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1. Introduction. In recent years artificial neural networks
(ANN) have become one of the most frequentely used classification
techniques in pattern recognition. A classification error of ANN
classifier is low, a recognition speed is high both in sequential and
paralel implementation. A typical ANN classifier consists of several
layers of neurons (see Fig. 1). Each (say 8‘*) neuron has several
(say d) inputs iy, iy, . .., i4, one output og, and performs an operation,

op = fa(netp), . ,. (1)

where nets = Y5 _, wpaia + wp,, wp,, ws,,..., ws, are weights of §-
th neuron and f3 is'a nondecreasing and differentiable activation
function, e.g. ’

falnetg) = 1/(1 + ™). ©
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Fig. 1. An ANN With Two Hidden Layers.

The input nodes of the ANN classifier correspond to the com-
ponents of the feature vector to be classified. The inputs to the
neurons in each of the hidden layers consist of the outputs of the
preceeding layers. The neurons in the output layer are usually
associated with pattern class labels. ‘ .

The important design issues in building an ANN classifier are
to find an appropriate network topology (number of hidden layers,
number of neurons in each layer) and to learn the weights w;; for
each neuron from the given training samples. If an one-layer ANN
classifier with a single neuron and hard limiting threshold activa-
tion function (a simple perceptron) is used, then a simple linear
discriminant function is realized and the resulting decision surface
is a hyperplane [43]. On the other hand, a multilayer ANN with
soft limiting threshold activation function can realize an arbitrarily
complex decision surface [12, 27, 41, 42, 67]. A number of methods
exist to train an ANN [10, 23, 24, 28, 42, 43, 59, 66]. The training
methods used to design ANN classifier differ in the error function
(3), in the type of the activation function fs (net) and in an op-
timization technique used to determine the weights in the neural
net. Let os be the actual output and t5 be the desired output of
the ** neuron on in the output layer of ANN. The most popular
error function is the mean square error function, defined as
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where n is the number of training samples and k is the number of
neurons in the output layer, and () denotes the error function.
Instead sqirare function (og; =~ t3,)? one can use a modulus
funcﬁohi In many training algorithms, the weights wq,wy,...,wq
are changed only when a training vector X, is:incorrectly classified
(error-correction algorithm) [61, 63]. For example, in the relaxation
a.lgonthm REL
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cation a hard- hmmng threshold function
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should be employed.

. In their cla.ssxcal pqper Rumelhort Hmton a,nd lelxams [59]
recommended to use activation functmn (3) and the va.lues of 0,1
and 0 9 as the. fa,rgets. The error functxon plot of such MS E, versus
netlp is presented inFig.2. . - Ca .

The standard learmng procedure used to find. welghts wp,, xn-
volves the presentation of a set, of pairs of i mput and output patterns
and a changmg the welghts a,ccordmg to a. value of the pattern er-
ror, function. A sequential presentation of all trammg vectors- w111
be called a learning sweep or tra.mmg pass. Usually sevex;al tens or
even thousands of lea.rmng sweeps are requu'ed in order to find the
welghts h
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F:g. 2. Pattern error function MSE, of the output layer versus
net,.

Thus the feed forward ANN classifiers and training methods
used to design ANN pattern recognition system differ in:

1) an ANN architecture (number of inputs a, number of out-
puts k, number of hidden layers and number of neurons on
these layers, connections between the neurons),

2) a type of pattern error function e(c),

3) a type of activation function f(net),

“4) an optumsa,tlon technique used to minimise the error func-
tion. i‘ .

An information used to design ANN pattern recognizer con-
sists of: a) prior information about the pattern recognition problem
to be solved, b) training samples. -

The prior information is used to choose the ANN architecture
and the training algorithm; the training samples are used to specify
values of weights of the ANN classifier with the given architecture.

"The ANN classifier can be analyzed as a special class of statis-
tical pattern classifiers which are derived from the training samples
or data-driven, such as Parzen-window classifiers and k-NN classi-
fiers [14]. It is well known that, in a finite training sample case,
the expected classification error EP, of a statistical pa.ttern clas-
sifier increases due tg an inexact determination of the paramerers
of the classifier. The finite number of training samples causes- the
following practical difficulties and constraints [8, 14, 15, 29, 31 34,
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49, 54, 64):. :
. 1. The resubstitution error rate estimate has an optlmtstxc bias.
2. A peaking in classification performance is observed. as' the
number of features increases.
3. A need to use a simple cla.sslﬁcatlon algonthm mstead of a
complex one. : o
A need to reduce the number of features.
. A need to find an optimal value of the smoothing pa.ra,meter
in the Parzen window classifier.
6. A need to determine an optimal value of the number of near-
est neighbors (K) in the k-NN classifier.
7. To balance the plug-in sample discriminant functions in the
case of unequal numbers of training samples per class.

The ANN classifiers are also constructed primarily from train-
ing samples. Therefore they will also suffer from most of the finite
sample problems mentioned above. :

The purpose of this paper is to analyze the small sample effects
that occur in the design of the ANN classifiers.

In Sec. 2 we present some known results concerning the influ-
ence of the number of training samples on the accuracy of several
parametric and nonparametric statistical classifiers. These results
will be useful in analyzing similar small sample affects for the ANN

“classifiers. In Sec. 3 we discuss the classification accuracy and train-

ing time of the ANN classifiers. Sec. 4 deals with the problem of
classification error estimation. In Sec. 5 and 6 we analyze the peak-

ing phenomena which arise due to an increase in the number of

inputs and the number of hidden layer nodes in multilayer ANN

classifiers. Sec. 7 consists of dxscussnon and suggestions for future

research.

”":’*k

- 2. Effects of finite number of training samples on the
performance of statistical pattern classiflers. It is generally
recognized that more complex classification rules are more sensivite
to training sample size [15, 21, 29, 42, 49, 54, 64]. In order to
determine a complexity of the classification rules many authors
[3, 4, 5, 40, 64] use a measure of richness of a class of classification -
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rules I called Vapnik-Chervonenkis (VC) dimension which s closely
related to a maximal number of ways. to-divide n-dsdimensional
- vectors into two parts by any rule from the cla,sssl’ Blumer et al.
[5] have proved a folowing theorem.- - TR
. I the VC dimension of a set of classxﬁcatlon rules is. V then for
any confidence level § < 1, generalisation error’s limit-# > 0, tra;nmg
sample error £ > 0 and training sample size n, greater than:

wbere r=1- €/ the probabnhty that there exlsts a classxﬁcatlon
rule i m a class I‘ with the genera,hsat;on error p; > ¢ is at most 8.

‘ Ma.ny authors [3, 5, 40] agree VC dimension V for the two-
la,yer feed forwa.rd ANN classifier thh d mput and h neurons in the
hidden laver is equa.l to ‘

O S N R : (h+1)d - o (8)

NN

ie., a number of welghts w to be determmed from the tra.mmg
sa.mples 5' -

Equations 7;a.nd 8 express qualltatlve and qua,nti-tatwe rela,txon
between the coghpexxty of the classification rule, trammg sample
size,- ttammg and genera.hsatlon class1ﬁcatlon errors. E.g., for the
ANN Wwith two inputs (d = 2) three neurons in the hldden la.yer
(h = - 3), when training sample ‘error £ = 0.05, the genexahba.txon
etror’s limit ¢ = 0.15, the reliability 6 = 0. 5 we have 7= 0 6667 _
V =8 and n = max (333, 10 523)=10 523 samples.

"For the ANN classifier with d = 20, h = 20 when £= 0 018,
£ = 0.05, § = 0.5 we have vy = 0.64, V_420a.ndn—max(1083
2 185 606) = 2 185 606 samples.

Numerous simulation studies show, however, that above the-
oretical estimates of the number of training samples required to
achieve valid generali- ation are too-high. E.g., for ANN with'd =2,
h = 3, £ = 0 we got the generalisation error P, = 0.06 with sig-
nificantely smaller number of training vectors (n = 806). Baum{3]
reported: experiments: with d = 20, h = 20,.8 = 0.016°'and p;"'="0.05
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when n = 8800. Possible reasons of too high values of n in theoret-
"ical Eq. 7 are that a derivation of these equations requires a sé
of some upper bounds several times, the equations are derived for
most unfavorable conditions. In real applications of the ANN clas-
sifiers conditions are not so unfavorable, therefore even qualitative
relation between the gencralisation error, complexity and training
sa.mple size can be totaly different than that predicted by Eq 7
and 8. ,

In this context an a.na.lysxs done in statistical pattern recogm-
tion using traditional methods of multivariate statistical analysis
become very-important. :

One of the most popular and sxmplest statlstxca,l pattern cla.s-
sifier is the Fisher linear discriminant function (LDF) .

d .
9(z) = Y wpzp + wo = net, 9)
=1 . .
where z,,2,...,24 denote the d features, a,nd wo, i, Ve ,’wd'are con-

stants. ‘ X
For a two-class problem, if g(X) > 0 then the feature vector

= (21,22,...,24)7 is allocated to class 7;, otherwise to class 7.
The linear discriminant function linearly maps the training pat-
terns from each class on the real line defined by the weight vec-
tor W = (wp,w;, w,.. ,wd)T Fisher [19] chose the w‘efght vector
such that the mean squared deviation of the pro_]ected training
patterns around their class mean vectors (within-class scatter) is
minimized with respect to the seperation between the class mean
vectors (between-class scatter). The weights of this' LDF -are iden-
‘tical to those obtained from the ’plug-in’ decision rule for the case
of two Gaussian class-conditional density functions when‘the un-
known mean vectors and the common covariance matrix are re-
placed by their sample estimates. The same weight vector can also
be obtained by the least-mean-square-error adaptation algorithm
for an equal number of observations (N, = N;) from both classes [22,
36]. Therefore, the linear discriminant function is, ini fact, an one-
layer perceptron with a linear activation furiction f(net) = net and
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trained by the standard delta rule learning algorithm [59] (where
MSE criterion is minimised).

~ The standard LDF has been analyzed by a number of authors
[17 45, 46, 55, 68]. The expected probability of misclassification,
EPp, of LDF can be written as |

EPN"QIP{Q(X)<0|X€71}"¥-Q2P{9(X)<0‘X611} (10)

where ¢; and ¢, are prior probabilities of classes =, and =, re-
spectively. The expected probability of misclassification, EP,, (the
generalisation error in the ANN terminology) of the LDF depends
on the number of training samples per class N; and N,, dimen-
sionality of the feature vector d, and the’ a.symptotlc proba,blhty of
misclassification, Py, (Table 1).

Pw=‘~l}£r!”EPn- .

Pikelis [46], Wyman, Young and Turner [68] compared a num-
ber of asymptotic expansions of the expected probabilty of mis-
classification for LDF and found that Deev’s expansion [13] is very
- exact. In the cast: of Gaussian class-conditional density functions
with a commeon covanance matrix, the first term on the right hand
side of Eq. 10 can be computed as follows [13]

P{g(X). > 0|X € m} A
{ 5 C14lastad } Sy
2\t e 0 S )

where N, is the number of training samples from class 1r.,¢(c) is

Laplace’s probability mtegral and 62 is the squared Ma.ha,la,nobxs

distance, 8 = (u1 — ps)* 1 "'(i1 — ). The other term in Eq. 10

P{g(X) <O0|X € )} =1-P{g(X) > 0|X € m;} can be obtamed from
Eq. 11 by xnterchangmg Ni and N,.

Eq. 11 shows that if d — (N} + N2 - 2), i.e., when the estxmated

covariance matrix becomes singular, the misclassification errcs in-’

creases enormously, Due to the nonhnear nature of the Laplace
integral #(c), the term

it
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- Table 1. The values of the relative increase in the expected
probability of misclassification s = EP,/Po of stan-.
dard linear discriminant function for two Gaussian
classes with common covariance matrix ‘

P, | 02 | 0.1 |003 [001 |0001 | d
N\6 |1.68 |2.56 [3.76 | 4.65 | 5.50
2 200 [3.26 |827 [206 | 59.3
3 1.64 | 222 {415 [ 8.00 | 17.9
6 1.31 | 150 |2.00 |2.74 | 4.07 »
15 [1.12 [117 {130 [145 | 166 | 3
30 |[1.06 [1.08 [1.14 [1.20 | 1.27
150 [1.01 {1.02 [1.03 [1.04 | 1.05
3- |2.11 [3.64 [9.90 |257 | 76.1
4 1.80 | 256 | 562 [11.9 | 289
5 1.69 [2.21 [4.01 [ 737 | 154
10 [132 [151 [2.00 [266 | 3.78 | 5
25 (113 | 118 |1.31 |1.45 | 1.64
50 [1.06 |1.09 [1.14 [1.20 | 1.27
250 |1.01 |1.02 {1.03 |1.04 | 1.05
5 1204 [3.38 |857 {209 | 582
6 |1.85 {278 16.00 | 188 | 30.9
. 8 1.63 | 2.19 | 387 | 6.84 | 135
16 [1.32 [ 151 |1.97 [259 | 3.58 | 8
40 [1.13 |1.18 [1.31 |1.45 | 1.63
80 |1.07 |1.09 |1.14 |1.20 | 1.27
400 | 1.01 |1.02 [1.03 |1.04 | 1.05
30 |2.05 |339 |840 |19.8 | 52.0
50 [1.62 | 215361 595 | 10.6
100 ]1.33 [1.51 [1.93 | 247 | 327 |50
250 |1.14 | 1.19 |1.31 | 144 | 1.61 :
1000 | 1.04 | 1.05 | 1.07 | 1.10 | 1.13
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N; - d-1\ . .
() (557): s=2mi =i

will increase the classification error when Ny # N,. This degrada-
tion in classification performance due to unequal numbers of train-
ing samples from different classes is more pronounced in higher
dimensional cases when a quadratlc dlscnmmant function is used
[50, 54]. ,

The generahsa.tlon error of the ANN classifier depends on the
type of error criteria &() used in the training process. Smith [61] de-
rived an approximate formula to calculate the expected probability
of misclassification of MSE, REL and FIX a,daptatlon algonthms
for linear dlscrlmma.nt functlons

EP°°=P" (A" B"(d 1)), (12)

where para.meters A® and B¢ depend on the type, a, of the error
function (MSE, REL, FIX) and on the asymptotic proba,blhty of
misclassification (see Table 2).

Table 2. The foeflicients 4 and B in Eq. 12 [61]

MSE |~ REL FIX

Algorithm ,

é Py A -B A . B . A B
1.0 0309 7 .0880 .4400 | .0886  .0441 | .0152 .505
20 0.159 | .1210 .2420 | .1400 .2610 | .1960 .317
4.0  0.023 | .0540 .0675 1680 1820, 2180 .232

Note, theoretlcally MSE criteria’ correspond to the standard
Fisher LDF. Consider a classification problem for which the Maka-
lanobis dlstance =2, dlmensxonahty d = 10, and training sample
size N = Ny = Np = 20, then Eq. 12 results in EP}SE = 0.2165 for
the standard delta rule with MSE criterion (the exact value from
Pikelis’ Table [46] is 0.219 and Deev’s [13] main term in Eq. 11
gives 0.217); EPFEL = 0.221 for the relaxation error criteria (L ;. 4),
and EPF'X = 0.235 for the fixed increment criteria (Eq. 5). With
an increase in the Mahalanobis distance § (or a decrease in the
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-asymptotic probability of misclassification Ps), a role of 'tr‘a,'iiring‘
samples distant from a classification hyperplane in determining the
weights of the linear discriminant function is diminished and, as a
result, the differences between the expected errors EPMSE  EPREL
and EPFIX increase. When one uses minimum empirical classifi-
cation error criteria (Eq. 6), the classification error is significantly
higher than that of the classifiers which use the MSE, REL and FIX
criteria [64]. Therefore,.the standard delta rule where the mean-
square-error criterion is minimized is the most preferable learning
rule to design linear classifiers in terms of their sensitivity to the
training sample size.

The above results concerning the lmear dxscnmmant function
are valid when only a single layer ANN performs the classification,
and when the linear activation function f(net) = net is used, When
one uses'a softlimiting activation function in a two-layer ANN then
Eq. 1in fact performs a feature extraction procedure In the case of
inaccurate &etermmatxon of the weights of the "feature extractors”,
given that o - , .
Op—fp(zwpta-i—wga) ' ) ‘ i (13)

a=l ’

a set of new "features” 01,02',... deﬁne a new feature space where
simple classes can sometimes be comparatively easily separated by
adjusting the weights of the next layer of neural elements.” If the
training algorithm adjusts the weights of the output neural ele--
ments first, and if there are only a few hidden layer elements (the
new "features”), then the ANN can be comparatively well traingd
by a small number of training samples even in a extremely high
dimensional case. Here, the sensitivity of two-layer ANN classifiers
to the finiteness of the training sample size is determined mainly by
the number of hidden layer neurons. No detalled ana.lysxs however
has been done in this area.

It is well known that a multi-layer ANN classifier can form
complex decision boundaries similar to nonparametric Parzen win-
dow or k-NN classifiers [27, 41, 42]. Therefore, a knowledge of the
sensitivity' of the nonparametric statistical classifiers to the finite-
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ness of the training sample size can serve as a guide in the analysis
of multi-layer ANN classifiers. Unfortunately, very little is known
-about the behavior of nonparametric statistical classifiers in the
finite sample case. v .

Raudys [50] obtained some results by means of simulation stud-
ies for nonparametric Parzen window classifiers. The classification
problem involved two multivariate Gaussian populations with iden-
tity covariance matrices. He used the following window function

o _ : : v (Y X :
K(——-—-—EX J\X ) =k'*exp{— X X,)/\z(X X’)}, - (19
where ) is the window width, X, is a training sample, and ¥’ is a
constant. _

The relative increase in the classification error (EP,/Ps ) is
presented in Table 3 for two values of the smoothing parameter
(A = 0.1 and 0.8). The increase in the error rate of PW classifier
to the training sample size drops when the'_va.lu'e of the smoothing
parameter increases. When A — 0, PW classifier with the Gaus-
sian window function performs no ”"smoothing” and PW classifier
becomes similar to an 1-NN classification rule. Thus, values of
k = EP,/P,, presented for A\ = 0.1 are practically the values of «
for the 1-NN clq[ssiﬁer. Note that the increase in the generalisa-
tion error rate of the nonparametric statistical pattern classifiers
to the number of;the training samples increases with an increase in
" number of features d is more significant than for parametric MSE
adaptation rule [54]. The decrease of the generalisation error with
an increase in the training sample size is also slower for nonpara-
metric classifiers (usually of order 1/ or 1/¥n). Therefore, in
order to design complex decision boundaries in a high dimensional
_ feature space with the help of nonparametric statistical classifiers,
~a large number of training samples is required. We suspect that in

‘a two-category case, the complex multi-layer neural net classifiers
- with a large number of hidden neurons and inputs can have similar
behavior. ' _ ‘ o ) ‘

" The search for the apprbpriatg architecture and the weights
of an ANN classifier is an optimization problem for a given error



A. Jain and S. Raudy? _ 313

Table 3. The values of the relative increase in the expected
: probability of misclassification x = EP,/Ps, of Parzen
window classifier for two Gaussian classes with com-

mon identity covariance matrix. Results are reported

for two values of the smoothing parameter: A = 0.1/0.8. _

“Po 0.1 0.01 d
N\é 256 | 4.65
2 | 1.97/1.96 | 3.53/3.51
3 | 1.90/1.80 | 2.92/2.86 g
6 1.78/1.68 | 2.61/2.51 3
15 1.64/1.46 | 2.32/2.18

30 1.50/1.23 | 2.15/1.71
150 1.39/1.06 | 1.53/1.20

3 2.15/2,12 | 3.55/3.51

5 1.98/1.94 | 3.24/3.15

10 1.87/1.80 | 3.07/287 | 5
25 1.71/1.58 | 2.56/2.38

50 | 1.66/1.44 | 2.16/1.90

250 1.62/1.12 - | 1.86/1.27

5 2.28/2.26 | 4.29/4.21

8 | 2.13/2.05 | 3.48/3.41

16 1.95/1.90 | 3.18/3.08 | 8
40 1.91/1.76 | 3.72/2.46

80 1.84/1.65 | 2.28/2.10

400 1.81/1.29 | 2.14/1.54

function. This optimization problem itself in fact involves selecting
a variant of an ANN classifier among an immense number of all
possible ANN classifiers with a given architecture. Raudys [53, 56,
57] analyzed a problem where the best model needs to be selected
from an infinite general population (M) of the models. Let the.i-th
model M; € M be characterized by some value of the error functlon
P:, and there exists an estimate P: of P.. In the ANN design P, is,
e.g., MSE found after the minimisation of Eq. 3 and P; is the gener-
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alisation error. It is assumed that P, P,, ... are random variables in
some mtervnl (Pein, Pmax) With a density function f(P). Similarly,
’Pl, Pz, . are random variables with the condntxonal den31ty func-
tion f(P,IP.) Due to inaccuracies in the estimates Pi, Pz, ., P the
selection of the best model according to the estimates P, Pz, . P
results in an increase in the value of the true error function Pm,e
compa.red with the value of the error Pgeai in an ideal selection
procedure which uses only exact values Py, P,,... Py,.

The true error P exceeds the error in ideal selection Pgea.
Both errors Pirye and Pgea1 are random variables due a random char-
acter of best model selection prccedure. With increase in number
. of models compared; m, a mean value EPg.a appraches minimal
value Pnin. A mean value EP;. diminishes too, however a dif-
ference EPirye — EPgeas Temains. It is proportlonal to a standard
deviation (SD) of the estimates P, ..., Pn. ‘It we use an empirical
error counting error estxma.tes, then

SD(P) !_’:_(_1;“__:_), (15)

where n is a number of Sampl&e used to obtain estima.tesv}”} (in ANN
training procedure n is the number of training samples). When
the number m ig very great EPgea is very close to P, however
the difference EPy — Py constitutes several times of the standard
devxa.txon when, e.g., m = 10° and Pnin = 0.2 then EPy — Pmin &
.S'P(P,) and when Py, = 0.01 EP, — Prin ~(4 = 5)SP(P;) [53].

The theoretical values of the relative increase in the classifica-
tion error due to an inaccurate selection of the best model provide
only guidelines for real model selection tasks. They show, how-
ever, that when the sample size is very small then the increase in
the true classification error is rather significant and there is only a
small chanée that a good algorithm (modél) will be selected.. The
same conclusion is valid for the ANN optimization problem. The
performance of the complex multi-layer ANN classifier trained on
a small number of sapples will diﬂ‘e‘r significantly from that of the
ANN classifier 1dea.lly trained on an arbltrarlly large number of
samphs
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" Above theoretical considerations show the increase in classifi-
cation error due to the finiteness of training sample size is propor-

tional to y/1/n.

Unfortunaftely, the above theoretical model does not allow us
to evaluate the influence of dimensionality, number of hidden layers,
and other ‘parameters of the architecture of a neural net clasifier.
In ‘order to get some general view on the influence of the com-
plexity of ANN and the training sample size on the generalisation
error Baum (3] performed special simulation studies. He used a -
target ANN with 20 inputs and 10 neurons in the hidden layer in
order to partition 20-variate uniformly distributed random vectors
into two classes. He used these vectors to train another neural
nets with H = 10,20,40 and 80 neurons‘in the hidden layer. For
H =10 and training sample size n = 4400 he got the generalisation
error P, = 0.108; for H = 20 and n = 2200,4400,8800 he got P; =
0.177,0.122,0.050 respectively; for H = 40, n = 4400, 00, 600 he got
P, = 0.130, 0.096, 0.062 and for H =80, n = 4400, 8800, 17600, 35200
he got P, = 0.143, 0.123, 0.071, 0.051. He concluded these results are
roughly consistent with the heuristics P, = d-h/n, based on theory
mentioned in the begining of this Sec. (see, e.g., Eq. 7 where n and
e-generalisation error) are opposite proportional. ,

‘A more careful analysis of Baum’s empirical results shows that
the decrease in the generalisation error P, with increase in training
sample size is of order 1/\/n or 1//n what is.characteristic to the
nonparametric Parzen window or k-NN classifiers or to training
procedures where training is performed via selection of the best
model. Therefore we have chosen a heuristic of the following form

Pz (b4 k@R (1)

which with k; = 6, k, = 0.4 and k3 = 1/2 appeafed to be more
accurate for Baum’s [3] empirical data (there are only two anoma-
lies: for n = 8800 P; = 0.05 for H = 20 and P, = 0.123 for H = 80).
Note the empirical estimates were greately mﬂuenced by imperfect
training since in all cases zero empirical error was not achieved.
Empirical Eq. 16 represents only one type of the target net and -
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can not pretend for wide generalisations. E.Baum [3] investigated
an influence of a complexity of the pattern recognition problem
(the complexity of the target net in his experiments) and found
the generalisation error is more influenced by the complexity of the
problem than by the complexity of the trainee ANN classifier.

Above empirical results leads to an interesting conclusion: for
‘particular concrete pattern recognition problem quantitative and
even qualitative relations between training sample size n, number
of dimensions d, number of neurons in hidden layer H and the gen-
eralisation error can be different from that predicted theoreticaly
" for most unfavourable case of real distributions.

Multi-layer neural network classifiers correspond to a wide
class of classification rules. By changing the shape of activation
function f(-) in Eq. 1, and the architecture of the ANN, one can
obtain classification algorithms with different features. The sensi-
tivity (increase in the classification error) of the ANN to the finite-
ness of the training sample size will lie between:

a) sensitivity of single threshold linear element with the num-
ber of features equal to the number of neurons in the highest hidden
layer and trained by delta adaptation algorithm;

b) the sensitgvity of the 1-NN classifier or a classifier formally,
obtained by minimizing inaccurate sample-based classification érror
criteria. E
~ Very little work has been done in the statistical analysis of the
ANN classification algorithms.

8. The classification accuracy and training time of ar-
tificial neural networks. It is generally known [42] that tra-
ditional muiti-layer artificial neural net classifiers trained by the
back propagation algorithm require a great number of sweeps of
the training sample data in order to minimize empirical classifica-
tion error. Other types of artificial neural nets (kernel classifiers,
exemplar classifiers, decision tree classifiers) do not form a priori
definite structure of decision boundaf'y and train relatively rapidly
[42]. Thus, the long training time is one of the principal character-
istics of the back propagation classifiers.



A. Jain and $. Raudys 317

For a given pattern recognition problem and a fixed set of
training samples, the complexity of the decision region required
to obtain a good classification accuracy of the training samples is
fixed. Therefore, an ANN with more hidden layers and more hid-
den units will have more degrees of freedom and will require less
accurate determination of the weights of the hidden and output
units of the neural net. Therefore, in the fixed training sample it
will be easier to train a complex neural network than a simple one.
This theoretical observation is supported by numerous experimen-
tal studies (7, 26, 38, 44, 59]. In an analysis of the XOR problem
with a two-layer neural network, Rumelhart et al. [59] propose an
empirical equation to determine the number, S, of presentations
of training samples as a function of the number H of the hidden
nodes:

S=1280-33log, H. (17)

Kung and Hwang [38] present a graph of the convergence time
(i.e., training sweeps) versus the number of hidden nodes per layer
when various numbers of hidden layers are used (Fig. 3). There
were n = 8 pairs of randomly generated 12-dimensional input pat-
terns. They observed that a net with more hidden units per layer
and with more layers led to a smaller number of training sweeps.
They also noted an abrupt reduction in the number of training
sweeps .around n — 1 hidden nodes (n is the number of training
patterns). This observation agrees with a well-known fact in sta-
tistical pattern recognition theory, that in a d-dimensional case, a
hyperplane can discriminate perfectly any d + 1 points with.arbi-
trary class labels [9]. Therefore, when the number of hidden units
is equal to n—1 there is no need to adjust the weights of the hidden
layer units! :

With an increase in the number of training samples, the com-
plexity of the decision boundaries required for perfect discrimina-
tion of the training samples increases. Therefore, "training times
are typically longer when complex decision boundaries are required
and when networks have more hidden layers” [42].
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Fig. 3. The convergence time (i.e., number of the training
sweeps S) versus the number of hidden nodes per layer
in a three-layer (1) and a five-layer (2) ANN [38].

It is generaly ‘ecognized the error function (3) of the multilayer
ANN classifier isl:‘ a multiextremal one. The training sample size
plays here an important role. Especially a global minimum problem’
arises in a case when we have more parameters to determine than
the number of training samples. Then random initialisation of the
weights often leads to a deep local minimum far from the global
one. A grafical representation of this phenomena is presented in
Fig. 4a, where we have two graphs of changing of MSE (3) and
the generalisation error P; on the line connecting two local minima
points in multivariate ANN weights space. The training sample
consisted of n = 848 = 16 two-variate vectors distributed uniformly
on two 27/3 concentric arcs. ANN had two inputs, 3 neurons in the
hidden layer and two neurons in the output layer. Note minimum
points for MSE and P, criteria differ in the small training sample
case. This observatien will.be important in further analysis. In
larger training sample case n = 40440 = 80 vectors the local minima
are not so deep (see Fig. 4b). Therefore an increase in the number
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Fig. 4. A change of the mean square error (use) and the generalisation error P; on lines connecting
to local minimum points in multivariate ANN weghts’ space [58].
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of training samples flattens the local minima and makes the weight
initialisation problem more easy to solve. Therefore to avoid the
difficulty being trapped in the local minima of the error function
we propose to add a small random noise to training sample vectors
-in each training sweep or to use specially selected weight vectors
[58]. Other proposals are:

1) to mix training vectors in each sweep,

2) to use ANN with a probabilistic input-output relation,

3) to utilise a stochastic dynamic by adding a noise term and
relaxation term to original back propogation learning algorithm
(see, e.g., [60]).

At the end of Sec. 2, in the analysis of the accurracy of the
best classifier selection problem on the basis of inaccurate sample-
based estimates Py, P, ... , we observed that the difference between
the true (test sample estimate) classification error of the "best”
classifier and the ideal one (obtained when selection is performed
on the basisof exact values Py, Ps,...) decreases with an increase
in the number of samples used to obtain the estimates ﬁl,ﬁz,...
Besides the true classification error Prye and the ideal classification
error Py, in the,selectlon process, there exists an apparent error
Papparent; i-e. the fmmma,l value among the estimates Py, P,,..., Bn.
(here m is the number of classifiers compared empirically). The
mean value of the apparent error (EP,ppmm) is less than that of
the ideal error EP,de,;

The difference EPgcai — E Papparent decreases with an increase in
the number of samples used to obtain estimates Py, Py,...,Ppn. It
is important to note that in the best classifier selection problem,
while using random optimization search procedure, the values of
the true, ideal, and apparent errors depend on the number m, i.e.,
the size of the set from which the ”best” classifier is selected. All
three error rates decrease with increase in m; the apparent error de-
creases fastest, and the true error slowest (see, for example, curves
in Fig. 5 obtained for some theoretical model of f(ﬁ, P). In exper-
iments with feature selection, when the number m is sufficiently
large, the true error practically ceases to decrease, and mciely os-
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Fig. 5. The mean values of the true EP,. (1,1’), ideal (2)

‘ and apparent EPapparent (3,3’) in best classifier selec-.

tion versus number, m, of classifiers compared (Beta-
Binomial distribution of (5}, P;) [53)).

cillates [53]. Therefore, in finite design sample size, there is no need
to analyze a very large number of classifiers if they were randomly
chosen from the set of all possible classifiers. The same conclusion:
can be drawn for ANN optimization, where the empirical optimi-
sation criteria (3) is not accurate due to a finiteness of the training
sample ‘size and due an use of an unacurate error function MSE
instead of probability of misclassification (we can sée a differencd
between MSE and P, easily from Fig. 4a). The optimization itsel

is a selection of the best classifier from the infinitely number o

possible classifiers with a given architecture. ‘Simulation studiet
confirm this theoretically obtained conclusion. In Fig. 6 we present
~ two such pairs of graphs obtained by means of simulation. Similar
graphs were obtained by Le" Cun et al. [10, 18] while solving a
handwritten digit recognition problem by means of a 3-layer artifi-
cial neural network. : ‘ ‘ ' '

Therefore, in the ANN training problem, an excessive amount



, 322 i Training sample size

P A
£xrr
1)
- e
_ o 1(B)
(&)
", - f |A . T >y
1 ‘ 5 10 50. S

Fig. 6. True (expected=test sample) error (1(B), 1(C)) and
apparent (training sample) error (2(B), 2(C)) versus
number of sweeps in the back propagation algorithm
(H = 4, d = 12, Riraining = 100, two spherically Gaus-
sian populations N(p:, I62); pi = (pi1, . .-, pia)T; data B:
Bij = (—1)"/]', 62 =1;data C: py = p3, 67 = 4-1),

/
of optimization (ﬁra.xmng) of the neural network wexghts is not nec-
essary if the trau‘ung sample size is small. The optimal number of
sweeps required to minimize the true classification error (the test
sample estimate)'depends on the number of training samples. It in-
crease with an increase in sample size; however, theoretical results
which can be recommended for practical use do not exist yet.

The above analysis shows that instead of minimizing the ap-

parent (training sample) error, one should minimize the true (test
sample) error. A small oscillation of the empirical error function,
usually occuring in the training process, is a positive phenomenon.
Control of the variance of the oscillation of the empirical (training
sample) error with respect to the training samrple size will lead to
the deSIgn of more effective and rapid’ ANN trammg algorxthms

4. Estlmatxon of the classxﬂcatlon error. A central prob—
lem in classifier design i the estimation of classification error. A
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- number of techhiques exist to estimate the classification error in
statistical pattern recognition [21, 25, 30, 62]. It is well known
that the resubstitution estimate is optimistically biased. Use of
the resubstitution method to estimate error rate of an ANN clas-
sifier in the small design sample case will also result in a biased
estimate. Therefore, in a finife design sample case, the hold-out
method (where independent test samples are used to estimate the
classification error) is preferable.

Dutta and Shekhar [16] present the resubstitution (Pg) and
hold-out (ﬁ;;) estimates, obtained with a three-layer ANN classifier
in 6 and 10 variable cases when the total number of training samples
from 4 classes was 30 and the test sa.mple size was 17.

PR 020 for d=6 and PR =0.076 for d= 10,

Pp=0235 for d=6 and PH 0.176 for = 10.

We notice a significant difference between PR and PH in the 10-
dimensional case. The difference (Pg — Pg) can serve as a criterion
to evaluate the sufficiency of the number of the training samples.
Thus, for d = 6 we can conclude that the number of the training
samples is sufficient, since Pr = 0.2 and Py = 0.235, and for d = 10
the number of the training samples is not sufficient, since I”; = 0.076
and Py = 0.176.

It is important to remember that the estimates f’; and }3; are
random variables. Their standard deviations can be approximately
evaluated by the following equation [20, 47, 51]:

spFy = [EROZER) gy

where E denotes the expection operator and n; is the number of
observations used to obtain the error estimate P, (here e = R or H).

In solving practical pattern recognition problems, a researcher
needs to select the "best” classifier and evaluate its performance
empirically. Even when independent test samples are used to es--
timate the classification error of the best classifier, the result will
still be optimistically biased [53, 56]; the test samples will take the
role of additional training samples. If several classifiers are eval-
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uated and compared, then the bias mentioned above can become
significant; the bias can exceed the standard deviation (Eq. 18) of
‘the estimate Py -used to select the best version [57]. Therefore, one
‘has to remember that in evaluation of the performance of the ANN
classifier, an independent test sample, never used before, should be
used to get an unbiased error rate of the final version of the ANN.

5. Peaking in the classification performance with in-
crease in dimensionality. It is well known that introducing new
features never increases the classification error of the optimal Bayes
classifier. However, in a finite training sample case, or when one
uses an inappropriate statistical model for the real data, the ad-
dition of new features can actually increase the classification er-
ror. The additional discriminatory information provided by the
new features is outweighed by the increase in the inaccuracy of pa-
rameter estimates needed in the classification rule. Thus a peaking
phenomenon. is observed: addition of new features decreases the
~ classification error at first, then the error levels off, and begins to

increase [1, 14, 15, 29, 32, 34, 39, 40, 49, 52]. The peaking phe-
nomenon is also observed in the design of ANN classifiers. A single
linear threshold ¢lement trained by the delta rule in a finite train-
ing sample case will have the same behaviour as the standard linear
discriminant fun'ctiqn. In the latter case, the optimal number of fea-
tures, dop:, is a function of the asymptotic probability of error Pw,
the number of features d, and the training sample size N. If "best”
features (providing the most discriminatory information) are added -
first and these best features are significantly better than the worst
ones, then d,,; will be small. If the discriminatory information pro-
vided by the individual features is approximately equal, or if we
include them in the classifier in a random order then doyy ® N -~ 1
(32 «

When one uses a piecewise linear classifier with H linear hy-
perplanes, then the "effective” training samples used to determine

the weights of each linear boundary segment is approximately [33]
e O ¥ -

. Nl = N/H, (19)
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, where N is the number of training samples per class.

A two-layer neural net classifier with a hard-limiting activa-
tion function gives a piecewise-linear decision boundary. One can,
therefore, expect that when H is small, the number of observations
used to adjust the weights of each hidden layer element will be ap-
proximately equal to N* = N/H, where H is the number of neurons
in the hidden layer.

The classification error of a two-layer neural net classifier ide-
ally trained on an arbitrarily large number of training samples will
not increase with the addition of new features or the number of
nodes in the input layer. Suppose the asymptotic PMC, P, of
this ideally trained two-layer ANN classifier can be determined by
the equation [32):

P, = $(=6+/1=79), (20)

where 0 <6 and 0<y< 1. :
Then, substitution of N* = N/H into Eq. 6 results in

- sla-#ha-191 ‘
E”““”{‘uj T s, | ‘2"

This function has a minimum with respect to d and, therefore,
the optimal number of features [32] can be written as,
N vy #4208 -2)ny-1

d e .
P H T T [(E -2y - 1]

(22) .

In Fig. 7 we present several graphs that illustrate peaking phe-
nomena. A two-layer ANN classifier with H neurons in the hidden
layer was trained by back propagation rule with a sigmoidal acti-
vation function and was used to classify two spherically Gaussian
pattern classes. A set of 1000 independent test samples was used to
estimate the error rate of the ANN classifier. Graphs were obtained
by averaging the results of sixty Monte Carlo trials with different
training sample sets of fixed size and different initial weights. Sim-
ilar results, which demonstrate the peaking with increase in dimen-
sionality, were obtained by Kohonen et al. [37).
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Fig. 7. Expected probability of misclassification EP, versus
dimensionality d (Two classes of spherically Gaussian
data N(p;,I62), pi = (i1 - -, pia)7;
data A: & =1, pi; = (-1)/\/7, H=2;
data B: §; =1, Hij = (—1)‘/j, H =2
data C: py = pg, 67 =4~ H = 8).
13
In a extrem 'ly highdimensional case some, training samples
will partially be used to determine the weights of each linear bound-
ary segment and Eq. 22 wil not be valid. Then the sensitivity of
the two-layer ANN classifier to the finiteness of the training sam-
ple size will be determined mainly by the number of hidden layer
neurons (see discussion at the end of Sec. 2). Here, the dimension-
ality of the input patterns will play a less significant role than in
the ANN classifier with hard-limiting activation function. Graph
B which was obtained for a case where the discriminiting power of
the features drops very slowly with the increase in the number of
features does not peak at all.

6. Effect of the number of neurons in the hidden layer
on the performance of a neural net classifier. It is nbvious
that the classification errorof an ideally trained neural net clas-
sifier cannot be increa,sed_vbby introducing new hiddeu layer neural
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_elements. With'an increase in the number of hidden layer elements,
the classification error of the idealy trained ANN classifier, Poo, Will
fall sharply at first, then the decrease of the classification error P
will slow, and eventually, the addition of new elements will not ef-
fect Py. Suppose the classification error of an ideally trained ANN
classifier Po can be determined by the equation

Poo = $(~603/T=7F), (23)

where H is the number of elements in the hidden layer, 0 < & and
0<v<l. '

As in previous Sec. 4, we have assumed that the "effective”
number of observations used to adjust the weights of each of the
H hidden layer neural elements is determined by Eq. 19. Then,
by using the hardlimiting threshold activation function and the
generalized delta back propagation algorithm, the increase in clas-
sification error of the 2-layer ANN classifier due to finiteness of the
number of training vectors can approximately be determined by
Eq. 11 with N* = N/H instead of N :

_ s |a=90 %) _
o=} 2J Er i S

Simple numerical analysis of Eq. 24 indicates the existence of
peaking phenomena as the number of hidden layer neural elements
increases. Several graphs that illustrate the peaking phenomena
while increasing the number of hidden units for two classes of Gaus-
sian data are presented in Fig. 8. .

. Equations 19 and 24 are valid only when the number H of
nets in the hidden layer is small. With an increase in H, differ-
_ent neural elements in the hidden layer will be trained partially
with the same training samples. Therefore, the "effective” number
of training samples used to. determine the weights of each linear
boundary segment N* > N/H, and addition of the number of hid-
den nodes H slows down the increase in the expected classification
error. These theoretical considerations are supported by numer-
ous experimental studies (Fig. 6 [6, 35, 40, 48]). Khotanzad and
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Fig. 8. Expected probabxhty of misclassification EPN versus
the number of neurons H in the hidden layer
(Two classes of spherically Gaussian populations,
N(0,1I-4-1), i=1,2, number of variables d = 8,
training sample size N=10, 50, 100).

Lu [35] trained a/two-layer ANN classifier to recognize the English
alphabet. Trainihg data consisted of differently positioned, scaled,
and oriented 64 ;x 64 binary images of each of twenty six English
characters, 12 images per character. The performance of the ANN
classifier peakedat approximately 50 neurons (2% error) in the hid-
den layer, and with an increase in H, saturated at an error level of

5%.

7. Discussion. Artificial neural net classifiers can be analyzed
as a special class of statistical pattern recognition algorithms. In
the finite training sample case, some kinds of unexpected and coun-
ter intuitive behaviour can sometimes be observed in the desxgn of
the ANN classifiers. Some of these are listed below.

1. Increase in the true (test sample or generahsatibn) classi-
_fication error due to, finiteness of the training samp.. size;

~ 2. Optimistic bias in the apparent (training sample) error;
3. A presence of deep local minima of the pattern error func-
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tion in small sample case;

4. An initial sharp decrease of the true classification error till
some limit, while the apparent (training sample) classifi-
cation error follows to decrease gradually with an increase
in number of sweeps of the ANN weight adaptation algo-
rithm; ‘

5. Increase in the number of sweeps required to minimize the
true and apparent classification error rates of the ANN
classifier with an increase in the number of training sam-
ples;

6. An optimistic bias in the error rate of the best version of
an ANN classifier selected from several competing models
based on finite size test sample data;

7. A peaking in classification performance when increasing
the number of features and the number of neural elements
in hidden layers of the ANN classifier.

The sensitivity of the generalisation error (GE) of the ANN
classifier to the finiteness of the training sample size differs from
that of conventional statistical classifiers. A very simple ANN is
similar to piecwise linear statistical classifier and therefore its gen-
eralisation error is proportional to 1/n. Decision boundaries of the
complex multilayer ANN becomes more similar to boundaries of
nonparametric Parzen window or k-NN classifiers and here increase
in the GE is proportional to 1/n or 1/y/n. Contrary to nonparamet-
ric classification rules in the ANN classifiers we have parametri-
sations in local areas of d-variate space of features and thus here
the increase in the generalisation error often is less expressed.than
for nonparametric classifiers case. Therefore the multi-layer ANN
classifiers have the desirable property of reducing the small training

-sample effects when the number of features and/or the number of
neurons in the hidden layer is very large in comparison with the
training sample size. -

It is worth paying attention once more to the original
E.Braum’s [3] conclusion, that the increase in the generalisation
error of the ANN classifier depends more on the complexity of the
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pattern recognition problem than on complexity of the trainee ANN

* classifier. Therefore in advance it is imossible to predict the de-
pendence of the generalisation error of the ANN classifier on the
number of training samples. Some amount of experimental studles
have to be made, or one have to use upper bounds.

In the multilayer ANN classifier design the weights of the low-
est hidden layer’s neurons are features common for all categories.
They are trained by using training samples of all categories. Thus,
the number of samples used to train the weights common for all
the categories is larger than the number of samples used to train

- the majority of parametric and nouparametric statistical classifiers,
where distribution densities of each class usually are estimated sep-
arately. Therefore, we can expect that multilayer ANN classifier
will outperform conventional statistical classifiers in a high cate-
gory case, and when the number of weights in the output layer is
not too high. :

A most sucessfull application of ANN classifiers to real-world
problems have been achieved using large networks with large num-
- ber of parameters (tens of thousands and more) to be determined
in the training p,i:ocess [see, e.g., 18, 65]. Estimation of a large
number of parameters requires a large number of training samples.,
In the finite training sample case the estimation of an excessive
number of parameters causes undesired effects mentioned above.
Therefore while choosing the architecture of the ANN classifier one
should pay attention to the training sample size. There are sev-
eral approaches which help to reduce a number of parameters to
be estimated from the training samples [11].

“A first a.pproa,ch is problem depending and consists of use of
some a prior knowledge about the task and build it into the net-
work. Although in the general case specifying such knowledge may
be difficult it appears feasible on some highly regula.r tasks such as
image and speech recognition [18]. '

A second techniqug is problem-independent and consis . in suc-
cessive deleting "useless” weights during training. This approach is
similar to successive feature elimination (backwara selection) pro-
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cedure widely-used in regression an statistical pattern recognition.

A third technique is again problem dependent and consists in
having several connections (links between neurons) be controlled
by a single parameter (weight). This technique is especially effec-
tive in image recognition when the multilayer ANN classifier has
many identical neurons [11, 18]. It seems to be one of the most
attractive characteristics of the ANN classifiers in comparison with
conventional statistical classifiers enabling us to reduce the num-
ber of parameters to be adjusted from the training samples data
dramatically.

While designing the ANN pattern recognition systems a pri-
ori knowledge on the problem to be solved should he incorporated
into ANN as much as possible. A priori knowledge is very useful
while designing the architecture of the ANN. Another nontradi-
tional source of additional information lies in that slightly distorted
patterns usually are recognized by humans without loss of recog-
nition accuracy. Therefore the adding of the small noise to each
training vector in each training sweep not only increases a stabil-
ity of the training algorithm but also increases in some sense the
training sample size.

Above review of research done on statistical pattern recogni-
tion and ANN in small training sample size case have showed an
efficiency of theoretical and experimental analysis done for con-
crete types of distributions of the classes. In further analysis of
small trainig sample effects a special attention to

a) the complexity of the pattern recognition problem to be sol-
ved with trainee ANN classifier,

b) shapes of the pattern error and activation function,

¢) number of the classes, should be paid.
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