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Abstract. Linguistic hesitant fuzzy sets (LHFSs) permit the decision maker to apply several linguis-
tic terms with each having several membership degrees to denote his/her preference of one thing.
This type of fuzzy sets can well address the qualitative and quantitative cognitions of the deci-
sion maker as well as reflect his/her hesitancy, uncertainty and inconsistency. This paper introduces
a distance measure between any two LHFSs and then defines a correlation coefficient of LHFSs.
Considering the application of LHFSs, the weighted distance measure and the weighted correlation
coefficient of LHFSs are defined. To address the interactions between elements in a set, the Shap-
ley weighted distance measure and the Shapley weighted correlation coefficient are presented. It is
worth noting that when the elements are independent, they degenerate to the associated weighted
distance measure and the weighted correlation coefficient, respectively. After that, their application
to pattern recognition is studied. Furthermore, an approach to multi-attribute decision making under
linguistic hesitant fuzzy environment is developed. Meanwhile, numerical examples are offered to
show the concrete application of the developed procedure.

Key words: decision making; linguistic hesitant fuzzy set; correlation coefficient; TOPSIS method;
the Shapley function.

1. Introduction

According to the attribute values of alternatives, decision-making theory can be classified
into two types. One type is the stochastic decision making, where the attribute values are
stochastic variables; the other is the fuzzy decision making, where the attribute values are
fuzzy variables. It is worth noting that fuzzy decision-making theory has some advantages
to cope with uncertain information. Since Zadeh (1965) first introduced fuzzy set theory,

decision making based on fuzzy sets has been successfully applied in many fields, such
as recommender system (Tejeda-Lorente et al., 2014; Martínez-Cruz et al., 2015; Yager,
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2003, 2004), education (Bryson and Mobolurin, 1995), medical care (James and Dolan,
2010), engineering (Chen and Weng, 2006; Lennon et al., 2013; Meng et al., 2016c),
economics (Ölçer et al., 2006; Vaidogas and Sakenaite, 2011; Meng et al., 2017a, 2016d),
reservoir flood control (Fu, 2008), facility location selection (Kahraman et al., 2003),
new product development (NDP) project screening (Meng and Chen, 2017a), and supplier
selection (Meng et al., 2017b). With the increasing complexity of the decision-making
problems, researchers found that it is insufficient to address decision-making problems
by using fuzzy sets, which only permit the decision maker to apply one fuzzy number
to denote the uncertainty. Furthermore, fuzzy sets can only express the decision maker’s
positive judgment. Thus, several types of generalized fuzzy sets are proposed, such as
intuitionistic fuzzy sets (Atanassov, 1986; Atanassov and Gargov, 1989), type-2 fuzzy
sets (Zadeh, 1973) and hesitant fuzzy sets (Chen et al., 2013a; Torra, 2010).

However, all these types of fuzzy sets can only denote the decision maker’s quantitative
cognitions. As Zadeh (1975) noted, there are many situations, where the decision-making
problems are too complex or too ill-defined to use quantitative expressions. To address this
issue, Zadeh (1975) introduced the concept of linguistic variables, which permit the deci-
sion maker to use linguistic variables rather than quantitative fuzzy variables to express the
judgment. Since then, many studies about decision making based on linguistic variables
are developed (Cai et al., 2014a, 2014b, 2015; Dong et al., 2009, 2016; Gou and Xu, 2016;
Herrera and Martínez, 2000; Herrera et al., 2000; Ju et al., 2016; Li et al., 2017;
Massanet et al., 2014; Morente-Molinera et al., 2015; Martínez and Herrera, 2012;
Meng et al., 2016a; Meng and Chen, 2016b; Pedrycz, 2013; Wei, 2011; Wu and Xu, 2016;
Xu, 2004a, 2007; Ye, 2016a). Just as quantitative fuzzy variables, it is still not an easy
thing to require a decision maker to apply one linguistic variable to express his/her qualita-
tive judgment. Thus, Xu (2004b) introduced the concept of uncertain linguistic variables,
which permit the decision maker to use an interval linguistic variable rather than one ex-
act linguistic variable to denote information. However, uncertain linguistic variables are
inadequate to denote the decision maker’s hesitancy and irresolution. Hesitant fuzzy lin-
guistic term sets (HFLTSs) introduced by Rodríguez et al. (2012) can well address this
issue, which are composed by several linguistic terms.

All of the above mentioned fuzzy sets can denote either the decision maker’s quan-
titative or qualitative information. However, none of them can denote these two aspects
simultaneously. Following the works of Atanassov (1986) and Zadeh (1975), Wang and
Li (2009) presented intuitionistic linguistic sets (ILSs), which are composed by one
linguistic variable and an intuitionistic fuzzy variable. Using this type of fuzzy sets,
the decision maker can apply one linguistic variable to denote his/her qualitative judg-
ment as well as use an intuitionistic fuzzy variable to show the membership and non-
membership degrees about the qualitative judgment. Meng et al. (2016e) developed a
group decision-making method with intuitionistic linguistic preference relations (IL-
PRs), where the elements in ILPRs are intuitionistic linguistic fuzzy variables. Later,
Liu and Jin (2012) and Liu (2013) introduced intuitionistic uncertain linguistic sets
(IULSs) and interval-valued intuitionistic uncertain linguistic sets (IVIULSs), respec-
tively. Such generalizations further endow the decision makers with more rights to ex-
press their judgments. As researchers (Rodríguez et al., 2012; Torra, 2010; Ye, 2015;
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Meng and An, 2017) noted that the difficulty of expressing the judgments does not arise:

there is a margin of error or some possibility distribution on the possibility values but

there are several possible values. Recently, Meng et al. (2014) presented a new type of

fuzzy sets called linguistic hesitant fuzzy sets (LHFSs). This kind of fuzzy sets permits

the decision maker to apply several linguistic variables with each having several member-

ship degrees to denote the judgment of one thing. Meanwhile, this type of fuzzy sets can

express the qualitative and quantitative cognitions of the decision makers and reflect their

hesitancy and inconsistency.

Considering the application of LHFSs, Meng et al. (2014) defined several operational

laws of LHFSs and then gave a ranking method. After that, the authors developed a method

to linguistic hesitant fuzzy multi-attribute decision making with interactive characteristics

and incomplete weight information. However, one can see that this method is based on

the defined aggregation operators, this makes the process of decision making seem to be

complex. Especially, the calculation of the comprehensive attribute values will be very

complex with the increase of the number of linguistic hesitant fuzzy sets. Later, Zhou et

al. (2015) applied a special example to show that the ranking order offered in Meng et

al. (2014) is unreasonable, and introduced a new ranking method. However, Zhou et al.’s

ranking method is illogical. Furthermore, the Hamming distance on LHFSs offered by

Zhou et al. (2015) is wrong. Recently, Zhu et al. (2016) developed a cloud model method to

linguistic hesitant fuzzy multi-attribute decision making and extended the power operators

to linguistic hesitant fuzzy environment. However, this method seems also to be complex.

To address the above listed issues in previous researches, the paper continues to re-

search the application of LHFSs. To do this, we first introduce a distance measure be-

tween LHFSs that can be seen as an extension of Hamming distance on real numbers.

One can check that the new distance measure addresses the issues in Zhou et al. (2015).

To discriminate the importance of features or attributes, several additive weighted dis-

tance measures are defined that are used to calculate the comprehensive ranking val-

ues of objects. Meanwhile, a correlation coefficient on LHFSs is provided, and several

weighted correlation coefficients are offered. Considering the interactive characteristics

and the complexity of fuzzy numbers, Shapley-based distance measures and correlation

coefficients with 2-additive measures are provided, which can be seen as extensions of

weighted distance measures and correlation coefficients, respectively. Then, an approach

to pattern recognition and to multi-attribute decision making with LHFSs is performed,

respectively. Meanwhile, associated practical application is offered.

This paper is organized as follows: Section 2 reviews several basic concepts related to

LHFSs. Section 3 introduces a distance measure and a correlation coefficient of LHFSs.

Section 4 defines two types of hybrid weighted distance measures and correlation coef-

ficients of LHFSs. One is based on additive measures, and the other uses the Shapley

function with respect to 2-additive measures. Section 5 develops an approach to pattern

recognition and to multi-attribute decision making by using the defined distance measures

and correlation coefficients, and then comparison analysis with the existing methods is

made. The last section is the conclusion.
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2. Some Basic Concepts

Considering the hesitancy and inconsistency of the decision makers, Torra (2010) defined
hesitant fuzzy sets that permit the decision makers to apply several possible values in [0,1]

to denote the membership degree of one thing.

Definition 1. (See Torra, 2010.) Let X = {x1, x2, . . . , xn} be a finite set. A hesitant fuzzy
set (HFS) in X is expressed in terms of a function such that when applied to X it returns
a subset of [0,1], denoted by E = (〈xi, hE(xi)〉|xi ∈ X), where hE(xi) is a set of some
values in [0,1] denoting the possible membership degrees of the element xi ∈ X to the
set E.

Sometimes, it is not easy for the decision makers to estimate their information using
quantitative values. In this case, linguistic variables are more suitable to only provide the
decision makers with the qualitative values. The linguistic reasoning is a technique that
represents qualitative aspect using linguistic variables. Let S = {si | i = 1,2, . . . , t} be
a linguistic term set with odd cardinality. Any label si represents a possible value for a
linguistic variable, and it should satisfy the following characteristics: (i) The set is or-
dered: si > sj , if i > j ; (ii) Max operator: max(si, sj ) = si , if si > sj ; (iii) Min operator:
min(si, sj ) = si , if si 6 sj . For example, a linguistic term set S may be expressed by
S = {s1: very poor, s2: poor, s3: slightly poor, s4: fair, s5: slightly good, s6: good, s7: very
good}.

Similar to hesitant fuzzy sets, Rodríguez et al. (2012) introduced the following concept
of hesitant fuzzy linguistic term sets (HFLTSs) that permit a qualitative reference to have
several linguistic terms.

Definition 2. (See Rodríguez et al., 2012.) An HFLTS, HS , is an ordered finite subset
of consecutive linguistic terms of S, where S = {s1, . . . , st } is a linguistic term set.

For example, let S be a linguistic term set as shown above, and let Q be a qualitative
reference. An HFLTS could be HS(Q) = {s2, s3, s4}.

As pointed out in introduction, HFLTSs only denote the hesitancy and inconsistency of
the decision makers’ qualitative references, and it is based on the assumption that the de-
cision makers have the same cognition degrees of the given linguistic terms in an HFLTS.
However, this might be not true. For instance, to evaluate the quietness of the refrigerator,
the decision maker might hesitate to give the value 15% or 20% for slightly good, the
value 30%, 40% or 50% for good, and the value 15% for very good. To address this situ-
ation, HFLTSs and HFSs seem to be insufficient. Linguistic hesitant fuzzy sets (LHFSs)
introduced in Meng et al. (2014) can well address this problem.

Definition 3. (See Meng et al., 2014.) Let S = {s1, . . . , st } be a linguistic term set.
A LHFS in S is a set that when applied to the linguistic terms of S it returns a subset
of S with several values in [0,1], denoted by LH = {(sθ(i), lh(sθ(i)) | sθ(i) ∈ S)}, where
lh(sθ(i)) = {r1, r2, . . . , rmi } is a set with mi values in [0,1] denoting the possible mem-
bership degrees of the element sθ(i) ∈ S to the set LH .
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In the example of evaluating the quietness of the refrigerator, the decision maker’s
judgment can be expressed by a LHFS LH = {(s5,0.15,0.2), (s6,0.3,0.4, 0.5), (s7,0.15)}.
To compare LHFSs, Meng et al. (2014) introduced the following method:

Definition 4. (See Meng et al., 2014.) Let LH1 be a LHFS for the predefined linguis-
tic term set S = {s1, . . . , st }. Suppose that lhi = (sθ(i), lh(sθ(i))) ∈ LH1 with lh(sθ(i)) =

{ri1 , ri2 , . . . , rim}, then the expectation value of lhi is defined by E(lhi) =
θ(i)

∑m
k=1

rik
m

,

and its variance is given as V (lhi) =

∑m
k=1

(θ(i)rik−E(lhi))
2

m
.

Let LH1 be a LHFS for the predefined linguistic term set S = {s1, . . . , st }. Sup-
pose that lhi = (sθ(i), lh(sθ(i))) ∈ LH1 with lh(sθ(i)) = {ri1 , ri2, . . . , rim} and lhj =

(sθ(j), lh(sθ(j))) ∈ LH1 with lh(sθ(j)) = {rj1
, rj2

, . . . , rjn}. Then, their order relationship
is defined as follows:

If E(lhi) 6E(lhj ), then lhi 6 lhj ;

If E(lhi) = E(lhi), then







V (lhi) > V (lhj ), lhi < lhj ,

V (lhi) < V (lhj ), lhi > lhj ,

V (lhi) = V (lhj ), lhi = lhj .

3. Distance Measure and Correlation Coefficient of LHFSs

Distance measure and correlation coefficient are two useful tools to decision making, by
which we can obtain the best choice or rank the objects. This section introduces a distance
measure and a correlation coefficient of LHFSs.

3.1. A Distance Measure of LHFSs

Distance measure is an effective tool to measure the deviations of different arguments,
which is applied in many fields, such as ranking fuzzy numbers (Tran and Duckstein,
2002), determining the weights (Yue, 2011), decision making (Cabrerizo et al., 2015;
Gong et al., 2016; Peng et al., 2013; Xu, 2010b), economics (Merigó and Casanovas,
2011), pattern recognition (Hung and Yang, 2004; Zeng et al., 2016), and cluster analysis
(Yang and Lin, 2009). Similar to the OWA operator (Yager, 1988), Xu and Chen (2008)
defined the ordered weighted distance measure (OWDM), which can decrease the influ-
ence of extreme values. Later, Zeng and Su (2011) introduced an OWDM on intuitionistic
fuzzy sets. However, the OWDM only considers the importance of the ordered positions,
but it does not give the importance of the elements. It is worth noting that a distance
measure corresponds to a similarity measure (Hung and Yang, 2004; Xu and Xia, 2011;
Yang and Lin, 2009). This subsection gives a distance measure of LHFSs.

Definition 5. Let S = {s1, . . . , st } be a linguistic term set, and let LH1 and LH2 be
any two LHFSs for the predefined linguistic term set S. Without loss of generality,
suppose that lhi = (sθ(i), lh(sθ(i))) ∈ LH1 with lh(sθ(i)) = {ri1, ri2 , . . . , rim} and lhj =
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(sθ(j), lh(sθ(j))) ∈ LH2 with lh(sθ(j)) = {rj1
, rj2

, . . . , rjn}. The distance measure from
lhi to lhj is defined as follows:

−−−−−−→
d(lhi , lhj ) =

1

mt

m
∑

k=1

(

min
rjp∈lh(sθ(j))

∣

∣θ(i)rik − θ(j)rjp

∣

∣

)

, (1)

and the distance measure from lhj to lhi is defined as follows:

−−−−−−→
d(lhj , lhi) =

1

nt

n
∑

k=1

(

min
rik ∈lh(sθ(i))

∣

∣θ(j)rjk − θ(i)rip
∣

∣

)

. (2)

Furthermore, the distance measure between lhi and lhj is defined as follows:

d(lhi , lhj ) =

−−−−−−→
d(lhi, lhj ) +

−−−−−−→
d(lhj , lhi)

2
. (3)

Property 1. Let LH1 and LH2 be any two LHFSs for the predefined linguistic term set
S = {s1, . . . , st }. Suppose that lhi = (sθ(i), lh(sθ(i))) ∈ LH1 and lhj = (sθ(j), lh(sθ(j))) ∈

LH2 are given as shown in Definition 5. Then, we have:

(i) d(lhi, lhj ) = 0 if and only if there is rjp ∈ lh(sθ(j)) such that θ(j)rjp = θ(i)rik
for all k = 1,2, . . . ,m, and there is rik ∈ lh(sθ(i)) such that θ(i)rik = θ(j)rjp for
all p = 1,2, . . . , n;

(ii) 0 6 d(lhi, lhj )6 1;
(iii) d(lhi, lhj ) = d(lhj , lhi);
(iv) Let LH3 be another LHFS with lhg = (sθ(g), lh(sθ(g))) ∈ LH3. If we have











min
riz∈lh(sθ(g))

∣

∣θ(i)rik − θ(g)riz
∣

∣ 6 min
rjp∈lh(sθ(j))

∣

∣θ(i)rik − θ(j)rjp

∣

∣,

min
riz∈lh(sθ(g))

∣

∣θ(g)riz − θ(i)rik
∣

∣ 6 min
rik ∈lh(sθ(i))

∣

∣θ(j)rjp − θ(i)rik
∣

∣

for all rjp ∈ lh(sθ(j)), rik ∈ lh(sθ(i)) and riz ∈ lh(sθ(g)), then d(lhi, lhg) 6

d(lhi , lhj ).

Proof. For (i): when we have d(lhi, lhj ) = 0, by the equation (3) we have
−−−−−−→
d(lhi , lhj ) =

−−−−−−→
d(lhj , lhi) = 0. According to the equations (1) and (2), we get minrjp ∈lh(sθ(j)) |θ(i)rik −

θ(j)rjp | = minrip∈lh(sθ(i)) |θ(j)rjk − θ(i)rip | = 0. Thus, there is rjp ∈ lh(sθ(j)) such that
θ(j)rjp = θ(i)rik for all k = 1,2, . . . ,m, and there is rik ∈ lh(sθ(i)) such that θ(i)rik =

θ(j)rjp for all p = 1,2, . . . , n. On the other hand, one can easily derive that d(lhi , lhj ) =

0 from the equations (1)–(3) according to the listed conditions in (i).
For (ii): from the equations (1) and (3), we have 0 6

−−−−−−→
d(lhi, lhj ),

−−−−−−→
d(lhj , lhi) 6 1

by 0 6 minrik ∈lh(sθ(i)) |θ(j)rjk − θ(i)rip |, minrjp∈lh(sθ(j)) |θ(i)rik − θ(j)rjp | 6 t for each
k = 1,2, . . . ,m and each p = 1,2, . . . , n. According to the equation (3), we get 0 6

d(lhi , lhj )6 1.
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For (iii): from the equation (3), we obtain d(lhi, lhj ) =

−−−−−−→
d(lhi, lhj )+

−−−−−−→
d(lhj , lhi)

2
=

−−−−−−→
d(lhj , lhi)+

−−−−−−→
d(lhi, lhj )

2
= d(lhj , lhi).

For (iv): from











min
riz∈lh(sθ(g))

∣

∣θ(i)rik − θ(g)riz
∣

∣6 min
rjp∈lh(sθ(j))

∣

∣θ(i)rik − θ(j)rjp

∣

∣

min
riz∈lh(sθ(g))

∣

∣θ(g)riz − θ(i)rik

∣

∣6 min
rik ∈lh(sθ(i))

∣

∣θ(j)rjp − θ(i)rik

∣

∣

for all

rjp ∈ lh(sθ(j)), rik ∈ lh(sθ(i)) and riz ∈ lh(sθ(g)), we have

{ −−−−−−→
d(lhi , lhg)6

−−−−−−→
d(lhi , lhj ),

−−−−−−→
d(lhg, lhi)6

−−−−−−→
d(lhj , lhi).

From the equation (3), we derive d(lhi , lhg)6 d(lhi , lhj ). �

Definition 6. Let S = {s1, . . . , st } be a linguistic term set, and let LH1 and LH2 be any
two LHFSs for the predefined linguistic term set S. Without loss of generality, suppose
that lhi = (sθ(i), lh(sθ(i))) ∈ LH1 and lhj = (sθ(j), lh(sθ(j))) ∈ LH2. Then, the distance
measure from lhi to LH2 is defined as follows:

−−−−−−−→
d(lhi ,LH2) = min

lhj ∈LH2

−−−−−−→
d(lhi, lhj ), (4)

and the distance measure from lhj to LH1 is defined as follows:

−−−−−−−→
d(lhj ,LH1) = min

lhi∈LH1

−−−−−−→
d(lhj , lhi). (5)

Remark 1. Let S = {s1, . . . , st } be a linguistic term set, and let LH1 and LH2 be any
two LHFSs for the predefined linguistic term set S. Let lhi = (sθ(i), lh(sθ(i))) ∈ LH1,
if we have

−−−−−−−→
d(lhi ,LH2) = d(lhi, lhj ) with lhj ∈ LH2, then we denote lhj as lhi

j =

(sθ i (j), lh(sθ i (j))).

Definition 7. Let S = {s1, . . . , st } be a linguistic term set, and let LH1 and LH2 be any
two LHFSs for the predefined linguistic term set S. Then, the distance measure between
LH1 and LH2 is defined as follows:

d(LH1,LH2) =

−−−−−−−−→
d(LH1,LH2) +

−−−−−−−−→
d(LH2,LH1)

2
, (6)

where
−−−−−−−−→
d(LH1,LH2) = 1

|LH1|

∑|LH1|
i=1

−−−−−−−→
d(lhi ,LH2) and

−−−−−−−−→
d(LH2,LH1) = 1

|LH2|

∑|LH2|
j=1

−−−−−−−→
d(lhj ,LH1) with lhi ∈ LH1 and lhj ∈ LH2, |LH1| and |LH2| denote the cardinalities
of the linguistic variables in LH1 and LH2, respectively.

Corollary 1. Let LH1 and LH2 be any two LHFSs for the predefined linguistic term set

S = {s1, . . . , st }. Then, the distance measure d(LH1,LH2) between LH1 and LH2 satis-

fies:
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(i) d(LH1,LH2) = 0 if and only if there is lhj ∈ LH2 such that
−−−−−−→
d(lhi , lhj ) = 0 for

any lhi ∈ LH1, and there is lhi ∈ LH1 such that
−−−−−−→
d(lhj , lhi) = 0 for any lhj ∈

LH2;

(ii) 0 6 d(LH1,LH2)6 1;

(iii) d(LH1,LH2) = d(LH2,LH1);

(iv) Let LH3 be another LHFS with lhg = (sθ(g), lh(sθ(g))) ∈ LH3. If we have






min
lhg∈LH3

−−−−−−→
d(lhi, lhg) 6 min

lhj ∈LH2

−−−−−−→
d(lhi, lhj )

min
lhi∈LH

−−−−−−→
d(lhg, lhi)6 min

lhi∈LH1

−−−−−−→
d(lhj , lhi)

for all lhi ∈ LH1, lhj ∈ LH2 and

lhg ∈ LH3 , then d(LH1,LH3)6 d(LH1,LH2).

Proof. Similar to Property 1, one can easily derive the conclusions. �

For example, let LH1 = (s2,0.2,0.3), (s3,0.3,0.5,0.7), (s4,0.1) and LH2 = (s4,0.5,

0.6), (s5,0.1,0.2) be two LHFSs for the predefined linguistic term set S = {s1, s2, s3, s4, s5,

s6, s7}. Then, the distance measure between lh1

1
= (s2,0.2,0.3) and lh2

1
= (s4,0.5,0.6) is

d(lh1

1
, lh2

1
) =

−−−−−−→
d(lh1

1
, lh2

1
) +

−−−−−−→
d(lh2

1
, lh1

1
)

2

=
1

2
×

(

1

7 × 2

(

|2 × 0.2 − 4 × 0.5| + |2 × 0.3 − 4 × 0.5|
)

+
1

7 × 2

(

|4 × 0.5 − 2 × 0.3| + |2 × 0.3 − 4 × 0.6|
)

)

= 0.22,

and the distance between lh1

1
= (s2,0.2,0.3) and LH2 is

d
(

lh1

1
,LH2

)

= min
{

d
(

lh1

1
, lh2

1

)

, d
(

lh1

1
, lh2

2

)}

= min{0.22,0.025}= 0.025.

Furthermore, the distance between LH1 and LH2 is d(LH1,LH2) = 0.034.

Remark 2. Let LH1 and LH2 be any two LHFSs for the predefined linguistic term set

S = {s1, . . . , st }. Let

S(LH1,LH2) = 1 − d(LH1,LH2).

Then, S(LH1,LH2) is a similarity measure between LH1 and LH2, which satisfies:

(i) S(LH1,LH2) = 1 if and only if d(LH1,LH2) = 0; (ii) 0 6 S(LH1,LH2) 6 1;

(iii) S(LH1,LH2) = S(LH2,LH1); (iv) Let LH3 be another LHFS. If d(LH1,LH2) 6

d(LH1,LH3), then S(LH1,LH2)> S(LH1,LH3).
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3.2. A Correlation Coefficient of LHFSs

Correlation coefficient is a powerful tool to measure the linear relation between stochastic
variables. Recently, researchers applied the correlation coefficient to measure the simi-
larity between fuzzy variables and discussed their application in digital image processing
(Van der Weken et al., 2004), clustering analysis (Chen et al., 2013b; Xu et al., 2008), pat-
tern recognition (Liang and Shi, 2003), artificial intelligence (Zhang et al., 2013; Zhang
et al., 2014), and multi-attribute decision making (Park et al., 2009; Wei et al., 2011;
Ye, 2016b; Tong and Yu, 2016). Recently, Meng and Chen (2015) noted the issues of the
correlation coefficient of hesitant fuzzy sets in Chen et al. (2013b) and defined several
new ones, which need not consider the lengths of HFEs and the arrangement of the pos-
sible values. Furthermore, Meng et al. (2016b) defined several correlation coefficients of
interval-valued hesitant fuzzy sets in a similar way to Meng and Chen (2015). Following
the work of Meng and Chen (2015), this section introduces a correlation coefficient of
LHFSs.

Definition 8. Let S = {s1, . . . , st } be a linguistic term set, and let LH1 and LH2 be any
two LHFSs for the predefined linguistic term set S. The correlation coefficient between
LH1 and LH2 is defined as follows:

CC(LH1,LH2) =

−−−−−−−−→
C(LH1,LH2) +

−−−−−−−−→
C(LH2,LH1)

max
{

D(LH1),D(LH
LH1

2
)
}

+ max
{

D(LH2),D(LH
LH2

1
)
}
, (7)

where
−−−−−−−−→
C(LH1,LH2) is the correlation of LH1 with respect to LH2 defined as follows:

−−−−−−−−→
C(LH1,LH2)

=
1

|LH1|

∑

lhi=(sθ(i),lh(sθ(i)))∈LH1

1

|lh(sθ(i))|

∑

rik ∈lh(sθ(i)):r
ik
jp

∈lh(s
θi (j)

),

lhi
j=(s

θi (j)
,lh(s

θi (j)
))∈LH2

θ(i)rikθ
i(j)r

ik
jp

,

(8)

with |θ(i)rik − θ i(j)r
ik
jp

| = minr i
jp

∈lh(s
θi (j)

) |θ(i)rik − θ i(j)r i
jp

| and |lh(sθ(i))| being the

cardinality of lh(sθ(i)).
−−−−−−−−→
C(LH2,LH1) is the correlation of LH2 with respect to LH1 de-

fined as follows:

−−−−−−−−→
C(LH2,LH1)

=
1

|LH2|

∑

lhj =(sθ(j),lh(sθ(j)))∈LH2

1

|lh(sθ(j))|

∑

rjp ∈lh(sθ(j)):r
jp

ik
∈h(s

θj (i)
),

lh
j
i =(s

θj (i)
,lh(s

θj (i)
))∈LH1

θ(j)rjpθ j (i)r
jp

ik
,

(9)

with |θ(j)rjp − θ j (i)r
jp

ik
| = min

r
j
ik

∈lh(s
θj (i)

)
|θ(j)rjp − θ j (i)r

j
ik
| and |lh(sθ(j))| being the

cardinality of lh(sθ(j)).
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Furthermore,

D(LH1) =
1

|LH1|

∑

lhi=(sθ(i),lh(sθ(i)))∈LH1

1

|lh(sθ(i))|

∑

rik ∈lh(sθ(i))

(

θ(i)rik
)2

, (10)

D
(

LH
LH1

2

)

=
1

|LH1|

∑

lhi
j =(s

θi (j)
,lh(s

θi (j)
))∈LH2:

lhi=(sθ(i),lh(sθ(i)))∈LH1

1

|lh(sθ(i))|

∑

r
ik
jp

∈lh(s
θi (j)

):rik ∈lh(sθ(i))

(

θ i(j)r
ik
jp

)2
,

(11)

D(LH2) =
1

|LH2|

∑

lhj =(sθ(j),lh(sθ(j)))∈LH2

1

|lh(sθ(j))|

∑

rjp∈lh(sθ(j))

(

θ(j)rjp

)2
, (12)

D
(

LH
LH2

1

)

=
1

|LH2|

∑

lh
j
i =(s

θj (i)
,lh(s

θj (i)
))∈LH1:

lhj =(sθ(j),lh(sθ(j)))∈LH2

1

|lh(sθ(j))|

∑

r
jp

ik
∈lh(s

θj (i)
):rjp∈lh(sθ(j))

(

θ j (i)r
jp

ik

)2
.

(13)

Property 2. Let S = {s1, . . . , st } be a linguistic term set, and let LH1 and LH2 be any

two LHFSs for the predefined linguistic term set S. The correlation coefficient between
LH1 and LH2 satisfies:

(i) CC(LH1,LH1) = 1;
(ii) CC(LH1,LH2) = CC(LH2,LH1);
(iii) 0 6 CC(LH1,LH2)6 1.

Proof. For (i): From the equation (11), we have the following:

D
(

LH
LH1

1

)

=
1

|LH1|

∑

lhi
j =(s

θi (j)
,lh(s

θi (j)
))∈LH1:

lhi=(sθ(i),lh(sθ(i)))∈LH1

1

|lh(sθ(i))|

∑

r
ik
jp

∈lh(s
θi (j)

):rik ∈lh(sθ(i))

(

θ i(j)r
ik
jp

)2

=
1

|LH1|

∑

lhi=(sθ(i),lh(sθ(i)))∈LH1

1

|lh(sθ(i))|

∑

rik ∈lh(sθ(i))

(

θ(i)rik
)2

= D(LH1).

On the other hand, from
−−−−−−−→
d(lhi ,LH1) = d(lhi , lhi) = 0, we derive the following:

lhi
j =

(

sθ i (j), lh(sθ i (j))
)

=
(

sθ(i), lh(sθ(i))
)

= lhi ,
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namely, |θ(i)rik −θ i(j)r
ik
jp

| = minr i
jp

∈lh(s
θi (j)

) |θ(i)rik −θ i(j)r i
jp

| = minril ∈lh(sθ(i)) |θ(i)rik −

θ(i)ril | = |θ(i)rik − θ(i)rik | = 0. Thus, θ i(j)r
ik
jp

= θ(i)rik .

According to the equation (8), we obtain the following:

−−−−−−−−→
C(LH1,LH1)

=
1

|LH1|

∑

lhi=(sθ(i),lh(sθ(i)))∈LH1

1

|lh(sθ(i))|

∑

rik ∈lh(sθ(i))

(

θ(i)rik
)2

= D(LH1).

Thus, CC(LH1,LH1) =
D(LH1)
D(LH1)

= 1.

For (ii): From the equation (8), one can easily check that this conclusion holds.

For (iii): From CC(LH1,LH2) > 0, we only need to show CC(LH1,LH2) 6 1. By

the Cauchy–Schwarz inequality, we have

(−−−−−−−−→
C(LH1,LH2)

)2

=

(

1

|LH1|

∑

lhi=(sθ(i),lh(sθ(i)))∈LH1

1

|lh(sθ(i))|

∑

rik ∈
lh(sθ(i)):r

ik
jp

∈lh(s
θi (j)

),

(s
θi (j)

,lh(s
θi (j)

))∈LH2

θ(i)rikθ
i(j)r

ik
jp

)2

=

(

∑

lhi=(sθ(i),lh(sθ(i)))∈LH1

∑

rik ∈lh(sθ(i)):r
ik
jp

∈lh(s
θi (j)

),

(s
θi (j)

,lh(s
θi (j)

))∈LH2

θ(i)rikθ
i(j)r

ik
jp

|LH1||lh(sθ(i))|

)2

=

(

∑

lhi=(sθ(i),lh(sθ(i)))∈LH1

∑

rik ∈lh(sθ(i)):r
ik
jp

∈lh(s
θi (j)

),

(s
θi (j)

,lh(s
θi (j)

))∈LH2

θ(i)rik
√

|LH1||lh(sθ(i))|

θ i(j)r
ik
jp

√

|LH1||lh(sθ(i))|

)2

6

(

∑

lhi=(sθ(i),lh(sθ(i)))∈LH1

∑

rik ∈lh(sθ(i)):r
ik
jp

∈lh(s
θi (j)

),

(s
θi (j)

,lh(s
θi (j)

))∈LH2

(θ(i)rik )
2

|LH1||lh(sθ(i))|

)

×

(

∑

lhi=(sθ(i),lh(sθ(i)))∈LH1

∑

rik ∈lh(sθ(i)):r
ik
jp

∈lh(s
θi (j)

),

(s
θi (j)

,lh(s
θi (j)

))∈LH2

(θ i(j)r
ik
jp

)2

|LH1||lh(sθ(i))|

)

=

(

∑

lhi=(sθ(i),lh(sθ(i)))∈LH1

∑

rik ∈lh(sθ(i))

(θ(i)rik )
2

|LH1||lh(sθ(i))|

)
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×

(

∑

lhi
j =(s

θi (j)
,lh(s

θi (j)
))∈LH2:

lhi=(sθ(i),lh(sθ(i)))∈LH1

∑

r
ik
jp

∈lh(s
θi (j)

):rik ∈lh(sθ(i))

(θ i(j)r
ik
jp

)2

|LH1||lh(sθ(i))|

)

= D(LH1)D
(

LH
LH1

2

)

.

From
√

D(LH1)D(LH
LH1

2
)6

D(LH1)+D(LH
LH1

2
)

2
6 max{D(LH1),D(LH

LH1

2
)}, we de-

rive

−−−−−−−−→
C(LH1,LH2) 6 max

{

D(LH1),D
(

LH
LH1

2

)}

.

Similarly, we have
−−−−−−−−→
C(LH2,LH1)6 max{D(LH2),D(LH

LH2

1
)}. Thus,

CC(LH1,LH2)6 1. �

Remark 3. Similar to the correlation coefficient defined in the equation (7), we can define
other correlation coefficients of LHFSs in a similar way to Meng and Chen (2015). When

the membership degree of each linguistic term in LHFSs is one, then LHFSs degenerate
to HFLTSs. In this situation, the correlation coefficient (7) reduces to the correlation coef-
ficient for HFLTSs. Furthermore, when all LHFSs only have the same one linguistic term,

then the correlation coefficient (7) reduces to the correlation coefficient for HFSs given
by Meng and Chen (2015).

For example, let LH1 and LH2 be two LHFSs for the predefined linguistic term
set S = {s1, s2, s3, s4, s5, s6, s7}, where LH1 and LH2 as shown above, namely, LH1 =

{(s2,0.2,0.3), (s3,0.3,0.5,0.7), (s4,0.1)} and LH2 = {(s4,0.5,0.6), (s5,0.1,0.2)}.Then,
the correlation coefficient between LH1 and LH2 is CC(LH1,LH2) = 0.8747.

4. Hybrid Weighted Distance Measure and Correlation Coefficient of LHFSs

This section studies two types of the hybrid weighted distance measures and the hybrid
weighted correlation coefficients of LHFSs. One is based on additive measures, which

does not consider the interactions between elements in a set; the other adopts 2-additive
measures to reflect their interactive characteristics. It is worth noting that the former can
be seen as a special case of the latter.

4.1. Distance Measure and Correlation Coefficient Based on Additive Measures

To both consider the importance of the elements and their ordered positions, this subsec-
tion defines the hybrid weighted distance measure and the hybrid weighted correlation
coefficient based on additive measures.
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Definition 9. Let S = {s1, . . . , st } be a linguistic term set, and let A = {LH1,LH2, . . . ,

LHn} and B = {LH ′
1
,LH ′

2
, . . . ,LH ′

n} be any two collections of LHFSs for the predefined
linguistic term set S. Then, the hybrid weighted distance measure (HWDM) between A

and B is defined as follows:

HWDM(A,B) =

n
∑

i=1

wiω(i)
∑n

i=1
wiω(i)

d
(

LH(i),LH ′
(i)

)

,

and the geometric hybrid weighted distance measure (GHWDM) between A and B is
defined as follows:

GHWDM(A,B) =

n
∏

i=1

d
(

LH(i),LH ′
(i)

)

wiω(i)
∑n

i=1
wiω(i) ,

where (·) is a permutation on the distance measures d(LHj ,LH ′
j ), j = 1,2, . . . , n, with

ω(j)d(LH(j),LH ′
(j)) being the j th largest value of ωjd(LHj ,LH ′

j ) and d(LH(j),LH ′
(j))

ω(j)

being the j th largest value of d(LHj ,LH ′
j )

ωj , w = {w1,w2, . . . ,wn} is the weight-
ing vector on the ordered position set N = {1,2, . . . , n} such that

∑n
i=1

wi = 1 and
wi > 0 for all i = 1,2, . . . , n, and ω = (ω1,ω2, . . . ,ωn) is the weighting vector on
D = {d(LHi,LH ′

i)}i∈N such that
∑n

i=1
ωi = 1 and ωi > 0 for all i = 1,2, . . . , n.

Property 3. Let A = {LH1,LH2, . . . ,LHn} and B = {LH ′
1
,LH ′

2
, . . . ,LH ′

n} be any
two collections of LHFSs for the predefined linguistic term set S = {s1, . . . , st }. Then,
GHWDM(A,B) 6 HWDM(A,B).

Proof. According to
∑n

i=1
ωiai 6

∏n
i=1

a
ωi

i with ai > 0 for all i = 1,2, . . . , n, where ω

is a weighting vector as shown in Definition 9, we have GHWDM(A,B) 6 HWDM(A,B)

from their expressions. �

Property 4. Let A = {LH1,LH2, . . . ,LHn} and B = {LH ′
1
,LH ′

2
, . . . ,LH ′

n} be any two
collections of LHFSs for the predefined linguistic term set S = {s1, . . . , st }.

(i) Commutativity. Let σ be a permutation of A and B , respectively, where Ȧ =

{LHσ(1),LHσ(2), . . . ,LHσ(n)} and Ḃ = {LH ′
σ(1),LH ′

σ(2), . . . ,LH ′
σ(n)}. Then,

HWDM(A,B) = HWDM(Ȧ, Ḃ) and GHWDM(A,B) = GHWDM(Ȧ, Ḃ).

(ii) Monotonicity. Let C = {Cauchy–Schwarz′′
1
,Cauchy–Schwarz′′

2
, . . . ,LH ′′

n} be
another collection of LHFSs for the predefined linguistic term set S, where
d(LH i,LH ′

i)6 d(LH i,LH ′′
i ) for all i = 1,2, . . . , n. Then,

HWDM(A,B)6 HWDM(A,C) and GHWDM(A,B) 6 GHWDM(A,C).

(iii) Idempotency. If d(LH i,LH ′
i) = c for all i = 1,2, . . . , n, then

HWDM(A,B) = c and GHWDM(A,B) = c.
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(iv) Boundary.

min
16i6n

d
(

LH i,LH ′
i

)

6 HWDM(A,B)6 max
16i6n

d
(

LH i,LH ′
i

)

,

min
16i6n

d
(

LH i,LH ′
i

)

6 GHWDM(A,B)6 max
16i6n

d
(

LH i,LH ′
i

)

.

Proof. For (i): we have

HWDM(A,B) =

n
∑

i=1

wiω(i)
∑n

i=1
wiω(i)

d
(

LH(i),LH ′
(i)

)

=

n
∑

i=1

wσ(i)ω(σ (i))
∑n

i=1
wσ(i)ω(σ (i))

d
(

LH(σ (i)),LH ′
(σ (i))

)

= HWDM(Ȧ, Ḃ).

Similarly, we get GHWDM(A,B) = GHWDM(Ȧ, Ḃ).
For (ii): from Definition 9 and d(LH i ,LH ′

i) 6 d(LH i,LH ′′
i ) for all i = 1,2, . . . , n,

one can easily derive the conclusion.
For (iii): from d(LH i ,LH ′

i) = c for all i = 1,2, . . . , n, we get

HWDM(A,B) =

n
∑

i=1

wiω(i)
∑n

i=1
wiω(i)

d
(

LH(i),LH ′
(i)

)

=

n
∑

i=1

wiω(i)
∑n

i=1
wiω(i)

c

= c

n
∑

i=1

wiω(i)
∑n

i=1
wiω(i)

= c.

In a similar way, we have GHWDM(A,B) = c.
For (iv): because min16i6n d(LH i,LH ′

i)6 d(LH(i),LH ′
(i))6 max16i6n d(LHi ,LH ′

i)

for all i = 1,2, . . . , n, we derive

n
∑

i=1

wiω(i)
∑n

i=1
wiω(i)

min
16i6n

d
(

LH i ,LH ′
i

)

6

n
∑

i=1

wiω(i)
∑n

i=1
wiω(i)

d
(

LH(i),LH ′
(i)

)

6

n
∑

i=1

wiω(i)
∑n

i=1
wiω(i)

max
16i6n

d
(

LH i ,LH ′
i

)

and

min
16i6n

d
(

LH i,LH ′
i

)

6

n
∑

i=1

wiω(i)
∑n

i=1
wiω(i)

d(LH(i),LH ′
(i))6 max

16i6n
d
(

LH i,LH ′
i

)

.

Thus,

min
16i6n

d
(

LH i,LH ′
i

)

6 HWDM(A,B) 6 max
16i6n

d
(

LH i ,LH ′
i

)

.
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In a similar way, one can derive min16i6n d(LH i,LH ′
i) 6 GHWDM(A,B) 6

max16i6n d(LH i,LH ′
i). �

Remark 4. When wi = 1/n for all i = 1,2, . . . , n, then the HWDM degenerates to the
weighted distance measure (WDM):

WDM(A,B) =

n
∑

i=1

ωid
(

LH i,LH ′
i

)

,

and the GHWDM degenerates to the geometric weighted distance measure (GWDM):

GWDM(A,B) =

n
∏

i=1

d
(

LH i,LH ′
i

)ωi .

When ωi = 1/n for all i = 1,2, . . . , n, then the HWDM degenerates to the ordered
weighted distance measure (OWDM):

OWDM(A,B) =

n
∑

i=1

wid
(

LH(i),LH ′
(i)

)

,

and the GHWDM degenerates to the geometric ordered weighted distance measure
(GOWDM):

GOWDM(A,B) =

n
∏

i=1

d
(

LH(i),LH ′
(i)

)wi
.

Definition 10. Let S = {s1, . . . , st } be a linguistic term set, and let A = {LH1,LH2, . . . ,

LHn} and B = {LH ′
1
,LH ′

2
, . . . ,LH ′

n} be any two collections of LHFSs for the predefined
linguistic term set S. Then, the hybrid weighted correlation coefficient (HWCC) between
A and B is defined as follows:

HWCC(A,B) =

n
∑

i=1

wiω(i)
∑n

i=1
wiω(i)

CC
(

LH(i),LH ′
(i)

)

,

and the geometric hybrid weighted correlation coefficient (GHWCC) between A and B is
defined as follows:

GHWCC(A,B) =

n
∏

i=1

CC
(

LH(i),LH ′
(i)

)

wiω(i)
∑n

i=1
wiω(i)

where (·) is a permutation on the correlation coefficients CC(LHj ,LH ′
j ), j = 1,2, . . . , n,

with ω(j)CC(LH(j),LH ′
(j)) being the j th largest value of ωjCC(LHj ,LH ′

j ) and
CC(LH (j),LH ′

(j))
ω(j) being the j th largest value of CC(LHj ,LH ′

j )
ωj , w = {w1,w2, . . . ,
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wn} is the weighting vector on the ordered position set N = {1,2, . . . , n} such that
∑n

i=1
wi = 1 and wi > 0 for all i = 1,2, . . . , n, and ω = (ω1,ω2, . . . ,ωn) is the weighting

vector on D = {d(LHi,LH ′
i)}i∈N such that

∑n
i=1

ωi = 1 and ωi > 0 for all i = 1,2, . . . , n.

Remark 5. When wi = 1/n for all i = 1,2, . . . , n, then the HWCC degenerates to the
weighted correlation coefficient (WCC):

WCC(A,B) =

n
∑

i=1

ωiCC
(

LH i ,LH ′
i

)

,

and the GHWCC degenerates to the geometric weighted correlation coefficient (GWCC):

GWCC(A,B) =

n
∏

i=1

CC
(

LH i ,LH ′
i

)ωi .

When ωi = 1/n for all i = 1,2, . . . , n, then the HWCC degenerates to the ordered
weighted correlation coefficient (OWCC):

OWCC(A,B) =

n
∑

i=1

wiCC
(

LH(i),LH ′
(i)

)

,

and the GHWCC degenerates to the geometric ordered weighted correlation coefficient
(GOWCC):

GOWCC(A,B) =

n
∏

i=1

CC
(

LH(i),LH ′
(i)

)wi
.

Property 5. Let A = {LH1,LH2, . . . ,LHn} and B = {LH ′
1
,LH ′

2
, . . . ,LH ′

n} be any
two collections of LHFSs for the predefined linguistic term set S = {s1, . . . , st }. Then,
GHWCC(A,B)6 HWCC(A,B).

Remark 6. Similar to the HWDM and the GHWDM, one can check that the HWCC and
the GHWCC satisfy the properties listed in Property 4.

4.2. Distance Measure and Correlation Coefficient Based on 2-Additive Measures

The hybrid weighted distance measure and correlation coefficient defined in the subsec-
tion 4.1 are all based on the assumption that the importance of elements in a set is in-
dependent. However, in some situations, this assumption is incorrect (Grabisch, 1997;
Meng et al., 2016b, 2016f; Meng and Chen, 2017b; Meng and Chen, 2016a; Meng and
Chen, 2016c; Tan, 2011; Tan and Chen, 2011; Xu, 2010a). Considering the interactions
between elements, this subsection uses the Shapley function (Shapley, 1953) with respect
to 2-additive measures (Grabisch, 1997) to define the hybrid 2-additive Shapley distance
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measure and the hybrid 2-additive Shapley correlation coefficient. Sugeno (1974) intro-
duced the following concept of fuzzy measures:

Definition 11. (See Sugeno, 1974.) A fuzzy measure on finite set N = {1,2, . . . , n} is a
set function µ : P(N) → [0,1] satisfying:

(1) µ(∅) = 0,µ(N) = 1;
(2) For all A,B ∈ P(N) with A ⊆ B , µ(A)6 µ(B),

where P(N) is the power set of N .

From Definition 11, we know that fuzzy measures do not only give the importance of
elements separately but also consider the importance of all their combinations. For any
two coalitions A,B ∈ P(N) with A∩B = ∅, when µ(A)+µ(B) < µ(A∪B), then there
exists complementary interaction between A and B; when µ(A)+µ(B) > µ(A∪B), then
there exists redundant interaction between A and B; otherwise, there is no interaction
between A and B , namely, µ(A) + µ(B) = µ(A ∪ B). Although fuzzy measures well
reflect the interactions between elements, they define on the power set. This means that it
is not an easy thing to determine a fuzzy measure. To cope with this problem, 2-additive
measures (Grabisch, 1997) are a good choice.

Definition 12. (See Grabisch, 1997.) The fuzzy measure µ on N = {1,2, . . . , n} is called
a 2-additive measure, if, for any S ⊆ N with s > 2 , we have

µ(S) =
∑

{i,j}⊆S

µ(i, j) − (s − 2)
∑

i∈S

µ(i), (14)

where s is the cardinality of S.

According to Definition 12, when we know the importance of each element and all of
their combined in pairs, then we can derive an associated 2-additive measure. Following
the work of Meng and Tang (2013), we apply the Shapley function (Shapley, 1953) with
respect to 2-additive measures to give the weights of the elements.

Theorem 1. (See Meng and Tang, 2013.) Let v be a 2-additive measure defined on N =

{1,2, . . . , n}, then the Shapley function for v can be expressed as follows:

φi(N,v) =
3 − n

2
v(i) +

1

2

∑

j∈N\i

(

v(i, j) − v(j)
)

. (15)

Now, let us define the following distance measure and correlation coefficient using the
Shapley function with respect to 2-additive measures.

Definition 13. Let S = {s1, . . . , st } be a linguistic term set, and let A = {LH1,LH2, . . . ,

LHn} and B = {LH ′
1
,LH ′

2
, . . . ,LH ′

n} be any two collections of LHFSs for the predefined
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linguistic term set S. Then, the hybrid 2-additive Shapley distance measure (H2SDM)

between A and B is defined as follows:

H2SDM(A,B) =

n
∑

i=1

φi(N,v)ϕ(i)(D,µ)
∑n

i=1
φi(N,v)ϕ(i)(D,µ)

d(LH(i),LH ′
(i)),

and the geometric hybrid 2-additive Shapley distance measure (GH2SDM) between A and

B is defined as follows:

GH2SDM(A,B) =

n
∏

i=1

d
(

LH(i),LH ′
(i)

)

φi (N,v)ϕ(i)(D,µ)
∑n

i=1
φi (N,v)ϕ(i)(D,µ) ,

where (·) is a permutation on the distance measures d(LHj ,LH ′
j ), j = 1,2, . . . , n, with

ϕ
(j)

(D,µ)d(LH(j),LH ′
(j)) being the j th largest value of ϕj (D,µ)d(LHj ,LH ′

j ) and

d(LH(j),LH ′
(j))

ϕ
(j)

(D,µ)
being the j th largest value of d(LHj ,LH ′

j )
ϕj (D,µ), φi(N,v)

is the Shapley value of the ith position with respect to the 2-additive measure v

on the ordered position set N = {1,2, . . . , n}, and ϕi(D,µ) is the Shapley value of

the distance measure d(LH i,LH ′
i) with respect to the 2-additive measure µ on D =

{d(LH i,LH ′
i)}i∈N .

Remark 7. When there are no interactions between elements as well as between the or-

dered positions, then the H2SDM reduces to the HWDM, and the GH2SDM reduces to the

GHWDM. Furthermore, when φi(N,v) = 1/n for all i = 1,2, . . . , n, then the H2SDM

degenerates to the 2-additive Shapley distance measure (2SDM):

2SDM(A,B) =

n
∑

i=1

ϕi(D,µ)d
(

LH i ,LH ′
i

)

,

and the GH2SDM degenerates to the geometric 2-additive Shapley distance measure

(G2SDM):

G2SDM(A,B) =

n
∏

i=1

d
(

LH i ,LH ′
i

)ϕi (D,µ)
.

When ϕi(D,µ) = 1/n for all i = 1,2, . . . , n, then the H2SDM degenerates to the ordered

2-additive Shapley distance measure (O2SDM):

O2SDM(A,B) =

n
∑

i=1

φi(N,v)d
(

LH(i),LH ′
(i)

)

,
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and the GH2SDM degenerates to the geometric ordered 2-additive Shapley distance mea-

sure (GO2SDM):

GO2SDM(A,B) =

n
∏

i=1

d
(

LH(i),LH ′
(i)

)φi (N,v)
.

Definition 14. Let S = {s1, . . . , st } be a linguistic term set, and let A = {LH1,LH2, . . . ,

LHn} and B = {LH ′
1
,LH ′

2
, . . . ,LH ′

n} be any two collections of LHFSs for the predefined

linguistic term set S. Then, the hybrid 2-additive Shapley correlation coefficient (H2SCC)

between A and B is defined as follows:

H2SCC(A,B) =

n
∑

i=1

φi(N,v)ϕ(i)(E,µ)
∑n

i=1
φi(N,v)ϕ(i)(E,µ)

CC
(

LH(i),LH ′
(i)

)

,

and the geometric hybrid 2-additive Shapley correlation coefficient (GH2SCC) between

A and B is defined as follows:

GH2SCC(A,B) =

n
∏

i=1

CC
(

LH(i),LH ′
(i)

)

φi (N,v)ϕ(i)(E,µ)
∑n

i=1
φi (N,v)ϕ(i)(E,µ) ,

where (·) is a permutation on the correlation coefficients CC(LHj ,LH ′
j ), j = 1,2, . . . , n,

with ϕ
(j)

(E,µ)CC(LH(j),LH ′
(j)) being the j th largest value of ϕj (E,µ)CC(LHj ,LH ′

j )

and CC(LH(j),LH ′
(j))

ϕ
(j)

(E,µ)
being the j th largest value of CC(LHj ,LH ′

j )
ϕj (E,µ),

φi(N,v) is the Shapley value of the ith position with respect to the 2-additive mea-

sures on the ordered position set N = {1,2, . . . , n}, and ϕi(E,µ) is the Shapley value

of the distance measure CC(LH i,LH ′
i) with respect to the 2-additive measure µ on

E = {CC(LH i,LH ′
i)}i∈N .

Remark 8. When there are no interactions between elements as well as between the or-

dered positions, then the H2SCC reduces to the HWCC, and the GH2SCC reduces to

the GHWCC. Furthermore, when φi(N,v) = 1/n for all i = 1,2, . . . , n, then the H2SCC

degenerates to the 2-additive Shapley correlation coefficient (2SCC):

2SCC(A,B) =

n
∑

i=1

ϕi(E,µ)CC
(

LH i ,LH ′
i

)

,

and the GH2SDM degenerates to the geometric 2-additive Shapley correlation coefficient

(G2SCC):

G2SCC(A,B) =

n
∏

i=1

CC
(

LH i ,LH ′
i

)ϕi (E,µ)
.
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When ϕi(D,µ) = 1/n for all i = 1,2, . . . , n, then the H2SCC degenerates to the ordered
2-additive Shapley correlation coefficient (O2SCC):

O2SCC(A,B) =

n
∑

i=1

φi(N,v)CC
(

LH(i),LH ′
(i)

)

,

and the GH2SCC degenerates to the geometric ordered 2-additive Shapley correlation
coefficient (GO2SCC):

GO2SCC(A,B) =

n
∏

i=1

CC
(

LH(i),LH ′
(i)

)φi (N,v)
.

Furthermore, one can easily show that all distance measures and correlation coeffi-
cients defined in this subsection satisfy the properties given in Property 4.

5. Application to Pattern Recognition and to Multi-Attribute Decision Making

This section researches the application of the distance measure and the correlation coeffi-
cient to pattern recognition and to multi-attribute decision making. Additionally, a com-
parison analysis is made to validate the effectiveness of the proposed approach.

5.1. The Application to Pattern Recognition

This subsection presents an approach to pattern recognition with LHFSs using the distance
measure and the correlation coefficient. The main decision procedure can be described as
follows:

Step 1: Suppose that there are m patterns A = {A1,A2, . . . ,Am} and n features C =

{c1, c2, . . . , cn}. Let S = {s1, . . . , st } be the predefined linguistic term set. The eval-
uation of each pattern Ai with respect to the feature cj is a LHFS, denoted by

Ai =
{〈

cj ,LH ij =
{

(sθ(ij), lh(sθ(ij))
∣

∣ sθ(ij) ∈ S)
}〉 ∣

∣ j = 1,2, . . . , n
}

for each i = 1,2, . . . ,m. Furthermore, assume there is a sample ε to be recognized,
which is represented by

ε =
{〈

cj ,LHj =
{

(sθ(j), lh(sθ(j))
∣

∣ sθ(j) ∈ S)
}〉 ∣

∣ j = 1,2, . . . , n
}

.

Step 2: Use the HWDM or GHWDM to calculate the distance measure between Ai

(i = 1,2, . . . ,m) and ε, or adopt the H2SDM or GH2SDM to calculate the distance
measure between Ai (i = 1,2, . . . ,m) and ε.

Step 3: According to the distance measure, identify the most likely pattern.
Step 3: End.
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Similar to the distance measure, we can apply the correlation coefficient to give a
method to pattern recognition.

Example 1. (See Zhang and Jiang, 2008.) Let us consider a set of diagnoses A =

{A1(Viral fever),A2(Malaria),A3(Typhoid)}, and a set of symptoms C = {c1: temper-
ature; c2: headache; c3: cough}. Let S1 = {s1: fair, s2: a little high, s3: high, s4: very
high, s5: extremely high} be the predefined linguistic term set for the feature c1, and let
S2 = {s1: extremely slight, s2: very slight, s3: slight, s4: a little slight, s5: fair, s6: a little
heavy, s7: heavy; s8: very heavy s9: extremely heavy} be the predefined linguistic term set
for the features c2 and c3. Suppose that a patient, with respect to all the symptoms, can be
represented by the following LHFS:

ε(patient) =
{〈

c1,
{

(s4,0.5,0.7), (s5,0.4)
}〉

,
〈

c2,
{

(s6,0.6), (s7,0.5,0.8)
}〉

,
〈

c3,
{

(s4,0.6)
}〉}

and assume that each diagnosis Ai (i = 1,2,3) is viewed as a LHFS with respect to all
the symptoms, where

A1 =
{〈

c1,
{

(s2,0.3), (s3,0.6,0.7)
}〉

,
〈

c2,
{

(s5,0.7,0.9), (s6,0.4)
}〉

,
〈

c3,
{

(s6,0.4,0.6), (s7,0.7)}
〉}

,

A2 =
{〈

c1,
{

(s4,0.6,0.8)
}〉

,
〈

c2,
{

(s4,0.5,0.7), (s5,0.6,0.8)
}〉

,
〈

c3,
{

(s6,0.5,0.7)
}〉}

,

A3 =
{〈

c1,
{

(s4,0.3,0.5), (s5,0.7)
}〉

,
〈

c2,
{

(s6,0.6,0.8)
}〉

,
〈

c3,
{

(s4,0.3,0.6),

(s5,0.7,0.8)
}〉}

.

Our aim is to classify the patient to one of the diagnoses A1, A2 and A3. Assume that
the importance of features is given by 0.5, 0.2 and 0.3, and the weights of the ordered
positions are defined by 0.3, 0.4 and 0.3.

Using the HWDM, we derive:







HWDM(A1, ε) = 0.6525,

HWDM(A2, ε) = 0.5907,

HWDM(A3, ε) = 0.4166.

From HWDM(A1, ε) > HWDM(A2, ε) > HWDM(A3, ε), we know that the patient suf-
fers from typhoid.

When the GHWDM is applied to calculate the distance measure, we obtain:







GHWDM(A1, ε) = 0.6286,

GHWDM(A2, ε) = 0.5904,

GHWDM(A3, ε) = 0.3932,

which also shows that the patient has typhoid.
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Furthermore, when the HWCC and GHWCC are used to compute the correlation co-
efficients, we get:







HWCC(A1, ε) = 0.7747,

HWCC(A2, ε) = 0.8169,

HWCC(A3, ε) = 0.8744

and







GHWCC(A1, ε) = 0.7705,

GHWCC(A2, ε) = 0.8321,

GHWCC(A3, ε) = 0.889

which means that the patient has typhoid too.
All of the above distance measures and correlation coefficients only consider the im-

portance of elements separately. However, the importance of their combinations is not
given. Considering the following facts, the symptoms of temperature and cough give more
information than that of headache and temperature to diagnose the patient, and the symp-
toms of headache and temperature give more information than that of headache and cough.
Suppose that the importance of temperature and cough, headache and temperature, and
headache and cough is respectively defined by 0.9, 0.7, and 0.4. Furthermore, the impor-
tance of the ordered positions 1 and 2 is equal to that of the ordered positions 2 and 3,
which both equal 0.75. However, the importance of the ordered positions 1 and 3 is less
than that of the ordered positions 1 and 2 or 2 and 3, which is defined by 0.5. In this
case, the distance measures and the correlation coefficients based on additive measures
are helpless. However, the distance measures and the correlation coefficients using the
Shapley function with respect to 2-additive measures are good choices to deal with this
situation.

From the above depiction,we know that the 2-additive measure µ on the feature set C is

µ(∅) = 0, µ(c1) = 0.5, µ(c2) = 0.2, µ(c3) = 0.3, µ(c1, c2) = 0.9,

µ(c1, c3) = 0.7, µ(c2, c3) = 0.4.

Furthermore, the 2-additive measure v on the ordered position set N is v(∅) = 0,
v(1) = 0.3, v(2) = 0.4, v(3) = 0.3, v(1,2) = v(2,3) = 0.75, v(1,3) = 0.5. Using the
equation (15), the Shapley values of the features are

φc1
(C,µ) = 0.55, φc2

(C,µ) = 0.25, φc3
(C,µ) = 0.2

and the Shapley values of the ordered positions are

φ1(N,v) = φ3(N,v) = 0.275, φ2(N,v) = 0.45.

Using the H2SDM and the GH2SDM, we obtain:







H2SDM(A1, ε) = 0.6196,

H2SDM(A2, ε) = 0.6142,

H2SDM(A3, ε) = 0.3993

and







GH2SDM(A1, ε) = 0.6105,

GH2SDM(A2, ε) = 0.5777,

GH2SDM(A3, ε) = 0.3780

which both show that the patient suffers from typhoid.
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Using the H2SCC and the GH2SCC, we get:







H2SCC(A1, ε) = 0.8154,

H2SCC(A2, ε) = 0.8469,

H2SCC(A3, ε) = 0.8872

and







GH2SCC(A1, ε) = 0.7895,

GH2SCC(A2, ε) = 0.8414,

GH2SCC(A3, ε) = 0.8655

which still show that the patient has typhoid.

It is interesting that all distance measures and correlation coefficients show the pa-

tient having typhoid. However, their ranking values are different. In practical application,

when we only need to consider the importance of each element, then the decision makers

can apply the distance measures and correlation coefficients based on additive measures;

otherwise, we suggest that the decision makers use the 2-additive measure based distance

measures and correlation coefficients.

5.2. An Approach to Multi-Attribute Decision Making

This subsection introduces a new decision-making method with linguistic hesitant fuzzy

information. Considering a multi-attribute decision making problem, let S = {s1, . . . , st }

be the predefined linguistic term set. Suppose that there are m alternatives A =

{A1,A2, . . . ,Am} to be evaluated according to n attributes C = {c1, c2, . . . , cn}. The main

steps are given as follows:

Step 1: Assume that the evaluation of the alternative Ai with respect to the attribute cj

is a LHFS LH ij = {(sθ(ij), lh(sθ(ij)) | sθ(ij) ∈ S)} (i = 1,2, . . . ,m; j = 1,2, . . . , n).

Let LH = (LH ij )m×n be the evaluation LHFS matrix.

Step 2: If all attributes cj (j = 1,2, . . . , n) are benefits (i.e. the larger, the greater pref-

erence), then the attribute values need not to be normalized. Otherwise, we normal-

ize the decision matrix LH = (LH ij )m×n into LH ′ = (LH ′
ij )m×n, where LH ′

ij =
{

LH ij for benefit criterion cj

(LH ′
ij )

C for cost criterion cj
(i = 1,2, . . . ,m; j = 1,2, . . . , n). (LH ′

ij )
C is

the complement of LH ij such that (LH ′
ij )

C = {(st−θ(ij)
,
⋃

rij ∈lh(sθ(ij))
(1 − rij ) |

sθ(ij) ∈ S)}.

Step 3: Give the positive-ideal LHFS LH+
j = (st ,1) and the negative-ideal LHFS LH−

j =

(s1,0) for each j = 1,2, . . . , n. Let

LH+ =
{

LH ′+
1

,LH ′+
2

, . . . ,LH ′+
n

}

and LH− =
{

LH ′−
1

,LH ′−
2

, . . . ,LH ′−
n

}

.

Step 4: Apply the HWDM or GHWDM to calculate the distance measure between LH i =

{LH i1,LH i2, . . . ,LH in} (i = 1,2, . . . ,m) and LH+ as well as the distance measure

between LH i (i = 1,2, . . . ,m) and LH−, or we adopt the H2SDM or GH2SDM to

calculate the distance measure between LH i (i = 1,2, . . . ,m) and LH+ as well as

the distance measure between LH i (i = 1,2, . . . ,m) and LH−.
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Table 1
LHFSs of alternatives.

c1 c2 c3

A1 {(s5,0.1,0.2), (s6,0.4), s7,0.3)} {(s6,0.4), (s7,0.2,0.3)} {(s6,0.2,0.4), (s7,0.3)}

A2 {(s5,0.2,0.4), (s6,0.3,0.5)} {(s7,0.3,0.6), (s8,0.2)} {(s6,0.3,0.5,0.8)}

A3 {(s5,0.2), (s6,0.3,0.5)} {(s5,0.3,0.5), (s6,0.2,0.3), (s7,0.1)} {(s7,0.3,0.5), (s8,0.1,0.3)}

Step 5: Calculate the similarity measure Di for the alternative Ai (i = 1,2, . . . ,m),
where

Di = 1 −
HWDM(LH i,M

+)

HWDM(LH i ,M+) + HWDM(LH i,M−)
,

Di = 1 −
GHWDM(LH i ,M

+)

GHWDM(LH i ,M+) + GHWDM(LH i,M−)
,

Di = 1 −
H2SDM(LH i ,M

+)

H2SDM(LH i,M+) + H2SDM(LH i ,M−)
,

Di = 1 −
GH2SDM(LH i ,M

+)

GH2SDM(LH i,M+) + GH2SDM(LH i ,M−)
.

According to Di (i = 1,2, . . . ,m), select the best choice.
Step 6: End.

Similar to the distance measure, we can apply the correlation coefficient to give a
method to multi-attribute decision making.

Example 2. (See Bryson and Mobolurin, 1995.) Let us consider the decision-making
problem of evaluating university faculty for tenure and promotion. There are three faculty
candidates (alternatives) A = {A1,A2,A3} to be evaluated using the linguistic term set
S = {s1: extremely poor, s2: very poor, s3: poor, s4: slightly poor, s5: fair, s6: slightly
good, s7: good, s8: very good, s9: extremely good} by an expert with respect to three
attributes: C = {c1: teaching, c2: research, c3: service}. The associated assessment values
are shown as listed in Table 1.

These three faculty candidates are from one research-based university, which gives
more importance to c2 than to c1 and c3, but, on the other hand, the committee gives
some advantages to the candidates that are both good in c2 and in either c1 or c3. Their
importance is defined as follows:

µ(c1) = µ(c3) = 0.4, µ(c2) = 0.6, µ(c1, c2) = µ(c2, c3) = 0.85,

µ(c1, c3) = 0.7.

Furthermore, the ordered position values’ importance is defined as follows:

v(1) = 0.5, v(2) = 0.6, v(3) = 0.5, v(1,2) = v(2,3) = 0.9, v(1,3) = 0.8,

where N = {1,2,3}.
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One can easily check that µ and v are both a 2-additive measure. Using the equa-
tion (15), the Shapley values of the attributes are φc1

(C,µ) = 0.275, φc2
(C,µ) = 0.45,

φc3
(C,µ) = 0.275; and the Shapley values of the ordered positions are φ1(N,v) =

φ3(N,v) = 0.3, φ2(N,v) = 0.4. To derive the optimal candidate, the following procedure
is followed:
Step 1: Because all attributes are benefit, we derive LH = LH ′. According to the pre-

defined linguistic term set S, we have M+ = {(s9,1), (s9,1), (s9,1)} and M− =

{(s1,0), (s1,0), (s1,0)}.

Step 2: Using the H2SDM, we obtain:







H2SDM
(

LH1,M
+
)

= 6.8328,

H2SDM
(

LH2,M
+
)

= 5.8059,

H2SDM
(

LH3,M
+
)

= 6.4055

and







H2SDM
(

LH1,M
−
)

= 1.5286,

H2SDM
(

LH2,M
−
)

= 2.0305,

H2SDM
(

LH3,M
−
)

= 1.2767.

Step 3: From H2SDM(LH i,M
+) and H2SDM(LH i ,M

−), we derive D1 = 0.1828, D2 =

0.2591, D3 = 0.1662. Thus, the best candidate is A2.
In this example, when the GH2SWDM is applied, we have:







GH2SDM
(

LH1,M
+
)

= 6.8325,

GH2SDM
(

LH2,M
+
)

= 5.7763,

GH2SDM
(

LH3,M
+
)

= 6.3478

and







GH2SDM
(

LH1,M
−
)

= 1.5068,

GH2SDM
(

LH2,M
−
)

= 1.9913,

GH2SDM
(

LH3,M
−
)

= 1.2499

by which we get D1 = 0.1807,D2 = 0.2564,D3 = 0.1645. It also shows that the candidate
A2 is the best choice.

Furthermore, when the H2SCC is used to select the best candidate, we obtain:







H2SCC
(

LH1,M
+
)

= 0.2417,

H2SCC
(

LH2,M
+
)

= 0.3691,

H2SCC
(

LH3,M
+
)

= 0.2615.

From H2SCC(LH2,M
+) > H2SCC(LH3,M

+) > H2SCC(LH1,M
+), we know that the

candidate A2 is the best choice. When we adopt the GH2SCC to calculate the correlation
coefficient, we derive:







GH2SCC
(

LH1,M
+
)

= 0.2407,

GH2SCC
(

LH2,M
+
)

= 0.3489,

GH2SCC
(

LH3,M
+
)

= 0.2538

which still shows that the candidate A2 is the best choice.
Because the correlations between the attribute LHFSs of alternatives and the negative-

ideal LHFS are zero, we only calculate the correlations between the attribute LHFSs of
alternatives and the positive-ideal LHFS. Then, we give the ranking order of alternatives
according to them.
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Table 2
Ranking results based on the GLHFHSWA operator to different values of γ .

E(LH1) E(LH2) E(LH3) Ranking orders

γ = 0.1 s1.91 s2.68 s1.78 A2 > A1 > A3

γ = 0.2 s1.91 s2.69 s1.78 A2 > A1 > A3

γ = 0.5 s1.93 s2.73 s1.79 A2 > A1 > A3

γ = 1.0 s1.97 s2.79 s1.82 A2 > A1 > A3

γ = 2.0 s2.04 s2.92 s1.87 A2 > A1 > A3

γ = 5.0 s2.14 s3.14 s1.90 A2 > A1 > A3

γ = 10.0 s2.13 s3.14 s1.83 A2 > A1 > A3

γ = 30.0 s1.73 s2.87 s1.43 A2 > A1 > A3

Table 3
Ranking results based on the GLHFHSGM operator to different values of γ .

E(LH1) E(LH2) E(LH3) Ranking orders

γ = 0.1 s1.89 s2.45 s1.62 A2 > A1 > A3

γ = 0.2 s1.89 s2.44 s1.61 A2 > A1 > A3

γ = 0.5 s1.88 s2.41 s1.61 A2 > A1 > A3

γ = 1.0 s1.88 s2.37 s1.59 A2 > A1 > A3

γ = 2.0 s1.86 s2.29 s1.56 A2 > A1 > A3

γ = 5.0 s1.82 s2.11 s1.48 A2 > A1 > A3

γ = 10.0 s1.74 s1.94 s1.38 A2 > A1 > A3

γ = 30.0 s1.58 s1.74 s1.20 A2 > A1 > A3

5.3. Comparison Analysis

Because most of previous studies applied multi-attribute decision making problem to lin-

guistic hesitant fuzzy environment, several methods are applied to Example 2 to verify
the effectiveness of the proposed approach.

Considering there are interactive characteristics between the attributes and their orders,
Meng et al. (2014) proposed the GLHFHSWA and GLHFHSGM operators, by which the

related results and ranking orders are obtained as shown in Tables 2 and 3.
Tables 2 and 3 show that the same ranking order and the same best choice are derived

in this example, which is the same as that derived by using the H2SDM and GH2SWDM.
Most of previous studies assume that no interactive characteristics exist between the

attributes and between the orders. To further show the advantage of the proposed ap-

proach under a linguistic hesitant fuzzy environment, we compare it with the methods
proposed by Zhu et al. (2016) and Zhou et al. (2015) that are based on independent as-
sumption. For the Zhu et al.’s method, the weights on the attributes are ω1 = 0.275, ω2 =

0.45 and ω3 = 0.275, and the nine clouds are A1(0,3.01,0.107),A2(1.93,2.75,0.193),

A3(3.31,2.27,0.353), A4(4.30,1.932,0.466), A5(5,1.667,0.554), A6(5.70,1.932,

0.466), A7(6.69,2.27,0.353), A8(8.07,2.75,0.193), A9(10,3.01,0.107) provided by
Wang et al. (2014). The related results and ranking orders are shown in Table 4.

With respect to the Zhou et al.’s extended evidential reasoning (ER) method, the related
results and ranking orders are shown in Table 5.
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Table 4
Ranking results based on the LHFPWA operator and the LHFPWG operator.

E(LH1) E(LH2) E(LH3) Ranking orders

LHFPWA s1.97 s2.72 s1.78 A2 > A1 > A3

LHFPWG s1.88 s2.32 s1.56 A2 > A1 > A3

Table 5
Ranking results based on the ER method.

E(LH1) E(LH2) E(LH3) Ranking orders

Using LSF(1) s0.46 s0.44 s0.42 A1 > A2 > A3

Using LSF(2) s0.43 s0.41 s0.40 A1 > A2 > A3

Using LSF(3) s0.48 s0.45 s0.42 A1 > A2 > A3

Using three kinds of linguistic scale functions (LSFs) defined by Zhou et al. (2015),
the ranking result is A1 > A2 > A3, and the best alternative is A1.

From the above ranking results and ranking orders, one can find the difference between
methods based on the independent and interactive analysis. This example shows that the
new method is effective, and it is simpler than some previous methods.

6. Conclusions

As we know, distance measure and correlation coefficient are two important tools to de-
cision making. Considering the application of linguistic hesitant fuzzy sets, this paper
defines a distance measure, and then introduces a correlation coefficient. After that, we
develop two types of the hybrid weighted distance measures and the hybrid weighted cor-
relation coefficients for linguistic hesitant fuzzy sets, by which we can derive the com-
prehensive evaluated values of the objects. Furthermore, we study their applications to
pattern recognition and to multi-attribute decision making.

Comparing with the previous researches about decision making with LHFSs, there are
several contributions of our method:

(i) It is simpler than the previous method (Meng et al., 2014);
(ii) It addresses the issues in the previous distance measure (Zhou et al., 2015);
(iii) It considers the interaction between elements in a set and the complexity of deter-

mining a fuzzy measure;
(iv) It extends the application of LHFSs.

However, we only present one distance measure and one correlation coefficient, and it will
be interesting to study other distance measures and correlation coefficients for linguistic
hesitant fuzzy sets. Furthermore, we shall discuss their application in other fields, such as
expert systems, digital image processing, and clustering analysis. Moreover, we can extend
the developed theoretical results to other types of fuzzy sets, such as hesitant interval
neutrosophic linguistic sets (Ye, 2013).
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