­
ori knowledge (:)0 the problem to be solved should he incorporated 
into ANN as much as possible. A priori knowledge is very useful 
while designing the architecture of the ANN. Another nontradi­
tional source of additional information lies in that slightly distorted 
patterns usually are recognized by humans without loss of recog­
nition accuracy. Therefore the addi~g of the small noise to each 
training vector in each training sweep not only increases a stabil­
ity of the training algorithm but also increases in some sense the 
training sample size. 

Above review of research done on statistical pattern recogni­
tionand ANN in small training sample size case have showed an 
efficiency of theoretical and experimental analysis done for con­
crete types of distributions of the classes. In further analysis of 
small tr.ainig sample effects a special attention to 

a) the complexity of the pattern recognition problem to be sol­
ved with trainee ANN classifier, 

b) shapes of the pattern error and activation function, 

c) number of the classes, should be paid. 
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