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Abstract. The purpose of this study is to develop a hesitant trapezoidal fuzzy TODIM (interactive
and multi-criteria decision making) with a closeness index-based ranking method to handle hesitant
qualitative group decision making problems. First, a novel closeness index-based ranking method
is presented to compare the magnitude of hesitant trapezoidal fuzzy numbers (HTrFNs). Based on
the developed ranking method, the dominance values of alternatives over others for each expert are
calculated. Then, a nonlinear programming model is established to derive the dominance values of
alternatives over others for the group and correspondingly the optimal ranking order of alternatives
is obtained.
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1. Introduction

Multicriteria decision making (MCDM) is a usual human activity which helps making
decisions mainly in terms of choosing, ranking or sorting the alternatives (Figueira et

al., 2005; Zhang, 2015; Zeng et al., 2016a, 2016b, 2016c). In practical decision making
process, it is convenient for the decision maker or expert to employ linguistic variables
to express qualitative criteria values of alternatives. For example, when evaluating the
cabin service of the service quality among airlines, the expert may utilize the linguis-
tic terms like “bad” or “good” instead of numerical values to assess it. The linguistic
fuzzy approach has been successfully applied in addressing qualitative MCDM problems
(Zadeh, 1975). Several extended linguistic models, such as the linguistic 2-tuple model
(Herrera and Martínez, 2000; Martínez and Herrera, 2012), the symbolic linguistic model
(Rodriguez and Martínez, 2013; Xu, 2004; Yager, 1995), the linguistic model based on
type-2 fuzzy set (Türkşen, 2002), the proportional 2-tuple model (Wang and Hao, 2006),
the hesitant fuzzy linguistic term set (HFLTS) model (Rodriguez et al., 2012), etc., have
recently been developed to enrich linguistic fuzzy theory.

Among these previous linguistic models, the HFLTS model greatly increases the flex-
ibility and capability of eliciting and representing linguistic information. The HFLTSs
have been successfully applied to various decision making fields. For example, Rodriguez
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et al. (2012, 2013) proposed an envelope of HFLTS (i.e. linguistic intervals) to facilitate
computing with words process (Herrera et al., 2009). Beg and Rashid (2013) developed an
extended TOPSIS (technique for order preference by similarity to ideal solution) to handle
MCDM problems with HFLTSs. Liu and Rodriguez (2014) proposed a trapezoidal fuzzy
envelope of HFLTS to carry out computing with word processes. To effectively deal with
group decision making problems with HFLTSs, Lee and Chen (2015) put forward a fuzzy
group decision method based on the likelihood-based comparison relations of HFLTSs
and a series of hesitant fuzzy linguistic aggregating operators. Chen and Hong (2014) also
presented a new decision method based on the aggregation of linguistic terms represented
by fuzzy numbers in HFLTSs to deal with hesitant fuzzy linguistic MCDM problems.
What’s more, Zhang et al. (2016) developed the concept of the hesitant trapezoidal fuzzy
numbers (HTrFNs) to represent the semantic of the HFLTS. The HTrFNs benefited from
the superiority of both trapezoidal fuzzy numbers (TrFNs) and hesitant fuzzy elements
(HFEs) and it can be used to model effectively the imprecise and ambiguous information
in real-world multicriteria group decision making (MCGDM) problems. In order to fur-
ther solve the MCGDM problems in the environment of HFLTSs based on HTrFNs, it is
necessary to develop the corresponding decision making methods.

The TODIM (interactive and multi-criteria decision making) developed by Gomes
and Lima (1992) is a discrete MCDM approach based on prospect theory (Kahneman
and Tversky, 1979), which can take the decision maker’s psychological behaviour into ac-
count. Consider the fact that the relationships among criteria are interdependent; Gomes
et al. (2013) developed a Choquet integral-based TODIM method to handle the MCDM
problems with criteria interactions. The TODIM method has been successfully applied
in various fields of decision making, such as the selection of the destination of natural
gas (Gomes et al., 2009), the evaluation of residential properties (Gomes et al., 2013;
Gomes and Rangel, 2009), the supplier selection problem (Tosun and Akyüz, 2015) and
oil spill response (Passos et al., 2014), etc. Recently, the TODIM method has been ex-
tended into fuzzy environments because the crisp data is usually inadequate or insuffi-
cient to model the real-life complex decision problems (Zhang et al., 2015). For exam-
ple, Krohling and de Souza (2012) developed a fuzzy extension of TODIM for handling
MCDM problems with TrFNs. Fan et al. (2013) proposed a hybrid TODIM method to deal
with the MCDM problems in which criteria values take the forms of crisp numbers, inter-
val numbers and fuzzy numbers. Liu and Teng (2016) also extended the TODIM method
to deal with MCDM problems in which the criteria values are in the form of 2-dimension
uncertain linguistic variables. Lourenzutti and Krohling (2013) presented a generalization
of the TODIM method which considers intuitionistic fuzzy information and an underly-
ing random vector. Zhang and Xu (2014a) developed a hesitant fuzzy TODIM method
for solving MCDM problems with HFEs. Wei et al. (2015) developed a hesitant fuzzy
linguistic TODIM method for dealing with the MCDM problems with HFLTSs.

Despite their usefulness, these aforementioned TODIM-based methods fail to man-
age the HTrFN decision data which is collected by comparative linguistic expressions. To
this end, in this study we develop a hesitant trapezoidal fuzzy TODIM approach with a
closeness index-based ranking method for handling MCGDM problems with HTrFNs in
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which the weights of criteria are completely known and the weights of experts are com-
pletely unknown or partially known. First, we propose a novel closeness index for HTrFN
and introduce a closeness index-based ranking method for HTrFNs. Next, we employ the
closeness index-based ranking method to identify the gain and loss of each alternative
relative to the others. Then, we calculate the dominance values of alternatives over others
for each expert. Finally, we establish a nonlinear programming model to derive the domi-
nance values of alternatives over others for the group and correspondingly we can obtain
the optimal ranking order of alternatives. The rest of the paper is organized as follows:
Section 2 reviews the basic concepts of HTrFNs. In Section 3, a hesitant trapezoidal fuzzy
TODIM approach is proposed to solve the MCGDM problems with HTrFNs. In Section 4,
a case study is presented. Section 5 presents our conclusions.

2. Preliminaries

In this section, we review some basic concepts of HTrFNs. Meanwhile, we define a novel
closeness index of the HTrFN and introduce a closeness index-based ranking method for
HTrFNs.

Definition 1. (Zadeh, 1975.) A fuzzy number α̃ = T (a, b, c, d) is said to be a TrFN if
its membership function is given as follows:

µα̃(x) =















(x − a)/(b − a), (a 6 x < b),

1, (b 6 x 6 c),

(d − x)/(d − c), (c < x 6 d),

0, otherwise,

(2.1)

where the closed interval [b, c], a and d are the mode, low and upper limits of α̃, respec-
tively.

Remark 1. It is noted that a TrFN α̃ = T (a, b, c, d) is reduced to a triangular fuzzy num-
ber if b = c. A TrFN α̃ = T (a, b, c, d) is reduced to a real number if a = b = c = d .
A TrFN α̃ = T (a, b, c, d) is the normalized TrFN if a > 0 and d 6 1. Thus, the TrFN
1̃ = T (1,1,1,1) is the maximal normalized TrFN which is also called the positive ideal
TrFN, while the TrFN 0̃ = T (0,0,0,0) is the minimal normalized TrFN which is also
called the negative ideal TrFN.

Definition 2. (See Zhang et al., 2016.) Let X be a fixed set, a HTrFS H on X is defined
as:

H =
{〈

x,hH (x)
〉 ∣

∣x ∈ X
}

(2.2)

where hH (x) is a set of different normalized TrFNs, representing the possible member-
ship degrees of the element x ∈ X to H .
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For convenience, hH (x) is called a HTrFN denoted by h = {α̃1, α̃2, . . . , α̃#h} where

the α̃f = T (af , bf , cf , df ) (f = 1,2, . . . ,#h) is a normalizedTrFN and #h is the number
of all TrFNs in h. If #h = 1, the HTrFN h is reduced a TrFN. If bf = cf (f = 1,2, . . . ,#h),

the HTrFN h is reduced to a hesitant triangular fuzzy number (Zhao et al., 2014).

Example 1. Let X = {x1, x2, x3}, and let hH (x1) = {T (0.2,0.3,0.4,0.5), T (0.3,0.4,

0.5,0.6), T (0.35,0.4,0.45,0.5)},hH (x2) = {T (0.1,0.2,0.3,0.5), T (0.3,0.4,0.4,0.6)},
and hH (x3) = {T (0.2,0.4,0.5,0.6), T (0.1,0.3,0.4,0.6)} be three HTrFNs of xi (i =

1,2,3) to a set H . Thus, H can be called an HTrFS which is denoted as:

H =







〈x1, {T (0.2,0.3,0.4,0.5), T (0.3,0.4,0.5,0.6), T (0.35,0.4,0.45,0.5)}〉,

〈x2, {T (0.1,0.2,0.3,0.5), T (0.3,0.4,0.4,0.6)}〉,

〈x3, {T (0.2,0.4,0.5,0.6), T (0.1,0.3,0.4,0.6)}〉







.

Remark 2. It is easy to see that the number of TrFNs in different HTrFNs is usually dif-
ferent. In such cases, it is necessary to extend the shorter one until both of them have the

same length when we compare their magnitudes. To extend the shorter one, the best way
is to add some TrFNs in it. Zhang et al. (2016) suggested that the optimist added the max-

imum TrFN because he/she often anticipated the desirable outcomes, while the pessimist
added the minimum TrFN since he/she usually expected the unfavourable outcomes. The
maximum TrFN or minimum TrFN in the shorter HTrFN can be identified by the sign

distance-based ranking method develop by Abbasbandy and Asady (2006). Without loss
of generality, in this study we assume that all possible TrFNs of HTrFNs are arranged in

increasing order and the experts are pessimists.

Definition 3. Let hj = {α̃1

j , α̃
2

j , . . . , α̃
#hj

j } (j = 1,2) be two HTrFNs, and #h1 = #h2 =

#h, then a nature quasi-ordering on HTrFNs is defined as follows:

h1 6 h2 if and only if α̃
f
1
6 α̃

f
2

(f = 1,2, . . . ,#h).

It is easily observed from Definition 3 that the HTrFN h+ = {T (1,1,1,1), . . . ,

T (1,1,1,1)} is the biggest HTrFN and the HTrFN h− = {T (0,0,0,0), . . . , T (0,0,0,0)}

is the smallest HTrFN, respectively. We also call h+ the positive ideal HTrFN and h− the
negative ideal HTrFN, respectively.

Zhang et al. (2016) developed hesitant trapezoidal Hamming distance for HTrFNs as
below:

Definition 4. Given two HTrFNs hj = {α̃1

j , α̃
2

j , . . . , α̃
#hj

j } (j = 1,2) with #h1 = #h2 =

#h, the hesitant trapezoidal Hamming distance between them is defined as follows:

d(h1,h2) =
1

6#h

#h
∑

f =1

(∣

∣a
f

1
− a

f

2

∣

∣ + 2
∣

∣b
f

1
− b

f

2

∣

∣ + 2
∣

∣c
f

1
− c

f

2

∣

∣ +
∣

∣d
f

1
− d

f

2

∣

∣

)

. (2.3)
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Example 2. For two HTrFNs h1 = {T (0.1,0.2,0.3,0.5), T (0.3,0.4,0.4,0.6)} and h2 =

{T (0.1,0.3,0.4,0.6), T (0.2,0.4,0.5,0.6)}, the following result based on Definition 4 is
obtained:

d(h1,h2) =
1

6 × 2

(

|0.1 − 0.1| + 2|0.2 − 0.3| + 2|0.3 − 0.4| + |0.5 − 0.6|+

|0.3 − 0.2| + 2|0.4 − 0.4| + 2|0.4 − 0.5| + |0.6 − 0.6|

)

= 0.0667. (2.4)

According to Definition 4, the distance between the HTrFN h = {α̃1, α̃2, . . . , α̃#h} and

the positive ideal HTrFN h+ can be calculated as follows:

d
(

h,h+
)

=
1

6#h

#h
∑

f =1

(

1 − af + 2
(

1 − bf
)

+ 2
(

1 − cf
)

+ 1 − df
)

=
1

6#h

#h
∑

f =1

(

6 − af − 2bf − 2cf − df
)

(2.5)

and the distance between the HTrFN h and the negative ideal HTrFN h− can be computed
as below:

d(h,h−) =
1

6#h

#h
∑

f =1

(

af + 2bf + 2cf + df
)

. (2.6)

In general, the smaller the distance d(h,h+) is, the bigger the HTrFN h is; and the
larger the distance d(h,h−) is, the bigger the HTrFN h is. Motivated by the idea of TOPSIS
method (Hwang and Yoon, 1981) we define a closeness index for the HTrFN as follows.

Definition 5. Let h = {α̃1, α̃2, . . . , α̃#h} be a HTrFN, h+ be the positive ideal HTrFN and
h− be the negative ideal HTrFN; then the closeness index of h can be defined as follows:

φ(h) =
d(h,h−)

d(h,h−) + d(h,h+)

=

∑

#h
f =1

(af + 2bf + 2cf + df )
∑

#h
f=1

(6 − af − 2bf − 2cf − df ) +
∑

#h
f =1

(af + 2bf + 2cf + df )

=
1

6#h

#h
∑

f =1

(

af + 2bf + 2cf + df
)

. (2.7)

Obviously, if h = h−, then φ(h) = 0; while if h = h+, then φ(h) = 1.

Based on the closeness indices of HTrFNs, a comparison law for HTrFNs is introduced.
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Definition 6. Given two HTrFNs hj = {α̃1

j , α̃
2

j , . . . , α̃
#hj

j } (j = 1,2), φ(h1) and φ(h2)

be the closeness indices of h1 and h2, respectively, then

1) if φ(h1) < φ(h2), then h1 ≺ h2;
2) if φ(h1) > φ(h2), then h1 ≻ h2;

3) if φ(h1) = φ(h2), then h1 ∼ h2.

Example 3. For two HTrFNs h1 = {T (0.1,0.2,0.3,0.5), T (0.3,0.4,0.4,0.6)} and h2 =

{T (0.1,0.3,0.4,0.6), T (0.2,0.4,0.5,0.6)}, the following result based on Definition 5 is
obtained:

φ(h1) =
1

12
(0.1 + 0.4 + 0.6 + 0.5 + 0.3 + 0.8 + 0.8 + 0.6) = 0.2563,

φ(h2) =
1

12
(0.1 + 0.6 + 0.8 + 0.6 + 0.2 + 0.8 + 1.0 + 0.6) = 0.3912.

According to Definition 6, it is observed that φ(h1) < φ(h2), i.e. h1 ≺ h2.

3. Hesitant Trapezoidal Fuzzy TODIM Decision Analysis Method

Consider a decision environment based on HTrFNs for MCGDM problems in which

the criteria values of alternatives take the form of comparative linguistic expressions.
Let A ={A1,A2, . . . ,Am} be a discrete set of m (m > 2) feasible alternatives, C =

{C1,C2, . . . ,Cn} be a finite set of criteria, and E = {E1,E2, . . . ,Eg} be a group of

experts. We also denote the weighting vector of criteria by w = (w1,w2, . . . ,wn)
T ,

where wj is the weight of the criterion Cj , satisfying the normalization condition:
∑n

j=1
wj = 1 and wj > 0. Meanwhile, we denote the weighting vector of experts by

λ = (λ1, λ2, . . . , λg)T, where λk is the weight of the expert Ek , satisfying the normal-

ization condition:
∑g

k=1
λk = 1 and λk > 0. In this paper, the weights of criteria are

completely known beforehand and the weights of experts are completely unknown or
partially known. Let 1 be a set of the known weight information of experts, 1 can be

constructed by the following five structure forms (Kim and Ahn, 1999; Wan and Li, 2013;
Zhang and Xu, 2014b, 2015): (1) A weak ranking form: {λi > λj } (i 6= j); (2) A strict
ranking form: {λi − λj > αi} (αi > 0); (3) A ranking of differences form: {λi − λj >

λk − λl} (i 6= j 6= k 6= l); (4) A ranking with multiples form: {λi > αiλj } (i 6= j ,
0 6 αi 6 1); (5) An interval form: {αi 6 λi 6 αi + κi} (0 6 αi 6 αi + κi 6 1).

The criteria value of the alternative Ai ∈ A with respect to the criterion Cj ∈ C pro-

vided by the expert Ek ∈ E can be represented by comparative linguistic expressions llkij .

According to Zhang et al. (2016), the comparative linguistic expressions llkij can be nor-

mally converted into a HTrFN hk
ij = {α̃

k(1)
ij , α̃

k(2)
ij , . . . , α̃

k(#hk
ij )

ij }. Thus the decision matrix

Rk = (llkij )m×n can be concisely expressed in the decision matrix format Rk = (hk
ij )m×n

(Ek ∈ E) as shown in Table 1.
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Table 1
Hesitant trapezoidal fuzzy decision matrix.

Experts Alternatives Criteria

C1 C2 . . . Cn

E1 A1 h1

11
h1

12
. . . h1

1n

A2 h1

21
h1

22
. . . h1

2n

. . . . . . . . . . . . . . .

Am h1

m1
h1

m2
. . . h1

mn

. . . A1 hk
11

hk
12

. . . hk
1n

A2 hk
21

hk
22

. . . hk
2n

. . . . . . . . . . . . . . .

Am hk
m1

hk
m2

. . . hk
mn

Eg A1 h
g
11

h
g
12

. . . h
g
1n

A2 h
g
21

h
g
22

. . . h
g
2n

. . . . . . . . . . . . . . .

Am h
g
m1

h
g
m2

. . . h
g
mn

In what follows, we develop a new technique to deal effectively with the above
MCGDM problem. The focus of the proposed method is to measure the dominance degree
of each alternative over the others by constructing the prospect value function based on
prospect theory. For this purpose, we need to identify the reference criterion and calculate
the relative weight of each criterion to the reference criterion. According to the idea of
the classical TODIM (Gomes and Lima, 1992), the criterion with the highest weight is
usually regarded as the reference criterion Cr , namely,

Cr =
{

Cj :
n

max
j=1

wj

}

. (3.1)

Then, the relative weight wjr of the criterion Cj ∈ C to the reference criterion Cr can
be obtained by the following equation:

wjr = wj/wr , r, j ∈ {1,2, . . . , n} (3.2)

where wr is the weight of the reference criterion Cr .
Furthermore, by employing the closeness index-based ranking method of HTrFNs we

compare with the magnitude of the criteria values of alternatives with respect to each
criterion. Then, for the expert Ek ∈ E, the dominance value of the alternative Aξ ∈ A

over the alternative Aζ ∈ A concerning the criterion Cj ∈ C can be calculated by using
the following expression:

Qk
j (Aξ ,Aζ ) =























√

wjr (φ(hk
ξj )−φ(hk

ζj ))
∑n

j=1
wjr

, if φ(hk
ξj ) − φ(hk

ζj ) > 0,

0, if φ(hk
ξj ) − φ(hk

ζj ) = 0,

− 1

θ

√

(
∑n

j=1
wjr )(φ(hk

ζj )−φ(hk
ξj ))

wjr
, if φ(hk

ξj ) − φ(hk
ζj ) < 0

(3.3)
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Table 2
The overall dominance values of alternatives for each expert.

Alternatives Experts

E1 E2 . . . Eg

A1 Q1(A1) Q2(A1) . . . Qg(A1)

A2 Q1(A2) Q2(A2) . . . Qg(A2)

. . . . . . . . . . . . . . .

Am Q1(Am) Q2(Am) . . . Qg(Am)

where φ(hk
ξj ) and φ(hk

ζj ) are respectively the closeness indices of the criteria values hk
ξj

and hk
ζj , and the parameter θ ∈ [1,10] represents the attenuation factor of the losses.

From Eq. (3.3), it is easily observed that: (1) if φ(hk
ξj )−φ(hk

ζj ) > 0, then Qk
j (Aξ ,Aζ )

represents a gain; (2) if φ(hk
ξj ) − φ(hk

ζj ) = 0, then Qk
j (Aξ ,Aζ ) represents a nil; (3) if

φ(hk
ξj ) − φ(hk

ζj ) < 0, then Qk
j (Aξ ,Aζ ) represents a loss.

For the expert Ek ∈ E, the weighted dominance value of the alternative Aξ ∈ A over
the alternative Aζ ∈ A can be obtained as follows:

Qk(Aξ ,Aζ ) =

n
∑

j=1

Qk
j (Aξ ,Aζ ). (3.4)

The overall dominance value of the alternative Aξ ∈ A for the expert Ek ∈ E can be
obtained by the following equation and is listed in Table 2:

Qk(Aξ ) =

∑m
ζ=1

Qk(Aξ ,Aζ ) − min
m
ξ=1

{
∑m

ζ=1
Qk(Aξ ,Aζ )}

max
m
ξ=1

{
∑m

ζ=1
Qk(Aξ ,Aζ )} − min

m
ξ=1

{
∑m

ζ=1
Qk(Aξ ,Aζ )}

,

ξ ∈ {1,2, . . . ,m}. (3.5)

After obtaining the overall dominance value Qk(Aξ ) of the alternative Aξ (ξ ∈

{1,2, . . . ,m}) for the expert Ek (k ∈ {1,2, . . . , g}), we need to determine the overall dom-
inance value for the group which is represented by Q∗(Aξ ) (ξ ∈ {1,2, . . . ,m}). Based on
the decision data in Table 2, we further establish a nonlinear programming model to cal-
culate Q∗(Aξ ) (ξ ∈ {1,2, . . . ,m}) for the group as follows:























min Z =

m
∑

ξ=1

g
∑

k=1

λk

∣

∣Qk(Aξ ) − Q∗(Aξ )
∣

∣

s.t.

g
∑

k=1

λk = 1, λk > 0, k ∈ {1,2, . . . , g}.

(MOD-1)

To solve the model (MOD-1), let

ηk
ξ =

1

2

(∣

∣Qk(Aξ ) − Q∗(Aξ )
∣

∣ +
(

Qk(Aξ ) − Q∗(Aξ )
))

(3.6)
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and

ρk
ξ =

1

2

(∣

∣Qk(Aξ ) − Q∗(Aξ )
∣

∣ −
(

Qk(Aξ ) − Q∗(Aξ )
))

. (3.7)

Then, the optimal model (MOD-1) is transformed into the following optimal model:



















































min Z =

m
∑

ξ=1

g
∑

k=1

λk

(

ηk
ξ + ρk

ξ

)

s.t.

Qk(Aξ ) − Q∗(Aξ ) − ηk
ξ + ρk

ξ = 0; ξ ∈ {1,2, . . . ,m}, k ∈ {1,2, . . . , g},

ηk
ξ > 0, ρk

ξ > 0, ηk
ξρ

k
ξ = 0; ξ ∈ {1,2, . . . ,m}, k ∈ {1,2, . . . , g},

g
∑

k=1

λk = 1, λk > 0, k ∈ {1,2, . . . , g}.

(MOD-2)

It is observed that the model (MOD-2) is a linear programming model and can be

easily executed by using the MATLAB 7.4.0 or LINGO 11.0. By solving this model, we

get the optimal solutions Q∗(Aξ ) (ξ ∈ {1,2, . . . ,m}) and λ = (λ1, λ2, . . . , λg)T .

In addition, there are real-world situations that the weights of experts are not com-
pletely unknown but partially known. For these cases, based on the set of the known

weight information of experts 1, we construct the following optimization model to get

the optimal solutions Q∗(Aξ ) (ξ ∈ {1,2, . . . ,m}) and λ = (λ1, λ2, . . . , λg)T :







































min Z =

m
∑

ξ=1

g
∑

k=1

λk(η
k
ξ + ρk

ξ )

s.t.

Qk(Aξ ) − Q∗(Aξ ) − ηk
ξ + ρk

ξ = 0; ξ ∈ {1,2, . . . ,m}, k ∈ {1,2, . . . , g},

ηk
ξ > 0, ρk

ξ > 0, ηk
ξρ

k
ξ = 0; ξ ∈ {1,2, . . . ,m}, k ∈ {1,2, . . . , g},

(λ1, λ2, . . . , λg) ∈ 1

(MOD-3)

where 1 is also a set of constraint conditions that the expert weight λk (k ∈ {1,2, . . . , g})

should satisfy according to the requirements in real-world situations.

Obviously, the greater the value of Q∗(Aξ ) (ξ ∈ {1,2, . . . ,m}) is, the better the alter-

native Aξ will be. Therefore, we can determine the ranking order of alternatives according
to the increasing order of the Q∗(Aξ ) (ξ ∈ {1,2, . . . ,m}), and select the best alternative

from the alternative set {A1,A2, . . . ,Am}. According to the above analysis, the steps of

the proposed method are summarized as follows:

Step 1. Identify the criteria values of alternatives on criteria under each expert and the
weights of criteria, respectively;
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Step 2. For each expert, we employ Eq. (3.3) to calculate the dominance value of
the alternative Aξ ∈ A over the alternative Aζ ∈ A concerning the criterion
Cj ∈ C;

Step 3. For each expert, we use Eq. (3.4) to compute the weighted dominance value
of the alternative Aξ ∈ A over the alternative Aζ ∈ A;

Step 4. We utilize Eq. (3.5) to determine the overall dominance value of the alternative
Aξ ∈ A for the expert Ek ∈ E;

Step 5. If the weights of experts are completely unknown, according to the model
(MOD-2) we construct a linear programming model to determine the overall
dominance value of the alternative Aξ ∈ A for the group; if the weights of
experts are partially known, based on the model (MOD-3) we construct an
optimal model to determine the overall dominance value of the alternative
Aξ ∈ A for the group;

Step 6. Rank the alternatives by comparing the magnitude of the overall dominance
value of the alternative Aξ ∈ A for the group.

4. Case Illustration

In this section, we consider an evaluation problem of the service quality among airlines
discussed in Liou et al. (2011), Zhang and Xu (2014a) to demonstrate the decision process
and the applicability of the proposed approach.

Due to the development of high-speed railroad, airline marketing has faced a powerful
challenge. More and more airlines have attempted to attract customers by reducing price.
Unfortunately, they soon found that there was a no-win situation and only service qual-
ity is the critical and fundamental element to survive in this highly competitive domestic
market. In order to improve the service quality of Taiwan airline, the civil aviation admin-
istration (CAA) wants to know which airline is the best one and then calls for the others
to learn from it. So the CAA invites a committee including three experts (E1,E2,E3) to
investigate four major Taiwan airlines, which are UNI Air (A1), Transasia (A2), Mandarin
(A3) and Daily Air (A4), according to the following four qualitative criteria: Booking and
ticketing service (C1), Check-in and boarding process (C2), Cabin service (C3), and Re-
sponsiveness (C4). The weight vector of the criteria is w = (0.2,0.25,0.35,0.2)T. The
weight vector of the experts is given as follows:

1 =

{

λ3 > λ1, 0.156 λ2 − λ1 6 0.25, λ1 + λ3 > λ2, 0.2 6 λ2 6 0.35,

λ1 + λ2 + λ3 = 1, λ1 > 0, λ2 > 0, λ3 > 0

}

.

All experts employ linguistic terms or comparison linguistic expressions to provide
the assessment values of alternatives with respect to each criterion as shown in Table 3.

The top-left cell “Between P and MP” in Table 3 indicates that the degree to which
the alternative A1 (UNI Air) satisfies the criterion C1 (booking and ticketing service) is
between Poor and Medium Poor. The others in Table 3 have the similar meanings.

Usually, the uncertainty and vagueness of the linguistic assessments can be captured
and represented by TrFNs. The corresponding relation between TrFNs and linguistic vari-
ables with seven-point rating scales is expressed in Table 4.
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Table 3
The linguistic criteria values of alternatives for each expert.

Experts Alternatives Criteria

C1 C2 C3 C4

E1 A1 Between MG and G MG Between MG and G At most MP
A2 MG Between MP and F MP Between F and MG
A3 Between MP and F Between P and MP At least MG MG
A4 MG F G Between P and MP

E2 A1 Between F and MG MP P G
A2 Between G and VG At least MG F F
A3 G MG MP MP
A4 MP G F Between P and MP

E3 A1 At least MG F At most MP MG
A2 F MG At least G P
A3 Between F and G Between MP and F Between P and MP At least G
A4 MG G Between F and G G

Note: VP: Very poor; P: Poor; MP: Medium poor; F: Fair; MG: Medium good; G: Good; VG: Very good.

Table 4
Linguistic terms and their corresponding TrFNs.

Rating Abbreviation TrFNs

s0: Very poor VP T (0.0,0.0,0.1,0.2)

s1: Poor P T (0.1,0.2,0.2,0.3)

s2: Medium poor MP T (0.2,0.3,0.4,0.5)

s3: Fair F T (0.4,0.5,0.5,0.6)

s4: Medium good MG T (0.5,0.6,0.7,0.8)

s5: Good G T (0.7,0.8,0.8,0.9)

s6: Very good VG T (0.8,0.9,1.0,1.0)

Then, according to Zhang et al. (2016), all comparative linguistic expressions are trans-
formed into HTrFNs which are listed in Table 5.

In what follows, we employ the proposed hesitant trapezoidal fuzzy TODIM method
to solve the above decision problem. Based on the closeness index-based ranking method
of HTrFNs, we first compare with the magnitude of the criteria values and obtain the
superior-inferior table as in Table 6.

The top-left cell “1/2S1” in Table 6 indicates that for the expert E1 and under the cri-
terion C1 the alternative A1 is superior to the alternative A2 because of φ(h1

11
) = 0.725 >

φ(h1

21
) = 0.65. Similar logic is used to determine the remaining entries in Table 6. Then,

we notice that the weight of the criterion C3 is the biggest one among these four crite-
ria. According to the proposed method (i.e. Eq. (3.2)), the criterion C3 is regarded as the
reference criterion and thus the weight of the reference criterion wr = w(C3) is 0.35. Fur-

thermore, using Eq. (3.2) the relative weight of the criterion C1 is w1r = w(C1)/wr =

0.2/0.35 = 0.57. Analogously, the other relative weights can be obtained. Without loss
of generality, we take the value of the parameter θ as 3 and the dominance value of the
alternative Aξ ∈ A over the alternative Aζ ∈ A under the criterion Cj ∈ C can be calcu-
lated by using Eq. (3.3). The calculated results are listed in Tables 7–10. Furthermore, by
aggregating the gains and losses of the alternative Aξ ∈ A over the alternative Aζ ∈ A
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Table 5
The hesitant criteria values of alternatives.

Experts Alternatives Criteria

C1 C2 C3 C4

E1 A1 {T (0.5, 0.6, 0.7, 0.8),

T (0.7, 0.8, 0.8, 0.9)}

T (0.5, 0.6, 0.7, 0.8) {T (0.5, 0.6, 0.7, 0.8),

T (0.7, 0.8, 0.8, 0.9)}

{T (0.0, 0.0, 0.1, 0.2),

T (0.1, 0.2, 0.2, 0.3),

T (0.2, 0.3, 0.4, 0.5)}

A2 T (0.5, 0.6, 0.7, 0.8) {T (0.2, 0.3, 0.4, 0.5),

T (0.4, 0.5, 0.5, 0.6)}

T (0.7, 0.8, 0.8, 0.9) {T (0.4, 0.5, 0.5, 0.6),

T (0.5, 0.6, 0.7, 0.8)}

A3 {T (0.2, 0.3, 0.4, 0.5),

T (0.4, 0.5, 0.5, 0.6)}

{T (0.1, 0.2, 0.2, 0.3),

T (0.2, 0.3, 0.4, 0.5)}

{T (0.5, 0.6, 0.7, 0.8),

T (0.7, 0.8, 0.8, 0.9),

T (0.8, 0.9, 1.0, 1.0)}

T (0.5, 0.6, 0.7, 0.8)

A4 T (0.5, 0.6, 0.7, 0.8) T (0.4, 0.5, 0.5, 0.6) T (0.7, 0.8, 0.8, 0.9) {T (0.1, 0.2, 0.2, 0.3),

T (0.2, 0.3, 0.4, 0.5)}

E2 A1 {T (0.4, 0.5, 0.5, 0.6),

T (0.5, 0.6, 0.7, 0.8)}

T (0.2, 0.3, 0.4, 0.5) T (0.1, 0.2, 0.2, 0.3) T (0.7, 0.8, 0.8, 0.9)

A2 {T (0.7, 0.8, 0.8, 0.9),

T (0.8, 0.9, 1.0, 1.0)}

{T (0.5, 0.6, 0.7, 0.8),

T (0.7, 0.8, 0.8, 0.9),

T (0.8, 0.9, 1.0, 1.0)}

T (0.4, 0.5, 0.5, 0.6) T (0.4, 0.5, 0.5, 0.6)

A3 T (0.7, 0.8, 0.8, 0.9) T (0.5, 0.6, 0.7, 0.8) T (0.2, 0.3, 0.4, 0.5) T (0.2, 0.3, 0.4, 0.5)

A4 T (0.2, 0.3, 0.4, 0.5) T (0.7, 0.8, 0.8, 0.9) T (0.4, 0.5, 0.5, 0.6) {T (0.4, 0.5, 0.5, 0.6),

T (0.5, 0.6, 0.7, 0.8)}

E3 A1 {T (0.5, 0.6, 0.7, 0.8),

T (0.7, 0.8, 0.8, 0.9),

T (0.8, 0.9, 1.0, 1.0)}

T (0.4, 0.5, 0.5, 0.6) {T (0.0, 0.0, 0.1, 0.2),

T (0.1, 0.2, 0.2, 0.3),

T (0.2, 0.3, 0.4, 0.5)}

T (0.5, 0.6, 0.7, 0.8)

A2 T (0.4, 0.5, 0.5, 0.6) T (0.5, 0.6, 0.7, 0.8) {T (0.7, 0.8, 0.8, 0.9),

T (0.8, 0.9, 1.0, 1.0)}

T (0.1, 0.2, 0.2, 0.3)

A3 {T (0.4, 0.5, 0.5, 0.6),

T (0.5, 0.6, 0.7, 0.8),

T (0.7, 0.8, 0.8, 0.9)}

{T (0.2, 0.3, 0.4, 0.5),

T (0.4, 0.5, 0.5, 0.6)}

{T (0.4, 0.5, 0.5, 0.6),

T (0.5, 0.6, 0.7, 0.8)}

{T (0.7, 0.8, 0.8, 0.9),

T (0.8, 0.9, 1.0, 1.0)}

A4 T (0.5, 0.6, 0.7, 0.8) T (0.7, 0.8, 0.8, 0.9) {T (0.4, 0.5, 0.5, 0.6),

T (0.5, 0.6, 0.7, 0.8),

T (0.7, 0.8, 0.8, 0.9)}

T (0.7, 0.8, 0.8, 0.9)

Table 6
A superior-inferior table over alternatives with criteria for the expert E1.

A1/A2 A1/A3 A1/A4 A2/A3 A2/A4 A3/A4

C1 1/2S1 1/3S1 1/4S1 2/3S1 2/4E1 3/4I1
C2 1/2S2 1/3S2 1/4S2 2/3S2 2/4I2 3/4I2
C3 1/2I3 1/3I3 1/4I3 2/3S3 2/4E3 3/4I3
C4 1/2I4 1/3I4 1/4I4 2/3I4 2/4S4 3/4S4

Note: ‘S’ denotes “superior to”, ‘I’ denotes “inferior to”, “E” denotes “equal to”.

Table 7
Gains and losses of alternatives over the others for the criterion C1 and the expert E1.

A1 A2 A3 A4

A1 0 0.1225 0.2449 0.1225
A2 −0.2041 0 0.2121 0
A3 −0.4082 −0.3536 0 −0.3536
A4 −0.2041 0 0.2121 0

under the criterion Cj ∈ C using Eq. (3.4), we can obtain the weighted dominance value
of each alternative over the others, listed in Table 11.

Using Eq. (3.5), the overall dominance values of alternatives for the expert E1 are
obtained as follows:
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Table 8
Gains and losses of alternatives over the others for the criterion C2 and the expert E1.

A1 A2 A3 A4

A1 0 0.2372 0.3062 0.1936
A2 −0.3162 0 0.1936 −0.1826
A3 −0.4082 −0.2582 0 −0.3162
A4 −0.2582 0.1369 0.2372 0

Table 9
Gains and losses of alternatives over the others for the criterion C3 and the expert E1.

A1 A2 A3 A4

A1 0 −0.1543 −0.1484 −0.1543
A2 0.1620 0 0.0443 0
A3 0.1559 −0.0422 0 −0.0422
A4 0.1620 0 0.0443 0

Table 10
Gains and losses of alternatives over the others for the criterion C4 and the expert E1.

A1 A2 A3 A4

A1 0 −0.4530 −0.4969 −0.1964
A2 0.2718 0 −0.2041 0.2449
A3 0.2981 0.1225 0 0.2739
A4 0.1178 −0.4082 −0.4564 0

Table 11
Weighted dominance values of alternatives over the others for the expert E1.

A1 A2 A3 A4

A1 0 −0.2476 −0.0942 −0.0346
A2 −0.0865 0 0.2459 0.0623
A3 −0.3624 −0.5315 0 −0.4381
A4 −0.1825 −0.2713 0.0372 0

Q1(A1) = 0.6150, Q1(A2) = 1.0, Q1(A3) = 0.0, Q1(A4) = 0.5892.

Analogously, we can also calculate the overall dominance values of alternatives for the

expert E2 as:

Q2(A1) = 0.0, Q2(A2) = 1.0, Q2(A3) = 0.0218, Q2(A4) = 0.3991,

and the overall dominance values of alternatives for the expert E3 as follows:

Q3(A1) = 0.0210, Q3(A2) = 0.0, Q3(A3) = 0.3669, Q3(A4) = 1.0.
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According to the model (MOD-3), we construct the following optimal model:
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∑

i=1

3
∑

k=1

λk(η
k
i + ρk

i )

s.t.

0.615 − Q∗(A1) − η1

1
+ ρ1

1
= 0; 0.0 − Q∗(A1) − η2

1
+ ρ2

1
= 0;

0.021 − Q∗(A1) − η3

1
+ ρ3

1
= 0; 1.0 − Q∗(A2) − η1

2
+ ρ1

2
= 0;

1.0 − Q∗(A2) − η2

2
+ ρ2

2
= 0; 0.0 − Q∗(A2) − η3

2
+ ρ3

2
= 0;

0.0 − Q∗(A3) − η1

3
+ ρ1

3
= 0; 0.0218 − Q∗(A3) − η2

3
+ ρ2

3
= 0;

0.3669 − Q∗(A3) − η3

3
+ ρ3

3
= 0; 0.5892 − Q∗(A4) − η1

4
+ ρ1

4
= 0;

0.3991 − Q∗(A4) − η2

4
+ ρ2

4
= 0; 1.0 − Q∗(A4) − η3

4
+ ρ3

4
= 0;

λ3 > λ1, 0.15 6 λ2 − λ1 6 0.25, λ1 + λ3 > λ2, 0.2 6 λ2 6 0.35,

3
∑

k=1

λk = 1, λk > 0, k ∈ {1,2,3},

ηk
i > 0, ρk

i > 0, ηk
i ρ

k
i = 0; i ∈ {1,2,3,4}, k ∈ {1,2,3}.

(MOD-4)

By solving the above model (MOD-4), the overall dominance values of alternatives
for the group can be obtained as follows:

λ1 = 0.2, λ2 = 0.35, λ3 = 0.45, Q∗(A1) = 0.0210,

Q∗(A2) = 1.0, Q∗(A3) = 0.0218, Q∗(A4) = 0.5892.

Apparently, the ranking order of alternatives is obtained as A2 ≻ A4 ≻ A3 ≻ A1, and
the best alternative is A2.

5. Conclusions

In this paper, we have developed a hesitant trapezoidal fuzzy TODIM approach with a
closeness index-based ranking method to handle MCGDM problems in which decision
data is expressed as comparative linguistic expressions based on HTrFNs. The key con-
tribution of this paper is fivefold: (1) a novel closeness index for HTrFN has been intro-
duced; (2) an effective ranking method for HTrFNs has been proposed; (3) the dominance
values of alternatives over the others have been defined; (4) the overall dominance val-
ues of alternatives over the others for each expert has been calculated; (5) a nonlinear
programming model has been established to determine the overall dominance values of
alternatives over the others for the group. The biggest limitation to the proposed approach
is the degree of computational complexity corresponding to the large-scale group decision
making problems. In terms of future research, one decision support system based on the
proposed method is developed to help practitioners solve the real-world large-scale group



A Closeness Index-Based TODIM Method for Hesitant Qualitative Group 579

decision making problems in which the decision information takes the form of compara-
tive linguistic expressions based on HTrFNs. Additionally, the potential of combining the
proposed approach with other useful decision making techniques within the environment
of HTrFNs will also be taken into consideration in the future.
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