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Abstract. Medical X-ray images are prevalent and are the least expensive diagnostic imaging

method available widely. The handling of film processing and digitization introduces noise in X-ray

images and suppressing such noise is an important step in medical image analysis. In this work,

we use an adaptive total variation regularization method for removing quantum noise from X-ray

images. By utilizing an edge indicator measure along with the well-known edge preserving total

variation regularization, we obtain noise removal without losing salient features. Experimental re-

sults on different X-ray images indicate the promise of our approach. Synthetic examples are given

to compare the performance of our scheme with traditional total variation and anisotropic diffusion

methods from the literature. Overall, our proposed approach obtains better results in terms of visual

appearance as well as with respect to different error metrics and structural similarity.
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1. Introduction

Medical image denoising is an important area within computer aided diagnosis (CAD)

systems. One of the well known and very accessible methods for imaging is the X-ray

which is used throughout the world. X-ray image is formed when an area under consid-

eration of a patient is exposed under X-rays and resulting attenuation is captured. Now

digitization is an important improvement in medical imaging systems and the quantum

noise characteristics of the X-ray scattering needs to be taken into account.

Image restoration under different noise types has been widely researched over the

past few years and variational and partial differential equation (PDE) based methods

are very popular in this regard. One of the widely used methods is that of Rudin et al.

(1992) which utilizes the total variation (TV) regularization or minimization of the L2

norm of the gradient image. This TV regularization enjoys nice mathematical proper-

ties and prefers piecewise constant solutions. This in turn can be detrimental in med-

ical image denoising as flat (homogenous) regions can be attenuated into piecewise

constant regions, an effect known as staircasing artifacts (Le et al., 2007). This is not

desirable since noise removal is only a pre-processing step for further image analy-

sis and decision making systems. Therefore, creating artificial regions in medical im-
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ages is not preferred and better alternatives are sought. One of the important improve-

ment is to use an edge indicator function with TV regularization for stopping stair-

casing artifacts as well as to inhibit smoothing across edges (Strong and Chan, 1996;

Prasath and Singh, 2010, 2012).

Medical X-ray images suffer from quantum noise and we utilize an adaptive TV reg-

ularization along with an appropriate image fidelity term for restoring such corrupted

images. The quantum noise encountered in X-ray is due to the photons hitting the detector

and the finite number of random events are counted, thereby leading to inherent presence in

the acquired images. We use the Poisson distribution to model the quantum noise in X-ray

imagery and in this paper we study an application of adaptive TV regularization with alter-

nating direction method of multipliers (ADMM) employed for the optimization (Boyd et

al., 2011; Figueiredo and Biouscas-Dias, 2010). For the adaptive weight we use the gener-

alized inverse gradient term which controls the spread of salient edges with local statistics.

By combining this localized edge indicator function via local histograms and inverse gra-

dients with TV regularization, we obtain better regularized images with efficient Poisson

noise removal and edge preservation. Experimental results on synthetic and real data indi-

cate our method obtains better results than related regularization models (Le et al., 2007;

Zhou and Lia, 2012) in terms of image quality metrics and structure preservation.

We organized the paper as follows. Section 2 introduces the proposed adaptive total

variation for quantum noise removal. Section 3 provides experimental and comparison

results and Section 4 concludes the paper.

2. Adaptive Total Variation Regularization

2.1. Total Variation Regularization

Total variation (TV) regularization is one of the well-known approach in solving the ill-

posed inverse problem of image restoration. The main advantage of the TV is that it pre-

serves edges without compromising the quality of denoising capabilities. The TV regu-

larization is written as minimization of the following,

min
u

T V(u) =

∫

�

∣

∣∇u(x)
∣

∣dx (1)

where u : � ⊂ R
2 → R, and the minimization is taken over a suitable space such as the

space of functions of bounded variation BV (�). Although the TV regularization removes

noise while preserving salient edges, it can create artificial edges in homogeneous areas

which is terms as ’staircasing’ artifacts. This is an undesirable quality while denoising

medical imagery as creating new structures can cause confusions in the final medical di-

agnostic systems. To avoid the staircasing artifacts while maintaining the important edge

preserving property of TV has motivated many studies to come up with adaptive solu-

tions (Prasath et al., 2015).
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2.2. Proposed Approach

2.2.1. Adaptive total variation

In this paper we assumed that a given grayscale image u0 : � ⊂R
2 → R be corrupted by

Poisson noise. We assume the forward model consist of the noisy image u0(x):

u0(x) =P
(

u(x)
)

, x ∈ �, (2)

where � ⊂ R
2 is the image domain (rectangle), and x = (x1, x2) pixels, and u

is the latent image, with Poisson distribution for the observed image p(u0|u) =

e−u(x)u(x)u0(x)/u0(x)!. By combining Poisson noise fidelity term, the general regular-

ization model is written in unconstrained form as Le et al. (2007),

min
u

T V8(u) =

∫

�

8
(

x,
∣

∣∇u(x)
∣

∣

)

dx +

∫

�

[

u(x) − u0(x) log
(

u(x)
)]

dx. (3)

In this work, we utilize the adaptive total variation (ATV) regularization with the inverse

gradient based edge indicator functions,

8
(

x,
∣

∣∇u(x)
∣

∣

)

= ω(x)
∣

∣∇u(x)
∣

∣, (4)

where spatially adaptive weight is chosen typically as Strong and Chan (1996), Prasath

and Singh (2012), Zhou and Lia (2012),

ω(x) :=
1

1 + k |Gσ ⋆ ∇u(x)|
, (5)

with k > 0 a contrast parameter. However, this inherits some of the drawbacks with other

gradient regularizations such as detecting blocky edges, see Fig. 1(b). To improve the per-

formance of the TV regularization and to avoid blocky artifacts, here we propose the fol-

lowing generalized inverse gradient term which incorporates local statistics with patches

extracted from the image.

2.2.2. Generalized inverse gradient weights

Let Nx,r be the local region centered at x with radius r . Consider the local histogram of

a pixel x ∈ � and its corresponding cumulative distribution function (Prasath and Del-

hibabu, 2014),

Hx(y) =
|{z ∈Nx,r ∩ � |u(z) = y}|

|Nx,r ∩ �|
, (6)

Cx(y) =
|{z ∈Nx,r ∩ � |u(z) <= y}|

|Nx,r ∩ �|
, (7)
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(a) Input (b) Traditional weight (c) Proposed weight

Fig. 1. Using an edge indicator based weights our adaptive TV regularization obtains better noise removal

without smoothing out edges. (a) Input image with Poisson noise level unknown. (b) Weights computed using

the inverse gradient of the input image, see Eq. (5), and (c) the proposed generalized inverse gradient of the input

image, see Eq. (9), with parameters k = 0.06, r = 5, σ = 1. Both the weights were rescaled to [0,1] for better

visualization.

for 0 6 y 6 L, respectively. Here |A| denotes the number of elements in the set A. We

define the following local histogram quantity,

Q(x) =

∫ L

0

Cx(y) dy, (8)

which allows us to quantify local regionsNx,r of a given image u(x). The adaptive weight

we consider here is then given as,

ω(x) :=
1

1 + k (|Gσ ⋆ ∇u(x)|/Q(x))2
. (9)

We used r = 5 for the neighbourhood size, L = 255 for 8-bit images, σ = 2 in the Gaus-

sian kernel smoothing in our experiments. The use of local histograms based quantity

within the inverse gradient weight improves the edge map with inhibiting the blocky

edges and providing a clear discontinuities present in the input image, see Fig. 1(c).

The wellposedness of the above adaptive weighted TV regularization based model

can be obtained using the theory of calculus of variations (Prasath and Singh, 2012;

Prasath et al., 2015).

2.3. Alternating Direction Method of Multipliers (ADMM)

To solve the energy minimization problem with weighted TV regularization (3) we utilize

the alternating direction method of multipliers (ADMM) algorithm which is very efficient
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in terms of computational time. We provide a brief treatment as for the adaptive TV regu-

larization the general ADMM formulation carries over with only little modifications, and

we refer to Figueiredo and Biouscas-Dias (2010) for more details. The following iterative

formulations constitute the ADMM for our problem,

uk+1 = arg min
u

∫

�

ω(x)
∣

∣∇u(x)
∣

∣dx +
α

2

∥

∥u(x) − vk − bk
∥

∥

2

2
, (10)

vk+1 = arg min
v

∫

�

λ
(

v − u0 log(v)
)

dv +
α

2

∥

∥uk+1 − v − bk
∥

∥

2

2
, (11)

bk+1 = bk −
(

uk+1 − vk+1
)

. (12)

Here λ is the Lagrangian multiplier, b auxiliary variable, and α > 0 is a parameter (with a

relation λk = −αbk). To solve the first minimization problem (weighted TV regularization

with L2 fidelity) for u various optimization methods can be utilized. In this work, we use

Chambolle’s dual minimization method (Chambolle, 2004),

uk+1 = vk + bk −
1

α
∇ ·

(

ω(x)pk
)

, (13)

where p is the dual variable and can be obtained by the following formula,

pk+1 =
pk + 1t(∇div(ω(x)pk) − α(vk + bk))

1 + 1t|∇div(ω(x)pk) − α(vk + bk)|
. (14)

To solve for v, a simple solution exists,

vk+1 =
uk+1 − λ

α
− bk

2
+

√

(

uk+1 − λ
α

− bk

2

)

+
λ

α
u0. (15)

3. Experimental Results

3.1. Setup, Parameters, and Error Metrics

We rescaled the images used here to the continuous domain [0,1]. The initial parameters

of ADMM and dual minimization α = 1, bt=0 = 0, pt=0 = 0, v = u0, inner iteration of 5

(for dual variable p in Eq. (14)) were set in all our experimental results reported here.

For the weights we utilize the pre-smoothing Gaussian kernel with σ = 1, and the neigh-

bourhood size r = 5 (for the local histogram in the proposed generalized inverse gradient

weight (9) in our comparison results. The Lagrangian multiplier λ and the contrast pa-

rameter k were modified according to optimal results presented below. Typically 20–30

iterations of the ADMM is sufficient to obtain good restoration results on a MATLAB

implementation (on a Mac Pro Laptop, 2.3 GHz Intel Core i7 processor, 8 GB 1600 MHz

DDR3 memory), and we show the optimized results in the experiments reported below.
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For comparing the quality of image restorations in this paper we utilize the root mean

squared error (RMSE), relative error (RE), Pratt’s figure of merit (FOM), and structural

similarity (SSIM) (Wang et al., 2004). These are given as,

RMSE =

√

(mn)−1
∑∑

(u − uo)2, (16)

where uo is the original (noise-free) image, and the image is of size m × n.

RE =
‖u − uo‖2

‖uo‖2
. (17)

Pratt’s FOM is calculated as,

FOM =
1

max(Ea,Ed)

Ed
∑

i=1

1

1 + γ d2
i

, (18)

where Ea, Ed are the number of actual and detected edge pixels (using the classical Sobel

edge detector), γ = 0.1 scaling parameter fixed. The higher value of FOM indicate better

quality edge map and value closer to 1 shows the denoising method has good edge pre-

serving property. The SSIM is calculated between two windows ω1 and ω2 of common

size N × N , and is given by,

SSIM(ω1,ω2) =
(2µω1

µω2
+ c1)(2σω1ω2

+ c2)

(µ2
ω1

+ µ2
ω2

+ c1)(σ 2
ω1

+ σ 2
ω2

+ c2)
(19)

where µωi the average of ωi , σ 2
ωi

the variance of ωi , σω1ω2
the covariance, and c1, c2

stabilization parameters. The mean value of SSIM (MSSIM) is taken as the final error

metric and if the value is closer to 1 indicating better structural similarity with uo the

original image.

3.2. Synthetic Examples

In our first experiment we consider a synthetic Shapes image of size 320 × 320 pixels

which consists of various objects with different scales and intensity values. To test differ-

ent TV regularization filters we add Poisson noise of strength 20% to the original pristine

image as shown in Fig. 2(a). Figure 2(b–d) show optimal restoration results (with respect

to the highest MSSIM value) with TV (Le et al., 2007), adaptive TV with (5), and our

proposed adaptive TV with (9). As can be seen in the bottom row of concentric circles

(from the full Shapes image top right corner part), our proposed approach obtains better

noise removal with edges preserved in all the objects. Moreover, compared to TV regu-

larization we obtain no staircasing artifacts in flat regions. The slight smoothing of sharp

corners is part of the TV regularization formulation and further corner adaptive weight

in Eq. (4) is required to preserve them. To see the denoising effects clearly, in Fig. 3 we
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(a) Input (b) TV (c) Adaptive TV with (5) (d) Proposed

Fig. 2. Comparison of different denoising TV regularization on noisy synthetic Shapes image of size 320×320.

(a) Input image with Poisson noise of strength 20%, restoration results with (b) total variation (TV) MSSIM

= 0.7778, (c) adaptive TV (5) MSSIM = 0.7852, and (d) proposed (9) MSSIM = 0.9374. In bottom row we

show the concentric circles in surface format to visualize the remaining noise and staircasing artifacts after

applying the regularization filters.
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Fig. 3. One dimensional (1D) line taken across the original, noisy, and denoised results to show the denoising

capabilities. Dashed (−−) is the original (noise-free), dash-circled (−o−) is input noisy signal, dash-dotted

(−.−) is the TV, dotted (...) is the ATV, and solid line with plus (−+−) is our proposed approach.
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Table 1

Comparison of TV, ATV – adaptive TV with inverse gradient weight (5) and Our – proposed

generalized inverse gradient weight (9) based regularizations on denoising standard test

images with Poisson noise of strength 20%. Smaller root mean squared error (RMSE), and

(RE), and higher FOM, and MSSIM means better restoration capability. Best results for each

image and for each error metric are in bold.

Image Method RMSE RE FOM MSSIM

Lena TV 0.4112 0.0548 0.9508 0.8230

ATV 0.3637 0.0503 0.9667 0.8452

k = 0.0625, λ = 8 Our 0.3532 0.0456 0.9708 0.9125

Cameraman TV 0.4681 0.0501 0.9752 0.7892

ATV 0.3701 0.0443 0.9834 0.8216

k = 0.0555, λ = 9 Our 0.3622 0.0418 0.9901 0.8993

Boat TV 0.4711 0.0534 0.9537 0.7397

ATV 0.4388 0.0507 0.9618 0.8166

k = 0.0625, λ = 12 Our 0.4197 0.0445 0.9693 0.8884

show a cross section taken in Fig. 2 and their corresponding denoising results with TV

regularization filters. As can be seen, our regularization obtains better edge preservation

without staircasing artifacts in flat regions.

Table 1 shows error metrics values for restoring corrupted Lena, Cameraman and Boat

test images from the USC-SIPI Miscellaneous dataset. We fixed all the common parame-

ters equal for the TV regularization variants and vary only the contrast parameter k, and

Lagrangian multiplier λ, see Zhou and Lia (2012).

3.3. X-Ray Imagery Comparison Results

Figure 4 shows comparison restoration results with TV, ATV, and our proposed regulariza-

tion filters on different X-ray imagery of hands. Our proposed generalized inverse gradient

weight based TV regularization obtains better edge preservation with overall pixel inten-

sity improvement indicating that the signal dependentPoisson noise is removedeffectively.

To show the denoising clearly in Fig. 5 we show a line taken across from the X-ray image

in Fig. 4(a) top and the corresponding results from Fig. 4(b–d). We only show the first fin-

ger on the left (300 pixels long). It is clear that our proposed regularization obtains better

restoration of improved intensity profile (contrast enhanced) and without staircasing arti-

facts. In summary, we see that our proposed ATV regularization works well in preserving

important details while removing noise effectively when compared with related denoising

methods from the literature.

4. Conclusions

In this paper, we considered a localized inverse gradient weighted adaptive total variation

regularization for removing quantum noise in X-ray imagery. By using local histograms
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(a) Input (b) TV (c) ATV (d) Ours

Fig. 4. Comparison of different regularization denoising filters and variational – PDE methods on X-ray images.

(a) Input X-ray images. Restoration with (a) traditional TV, (b) adaptive TV with inverse gradient weight (5),

and (c) our proposed generalized inverse gradient weight (9) based regularizations. Better viewed online and

zoomed-in.

along with gradient edge indicator function we obtain better roadmaps of discontinuities

present in the image thereby better guiding the total variation regularization without cre-

ating blocky artifacts. Efficient dual minimization for total variation regularization with

alternating direction method of multipliers optimization. Experimental results are given

to highlight the applicability of our proposed approach along with comparison with other

related denoising methods. Results indicate that we obtain better accuracy in terms of

signal to noise ratio and structural similarity preservation.
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Fig. 5. One dimensional (1D) line taken across the original, noisy, and regularization results of X-ray image in

Fig. 4(a) top, to show the denoising capabilities. Dash-circled (−o−) is input noisy signal, dash-dotted (−.−)

is the TV, dotted (...) is the ATV, and solid line with plus (−+−) is our proposed approach. We show only one

finger corresponding the left most.
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