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Abstract. In this paper, a new class of uncertain linguistic variables called 2-tuple linguistic hesi-

tant fuzzy sets (2-TLHFSs) is defined, which can express complex multi-attribute decision-making

problems as well as reflect decision makers’ hesitancy, uncertainty and inconsistency. Besides, it

can avoid information and precision losing in aggregation process. Firstly, several new closed oper-

ational laws based on Einstein t-norm and t-conorm are defined over 2-TLHFSs, which can overcome

granularity and logical problems of existing operational laws. Based on the new operational laws,

2-tuple linguistic hesitant fuzzy Einstein weighted averaging (2-TLHFEWA) operator and 2-tuple

linguistic hesitant fuzzy Einstein weighted geometric (2-TLHFEWG) operator are proposed, and

some of their properties are investigated. Then, a new model method based on similarity to ideal

solution is proposed to determine weights of attribute, which takes both subjective and objective

factors into consideration. Finally, a linguistic hesitant fuzzy multi-attribute decision making pro-

cedure is developed by means of 2-TLHFEWA and 2-TLHFEWG operators. An example is given to

illustrate the practicality and efficiency of the proposed approach.

Key words: multi-attribute decision making, aggregation operator, 2-tuple linguistic hesitant fuzzy

sets, 2-tuple linguistic hesitant fuzzy Einstein weighted averaging operators, 2-tuple linguistic

hesitant fuzzy Einstein weighted geometric operator.

1. Introduction

Multi-attribute decision making (MADM) has been deeply studied and widely applied

in many fields, such as education (Bryson and Mobolurin, 1997), medical care (James

and Dolan, 2010), military (Robert and Swezey, 1979), engineering (Lennon et al.,

2013), social sciences (Cavus, 2011) and economics (Vaidogas and Sakenaite, 2011;

Zeng and Chen, 2015; Zeng et al., 2015). Because of the complexity and uncertainty of

multi-attribute decision-making problems, it is impractical to use exact number to eval-

uate the attribute, so Zadeh (1965, 1973) proposed (type-2) fuzzy set, Atanassov (1986),

Atanassov and Gargov (1989) introduced (interval-valued) intuitionistic fuzzy sets, and
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(interval-valued) hesitant fuzzy sets (Rodriguez et al., 2014a, 2014b; Mu et al., 2015;

Chen et al., 2013) are defined. However, there are some too complex or ill-defined prob-

lems by means of above quantitative expressions. For example, experts evaluate the re-

frigeration or quietness of an air condition; they prefer to apply linguistic expressions

“extremely good”, “good” or “little good”. So it might be more appropriate to evaluate

the attribute by linguistic information than by numerical values for too complex or ill-

defined problems.

Zadeh (1975) first introduced the linguistic variables. Since then, linguistic variables

have been deeply studied. And how to process the linguistic information have been paid

more attention. There are four main methods for computing with words (CW): a model

based on the extension principle, which transforms linguistic information into the fuzzy

numbers, such as triangular fuzzy number, trapezoidal fuzzy number, and type-2 fuzzy sets

(Chou, 2012; Deng et al., 2011); a model based on the symbol, which aggregates linguistic

variables on the indexes of linguistic terms (Chen and Lee, 2010; Xu, 2006); a method

based on the cloud model (Liu et al., 2014a; Wang, 2008), which can achieve uncertain

transformation between a qualitative concept and its quantitative values; a model based

on 2-tuple representation model (Herrera and Martinez, 2001; Dong et al., 2013; Merigo

and Gil, 2013), which transforms linguistic information into consecutive 2-tuple linguistic

term. For the former three methods, the calculated results maybe do not match the initial

linguistic term, and a transformation procedure should be introduced to transform the

calculated result into the initial expression, which can cause information loss. However,

2-tuple linguistic representation model does not need this transformation procedure and

can avoid the information loss and distortion (Herrera and Martinez, 2001). So 2-tuple

linguistic representation model has been widely applied for computing with words (Marti

and Herrera, 2012).

2-tuple linguistic representation model introduced by Herrera and Martinez (2001)

is made up of a linguistic term and a numeric value expressed in [−0.5,0.5). Although

2-tuple linguistic representation model can avoid information loss, it cannot reflect the

membership and non-membership degrees of an element to a certain concept. Inspired by

intuitionistic fuzzy sets, Liu et al. (2014b) introduced intuitionistic linguistic sets (ILSs).

After Wang and Li, some experts give a few extensions of ILSs, such as intuitionistic

uncertain linguistic sets (IULSs) (Liu and Jin, 2012) and interval-valued intuitionistic un-

certain linguistic sets (IVIULSs) (Xu and Shen, 2014). Torra (2010) pointed out the fact

that decision-makers may hesitate between several values for evaluating an alternative

with respect to attribute. So Rodriguez et al. (2014a, 2014b) developed hesitant fuzzy

linguistic term sets (HFLSs), which keep several linguistic terms to express decision mak-

ers’ hesitancy. Based on the HFLSs, interval-valued hesitant fuzzy linguistic sets (Wang

and Wu, 2014) have been developed. Recently, some researches based on HFLSs and 2-

tuple linguistic representation model are developed. Zhang and Guo (2015) proposed new

operations of hesitant fuzzy linguistic term sets based on 2-tuple linguistic terms. Beg

and Rashid (2016) introduced hesitant 2-tuple linguistic information. The hesitant 2-tuple

linguistic information is denoted by (si , βij ), the symbolic translation βij is a hesitant

fuzzy set, which expresses the hesitancy by presenting its possible linguistic translations.
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Wang et al. (2016) developed 2-tuple linguistic aggregation operators with multi-hesitant

fuzzy linguistic information, the multi-hesitant fuzzy linguistic information contains in-

consecutive and repeatable linguistic terms. For the above three researches, they can reflect

decision makers’ hesitancy by providing several possible linguistic terms of a linguistic

variable as well as avoid information loss, but they cannot reflect the possible member-

ship degree of each linguistic term. In reality, because of the fuzziness and uncertainty

of MADM problems and the vagueness of human preferences, many MADM problems

are highly complex. Sometimes, in order to express the decision makers’ hesitancy, we

have to give the membership of linguistic term. For the same example, experts evaluate

the quietness of an air condition using linguistic expressions “extremely good”, “good” or

“little good”; expert may give the value 0.2 for “extremely good”, the value 0.7 for “good”

and the value 0.1 for “little good”.

Therefore, in order to express and deal with complex and uncertain linguistic assess-

ment, inspired by 2-tuple linguistic representation model and linguistic hesitant fuzzy sets

(LHFSs) proposed by Meng et al. (2014), we define a new class of linguistic variables,

2-tuple linguistic hesitant fuzzy sets (2-TLHFSs), which can reflect decision makers’ un-

certainty and hesitancy by providing the information about several possible linguistic

terms of a linguistic variable and several possible membership degrees of each linguistic

term, besides, it can avoid information loss and the lack of precision in MADM aggrega-

tion process.

In MADM problems, aggregation operators are important tools to aggregate informa-

tion. For intuitionistic fuzzy sets, Zhou et al. (2014a, 2014b, 2016), Zhou and Chen (2013)

developed some new aggregation operators. For hesitant fuzzy linguistic sets, Zhang and

Guo (2015) proposed HFLWA and HFLOWA operators, Wang et al. (2016) developed

G2TLWA and G2TLOWA operators. For linguistic hesitant fuzzy sets, Meng et al. (2014)

proposed GLHFHWA and GLHFHSWA operators. It is worthy of note that the above

aggregation operators are based on Algebra t-norm and t-conorm, which is one of trian-

gular norms and conorms (briefly t-norms and t-conorms) (Beliakov et al., 2007). There

are numerous basic t-norms and t-conorms, such as, Algebra t-norm and t-conorm, Ein-

stein t-norm and t-conorm, Hammer t-norm and t-conorm, Frank t-norm and t-conorm.

In fuzzy set theory, triangular norms and conorms are very useful to address “and” and

“or” operations for decision-making problems and different aggregation operators based

on different t-conorms and t-norms can provide more choices for the decision makers. So

with respect to 2-TLHFSs, inspired by references (Wan, 2013; Tao et al., 2014; Yu, 2014;

Zhao et al., 2015), we propose some new operational laws based on Einstein t-norm and

t-conorm in this paper. The new operational laws based on Einstein t-norm and t-conorm

are closed, and they can overcome granularity and logical problems of existing opera-

tional laws. Based on the new operational laws, 2-tuple linguistic hesitant fuzzy Einstein

weighted averaging (2-TLHFEWA) operator and 2-tuple linguistic hesitant fuzzy Einstein

weighted geometric (2-TLHFEWG) operator are developed.

However, in MADM problems under 2-TLHFSs environment, the weight information

of attribute may be unknown. In this situation, we should firstly determine the weights

of attribute. There are many methods for obtaining attribute’s weight (Poyhonen and
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Hamalainen, 2001),which can mainly be divided into two categories (Zardari et al., 2015):

objective weighting methods (Deng et al., 2000; Diakoulaki et al., 1995; Jahan et al., 2012;

Zavadskas and Podvezko, 2016) (such as Entropy method, Criteria Importance Through

Inter-criteria Correlation (CRITIC), Standard Deviation) and subjective weighting meth-

ods (Rybarczyk and Wu, 2010; Edwards and Barron, 1994; Figueira and Roy, 2002;

Krylovas et al., 2014; Kersuliene and Turskis, 2010) (such as Direct Rating method, Rank-

ing Method, Ratio Method, Swing Method, SIMOS Method). Objective weighting meth-

ods are based on some mathematical models where decision-makers play no role in deter-

mining the relative importance of attribute, which may not reflect the actual importance

of attributes. Subjective weighting methods determine the weight vector based on prefer-

ences of decision-makers, which are not objective. In this paper, we propose a new model

method based on the similarity to ideal solution to obtain weights of attribute, which takes

both subjective and objective factors into consideration and can be effective and reliable.

Finally, based on the 2-TLHFEWA, 2-TLHFEWG operator and new model for the optimal

weight vectors, we develop an approach for 2-tuple linguistic hesitant fuzzy multi-attribute

decision making.

This paper is organized as follows: In Section 2, some basic concepts about 2-tuple lin-

guistic term sets, HFLSs and LHFSs are briefly introduced. In Section 3, the 2-TLHFSs,

order relationship between 2-TLHFSs and some new operational laws based on Einstein

t-norm and t-conorm are proposed. In Section 4, two new classes of aggregation oper-

ators, 2-tuple linguistic hesitant fuzzy Einstein weighted averaging operator and 2-tuple

linguistic hesitant fuzzy Einstein weighted geometric operator, are developed. Some prop-

erties are investigated. In section 5, an approach to 2-tuple linguistic hesitant fuzzy multi-

attribute decision making is developed, where a new model for the optimal weight vectors

is proposed. In Section 6, a real example is provided to demonstrate the application of

proposed aggregation operators. A detailed comparison between the proposed method

and existing methods are given. Conclusions are provided in the last section.

2. Preliminaries

In the following, some related concepts are briefly reviewed, such as 2-tuple linguistic term

sets, hesitant fuzzy linguistic term sets (HFLSs) and the linguistic hesitant fuzzy term sets

(LHFSs). These concepts can help us better understand 2-tuple linguistic hesitant fuzzy

sets.

Let S = {si | i = 0,1,2, . . . , g} be a linguistic term set with odd cardinality. Any la-

bel si stands for a possible value of a linguistic variable and the label si should have the

following properties (Herrera and Herrera-Viedma, 2000):

(1) The set is ordered: si > sj , if i > j ;

(2) Max operator: max(si , sj ) = si , if si > sj ;

(3) Min operator: min(si , sj ) = si , if si 6 sj .

In order to avoid the information loss and distortion in aggregation process, Herrera

and Martinez (2001) introduced the 2-tuple linguistic term sets, which are defined as fol-

lows.
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Definition 1. (See Herrera and Martinez, 2001.) Let S = {si | i = 0,1,2, . . . , g} be a lin-

guistic term set and β be a number value representing the aggregation result of a linguistic

symbolic aggregation operation. 2-tuple fuzzy linguistic representation model is made up

of a linguistic term si ∈ S and a numeric value α ∈ [−0.5,0.5), denoted by (si , α), where

si represents the linguistic label of the information;

α is a numerical value expressing the value of the translation from the original ag-

gregation result β to the closest index label i in the linguistic term set (si ∈ S), i.e. the

symbolic translation.

Definition 2. (See Herrera and Martinez, 2001.) Let (si , αi) be a 2-tuple linguistic term,

the function 1 used to obtain the 2-tuple linguistic information equivalent to β is defined

as:

1 : [1, g] → S × [−0.5,0.5), (1)

1 : (β) =

{

si , i = round(β),

α = β − i, α ∈ [−0.5,0.5),
(2)

where round (.) is the usual round operation.

And, the function 1−1 from a 2-tuple linguistic term (si , αi) to its equivalent numer-

ical value β ∈ [1, g] ⊂ R can be defined as follows:

1−1 : S × [−0.5,0.5) → [1, g], (3)

1−1(si , αi) = i + α = β. (4)

From the above definitions, when a linguistic term is transformed into a linguistic 2-tuple,

we can add a value 0 as symbolic translation:

1(si) = (si ,0). (5)

Definition 3. (See Herrera and Martinez, 2001.) Let (si, αi) and (sj , αj ) be two linguis-

tic 2-tuples, they have the following properties:

(1) If i < j , then (si , αi) is smaller than (sj , αj ),

(2) If i = j , and

(a) if αi = αj , then (si , αi) and (sj , αj ) represent the same information;

(b) if αi < αj , then (si, αi) is smaller than (sj , αj );

(c) if αi > αj , then (si , αi) is bigger than (sj , αj ).

In some situations, experts maybe hesitate between several values when evaluating

an alternative with respect to an attribute. Rodriguez et al. (2014a) proposed hesitant

fuzzy linguistic term sets (HFLSs) which allow linguistic variable to keep several lin-

guistic terms to reflect decision makers’ hesitancy.
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Definition 4. (See Rodriguez et al., 2014a.) Let S be a linguistic term set, S =

{s0, s1, . . . , sg}, a hesitant fuzzy linguistic term set (HFLS), Hs is an ordered finite subset

of the consecutive linguistic terms of S.

For example let S = {s0: very good, s1: good, s2: above average, s3: average, s4:

below average, s5: bad, s6: very bad} be a linguistic term set and let P be a qualitative

reference; an HFLS could be Hs(P ) = {s2, s3, s4}.

Although HFLSs have taken decision makers’ hesitancy into consideration, they can-

not express the membership degree of each linguistic term. In order to reflect decision

makers’ hesitancy and possible membership degree of each linguistic term, Meng et al.

(2014) introduced linguistic hesitant fuzzy sets (LHFSs) as follows.

Definition 5. (See Meng et al., 2014.) Let S be a linguistic term set, S = {s0, s1, . . . , sg},

a linguistic hesitant fuzzy set, LHF in S can be expressed by:

LHF =
{(

sθi , lhf (sθi )
)
∣

∣sθi ∈ S
}

where lhf (sθi ) = {r1, r2, r3, . . . , rmi } is a set with mi values in [0,1], denoting the possible

membership degrees of the elements x ∈ X to the set LHF.

3. 2-Tuple Linguistic Hesitant Fuzzy Set

In this section, a new uncertain linguistic variable called 2-tuple linguistic hesitant fuzzy

set (2-TLHFS) is defined. Based on Einstein t-norm and t-conorm, some new operational

laws over 2-TLHFSs are proposed. And order relation between 2-TLHFSs is given.

3.1. 2-Tuple Linguistic Hesitant Fuzzy Set

Because of the fuzziness and uncertainty of MADM problems and the vagueness of human

preferences, many MADM problems are rather complicated, while the existing linguistic

variables, such as 2-tuple linguistic term sets, intuitionistic linguistic term sets, hesitant

fuzzy linguistic term sets, are unable to express the complexity. To deal with the situation

and ensure information integrity in aggregation process, this section gives a new uncertain

linguistic variable, 2-tuple linguistic hesitant fuzzy sets (2-TLHFSs), that not only reflect

decision makers’ uncertainty and hesitancy by providing several possible linguistic terms

of a linguistic variable and several possible membership degrees of each linguistic term

but also avoid the information loss and distortion.

Definition 6. Let S = {(s0, α0), (s1, α1), . . . , (sg, αg)} be a 2-tuple linguistic term set.

2-tuple linguistic hesitant fuzzy set (2-TLHFS) LH in S can be expressed as follows:

LH =
{(

(sθi , αθi ), lh(sθi , αθi )
)
∣

∣(sθi , αθi ) ∈ S
}

where lh((sθi , αθi )) = {r1, r2, r3, . . . , rmi } is a set with mi values in [0,1], denoting the

possible membership degrees of the elements x ∈ X to the set LH .
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For example, some decision makers evaluate the weight of the goods, let S = {s0:

very heavy, s1: heavy, s2: above average, s3: average, s4: below average, s5: light, s6: very

light}, one may give the value 0.2 for “very heavy”, the value 0.7 for “heavy” and the value

0.1 for “above average”, some may give the value 0.4 for “very heavy” and the value 0.6

for “heavy”, the other may give the value 0.9 for "heavy". In this situation, a 2-TLHFS,

LH = ((s0,0),0.2,0.4), ((s1,0),0.7,0.6,0.9), ((s2,0),0.1) may be the best appropriate

expression.

Compared with some new linguistic variables based on HFLSs and 2-tuple linguistic

representation model, such as hesitant fuzzy linguistic term sets based on 2-tuple linguistic

representation model (Zhang and Guo, 2015), hesitant 2-tuple linguistic information (Beg

and Rashid, 2016), multi-hesitant fuzzy linguistic information (Wang et al., 2016), the

proposed 2-TLHFSs have a wider range of application. The 2-TLHFSs can express and

deal with more complex linguistic assessment, such as decision makers’ hesitancy and

membership degree of a linguistic term. Compared with the LHFSs introduced by Meng et

al. (2014), 2-TLHFSs can ensure information integrity in aggregation process. For LHFSs,

the calculated results maybe do not match the initial linguistic terms, so an approximation

procedure should be introduced to express the result in the initial expression domain.

During the approximation procedure information might be lost. However, 2-TLHFSs do

not need the approximation procedure and can avoid information loss and distortion.

3.2. New Operational Laws over 2-TLHFSs Based on Einstein t-Norm and t-Conorm

Definition 7. (See Figueira and Roy, 2002.) If a function T : [0,1]2 → [0,1], for all

x, y, z ∈ [0,1], satisfies the following four axioms, function T is called a triangular norm

(briefly t-norm):

(1) T (1, x) = x (boundary condition);

(2) T (x, y) = T (y, x) (commutativity);

(3) T (x,T (y, z)) = T (T (x, y), z) (associativity);

(4) T (x, y)6 T (x, z) whenever y 6 z (monotonicity).

The corresponding triangular conorm (briefly called t-conorm or s-norm) of T is the

function S : [0,1]2 → [0,1] denoted by S(x, y) = 1 − T (1 − x,1 − y).

There are numerous basic t-norms and t-conorms, such as, minimum TM and maxi-

mum SM , product TP and probabilistic sum SP , Lukasiewicz t-norm TL and Lukasiewicz

t-conorm SL, Einstein product TE and Einstein product SE , and drastic product TD and

drastic sum SD . Especially, Einstein product TE and Einstein product SE are defined by:

TE(x, y) =
xy

1+(1−x)(1−y)
SE(x, y) =

x+y
1+xy

.

Based on the above Einstein t-norm and t-conorm, new operational laws are defined

as follows.

Definition 8. Let LH1 and LH2 be any two 2-TLHFSs, where g is the upper limit of the

2-tuple linguistic term set. Some operations on these sets are defined by (where λ > 0):
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(1) LH1⊕ELH2

=
⋃

((sθi ,αθi
),lh(sθi ,αθi

))∈LH1,((sθj ,αθj
),lh(sθj ,αθj

))∈LH2

{(

1

(

g ·

1−1(sθi
,αθi

)

g +
1−1(sθj

,αθj
)

g

1+
1−1(sθi

,αθi
)

g

1−1(sθj
,αθj

)

g

)

,
⋃

ri∈lh(sθi ,αθi
),rj∈lh(sθj ,αθj

)

ri+rj
1+rirj

)}

;

(2) LH1 ⊗E LH2

=
⋃

((sθi ,αθi
),lh(sθi ,αθi

))∈LH1,((sθj ,αθj
),lh(sθj ,αθj

))∈LH2
{(

1

(

g ·
1−1(sθi ,αθi

)×1−1(sθj ,αθj
)

g2+(g−1−1(sθi ,αθi
))(g−1−1(sθj ,αθj

))

)

,

⋃

ri∈lh(sθi ,αθi
),rj∈lh(sθj ,αθj

)

rirj
1+(1−ri)(1−rj )

)}

;

(3) λLH1 =
⋃

((sθi ,αθi
),lh(sθi ,αθi

))∈LH1
{(

1

(

g ·
(g+1−1(sθi ,αθi

))
λ
−(g−1−1(sθi ,αθi

))
λ

(g+1−1(sθi ,αθi
))

λ
+(g−1−1(sθi ,αθi

))
λ

)

,

⋃

r∈lh(sθi ,αθi
)
(1+r)λ−(1−r)λ

(1+r)λ+(1−r)λ

)}

;

(4) LHλ
1

=
⋃

((sθi ,αθi
),lh(sθi ,αθi

))∈LH1
{(

1

(

g ·
2(1−1(sθi ,αθi

))
λ

(2g−1−1(sθi ,αθi
))

λ
+(1−1(sθi ,αθi

))
λ

)

,
⋃

r∈lh(sθi ,αθi
)

2rλ

(2−r)λ+rλ

)}

.

Theorem 1. Let S = {(s0, α0), (s1, α1), . . . , (sg, αg)} be a 2-tuple linguistic term set,

where g is the upper limit of the 2-tuple linguistic term set. And � = {((sθi , αθi ),

lh(sθi , αθi ))|(sθi , αθi ) ∈ S} be the set of all the 2-tuple linguistic hesitant fuzzy term based

on S, LH1,LH2 ∈ � and λ> 0 is a scalar. The new operational laws of 2-TLHFSs based

on Einstein t-norm and t-conorm are closed, i.e.

(1) LH1 ⊕E LH2 ∈ �;

(2) LH1 ⊗E LH2 ∈ �;

(3) λLH1 ∈ �;

(4) LH λ
1

∈ �.

Proof. It is known that
1−1(sθi ,αθi

)

g
,

1−1(sθj ,αθj
)

g
, ri, rj ∈ [0,1].

(1) It is easy to know that 1 + rirj − (ri + rj ) = (1 − ri)(1 − rj )> 0, thus 1 + rirj >

(ri + rj ), then
ri+rj

1+rirj
∈ [0,1].

Similarly, g(1 +
1−1(sθi ,αθi

)

g

1−1(sθj ,αθj
)

g
− (

1−1(sθi ,αθi
)

g
+

1−1(sθj ,αθj
)

g
)) > 0, thus 1 +

1−1(sθi ,αθi
)

g

1−1(sθj ,αθj
)

g
>

1−1(sθi ,αθi
)

g
+

1−1(sθj ,αθj
)

g
, then 1(g

1−1(sθi
,αθi

)

g +
1−1(sθj

,αθj
)

g

1+
1−1(sθi

,αθi
)

g

1−1(sθj
,αθj

)

g

) ∈ S.

So, LH1⊕ELH2 ∈ �;

(2) It is easy to know 1 + (1 − ri)(1 − rj ) − rirj = (1 − ri) + (1 − rj ) > 0, thus

1 + (1 − ri)(1 − rj )> rirj , then
rirj

1+(1−ri)(1−rj )
∈ [0,1].
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Similarly, 1+ (1−
1−1(sθi ,αθi

)

g
)(g−

1−1(sθj ,αθj
)

g
)−

1−1(sθi ,αθi
)

g
×

1−1(sθj ,αθj
)

g
> 0, thus

1 + (1 −
1−1(sθi ,αθi

)

g
)(g −

1−1(sθj ,αθj
)

g
) >

1−1(sθi ,αθi
)

g
×

1−1(sθj ,αθj
)

g
, then

1(g ·

1−1(sθi
,αθi

)

g ×
1−1(sθj

,αθj
)

g

1+(1−
1−1(sθi

,αθi
)

g )(g−
1−1(sθj

,αθj
)

g )

) ∈ S.

So, LH1⊗ELH2 ∈ �;

(3) It is easy to know that (1 + r)λ +(1 − r)λ−((1 + r)λ+(1 − r)λ) = 2(1 − r)λ > 0,

thus (1 + r)λ + (1 − r)λ > (1 + r)λ − (1 − r)λ, then
(1+r)λ−(1−r)λ

(1+r)λ+(1−r)λ
∈ [0,1]. Similarly, we

have 1(g ·
(1+

1−1(sθi
,αθi

)

g )

λ

−(1−
1−1(sθi

,αθi
)

g )

λ

(1+
1−1(sθi

,αθi
)

g
)

λ

+(1−
1−1(sθi

,αθi
)

g
)

λ ) ∈ S.

So, λLH1 ∈ �;

(4) It is easy to know that (2 − r)λ + rλ − 2rλ = (2 − r)λ − rλ > 0, thus

(2 − r)λ + rλ > 2rλ, then 2rλ

(2−r)λ+rλ
∈ [0,1]. Similarly, we have

1(g ·
2(1−1(sθi ,αθi

))
λ

(2g−1−1(sθi ,αθi
))

λ
+(1−1(sθi ,αθi

))
λ ) ∈ S.

So, LH1
λ ∈ �. �

According to the above theorem, it is known that the proposed operational laws are

closed. And they can overcome granularity and logical problems of existing operational

laws as follows. Let’s take the operational laws over LHFSs defined by Meng et al. (2014)

for example.

Granularity problem: when we use the defined operational laws (Meng et al., 2014),

the calculated results do not exist in the set. For example, assume that S = {s0, s1, . . . , s8}

is a linguistic term set and any two linguistic hesitant fuzzy sets LHF1 and LHF2 in S

are given: LHF1 = (s5,0.1,0.2), LHF2 = (s7,0.2). According to the operational laws,

we can obtain (s5,0.1,0.2)⊕ (s7,0.2) = (s12,0.28,0.36) and (s5,0.1,0.2)⊗ (s7,0.2) =

(s35,0.72,0.64), and the linguistic variables of s12 and s35 exceed the range of S.

Logical problem: this problem comes from two aspects. On the one hand, for a linguis-

tic term set S = {(s0, α0), (s1, α1), . . . , (sg, αg)}, the addition operation identifies a new

linguistic term set with 2g linguistic labels, while the product operation has g2 linguistic

labels. That is to say that we need to use different granularity standards to assess the lin-

guistic labels. On the other hand, the linear operations cannot illustrate the non-linearity

of logical thinking.

Proposition 1. Let LH1, LH2 and LH3 be any three 2-TLHFSs, then

(1) LH1⊕ELH2 = LH2⊕ELH1;

(2) LH1⊗ELH2 = LH2⊗ELH1;

(3) λ(LH1⊕ELH2) = λLH1⊕EλLH2, λ > 0;

(4) (LH1⊗ELH2)
λ = LHλ

1
⊗ELHλ

2
, λ > 0;

(5) (λ1 + λ2)LH1 = λ1LH1⊕Eλ2LH1, λ1, λ2 > 0;

(6) LH
λ1+λ2

1
= LH

λ1

1
⊗ELH

λ2

1
, λ1, λ2 > 0;
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(7) (LH1⊕ELH2) ⊕E LH3 = LH1⊕E(LH2⊕ELH3);

(8) (LH1⊗ELH2)⊗ELH3 = LH1⊗E(LH2⊗ELH3).

Proof. For the sake of simplicity, let ai = ((sθi , αθi ), lh(sθi , αθi )), βi = 1−1(sθi , αθi ),

ci = lh(sθi , αθi ) (i = j, i = m).

(1) LH1 ⊕E LH2

=
⋃

ai∈LH1,aj∈LH2

{(

1
(

g2 ·
βi+βj

g2+βiβj

)

,
⋃

ri∈ci ,rj∈cj

ri+rj
1+rirj

)}

=
⋃

aj∈LH2,ai∈LH1

{(

1
(

g2 ·
βj +βi

g2+βj βi

)

,
⋃

ri∈ci ,rj∈cj

rj+ri
1+rj ri

)}

= LH2⊕ELH1;

(2) LH1⊗ELH2

=
⋃

ai∈LH1,aj∈LH2

{(

1
(

g ·
βiβj

g2+(g−βi)(g−βj )

)

,
⋃

ri∈ci ,rj ∈cj

rirj
1+(1−ri)(1−rj )

)}

=
⋃

aj∈LH2,ai∈LH1

{(

1
(

g ·
βjβi

g2+(g−βj )(g−βi)

)

,
⋃

ri∈ci ,rj ∈cj

rj ri
1+(1−rj )(1−ri)

)}

= LH2⊗ELH1;

(3) λ(LH1⊕ELH2)

= λ
⋃

ai∈LH1,aj∈LH2

{(

1
(

g2 βi+βj

g2+βiβj

)

,
⋃

ri∈ci ,rj∈cj

ri+rj
1+rirj

)}

=
⋃

ai∈LH1,aj∈LH2

{(

1
(

g
(g2+βiβj +gβi+gβj )

λ
−(g2+βiβj −gβi−gβj )

λ

(g2+βiβj +gβi+gβj )
λ
+(g2+βiβj −gβi−gβj )

λ

)

,

⋃

ri∈ci ,rj ∈cj

(1+rirj +ri+rj )λ−(1+rirj −ri−rj )λ

(1+rirj +ri+rj )λ+(1+rirj −ri−rj )λ

)}

;

λLH1⊕EλLH2

=
⋃

ai∈LH1

{(

1
(

g ·
(g+βi)

λ−(g−βi)
λ

(g+βi)
λ+(g−βi)

λ

)

,
⋃

ri∈ci

(1+ri)
λ−(1−ri)

λ

(1+ri)
λ+(1−ri)

λ

)}

⊕E

⋃

aj∈LH2

{(

1
(

g ·
(g+βj )

λ−(g−βj )
λ

(g+βj )
λ+(g−βj )

λ

)

,
⋃

rj ∈cj

(1+rj )
λ−(1−rj )

λ

(1+rj )
λ+(1−rj )

λ

)}

=
⋃

ai∈LH1,aj ∈LH2

{(

1
(

g
(g2+βiβj+gβi+gβj )

λ
−(g2+βiβj −gβi−gβj )

λ

(g2+βiβj+gβi+gβj )
λ
+(g2+βiβj −gβi−gβj )

λ

)

,

⋃

ri∈ci ,rj ∈cj

(1+rirj+ri+rj )λ−(1+rirj−ri−rj )λ

(1+rirj+ri+rj )λ+(1+rirj−ri−rj )λ

)}

= λ(LH1⊕ELH2);

(4) (LH1⊗ELH2)
λ

=
(

⋃

ai∈LH1,aj ∈LH2

{(

1(
βiβj

1+(1−βi)(1−βj )
βiβj ),

⋃

ri∈ci ,rj ∈cj

rirj
1+(1−ri)(1−rj )

)})λ

=
⋃

ai∈LH1,aj∈LH2

{(

1
(

2g(βiβj )
λ

(4g2+βiβj −2gβi−2gβj )
λ
+(βiβj )

λ

)

,

⋃

ri∈ci ,rj∈cj

2(rirj )
λ

(4−2ri−2rj+rirj )λ+(rirj )
λ

)}

;

LHλ
1
⊗ELHλ

2

=
⋃

ai∈LH1

{(

1
(

g ·
2βi

λ

(2g−βi)
λ+βi

λ

)

,
⋃

ri∈ci

2ri
λ

(2−ri)
λ+ri λ

)}

⊗E

⋃

aj∈LH2

{(

1
(

g ·
2βj

λ

(2g−βj )
λ+βj

λ

)

,
⋃

rj ∈cj

2rj
λ

(2−rj )
λ+rj λ

)}

=
⋃

ai∈LH1,aj ∈LH2

{(

1
(

2g(βiβj )λ

(4g2+βiβj−2gβi−2gβj )
λ
+(βiβj )λ

)

,

⋃

ri∈ci ,rj ∈cj

2(rirj )λ

(4−2ri−2rj+ri rj )
λ+(rirj )λ

)}

= (LH1⊗ELH2)
λ;
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(5) λ1LH1⊕Eλ2LH2

=
⋃

ai∈LH1

{(

1
(

g ·
(g+βi)

λ1−(g+βi)
λ1

(g+βi)
λ1+(g+βi)

λ1

)

,
⋃

ri∈ci

(1+ri)
λ1−(1+ri)

λ1

(1+ri)
λ1+(1+ri)

λ1

)}

⊕E

⋃

ai∈LH1

{(

1
(

g ·
(g+βi)

λ2 −(g−βi)
λ2

(g+βi)
λ2 +(g−βi)

λ2

)

,
⋃

ri∈ci

(1+ri)
λ2 −(1−ri)

λ2

(1+ri)
λ2 +(1−ri)

λ2

)}

=
⋃

ai∈LH1

{(

1
(

g ·
(g+βi)

λ1+λ2−(g−βi)
λ1+λ2

(g+βi)
λ1+λ2+(g−βi)

λ1+λ2

)

,

⋃

ri∈ci

(1+ri)
λ1+λ2−(1−ri)

λ1+λ2

(1+ri)
λ1+λ2+(1−ri)

λ1+λ2

)}

= (λ1 + λ2)LH1;

(6) LH
λ1

1
⊗ELH

λ2

1

=
⋃

ai∈LH1

{(

1
(

g ·
2βi

λ1

(2g−βi)
λ1 +βi

λ1

)

,
⋃

ri∈ci

2ri
λ1

(2−ri)
λ1+ri

λ1

)}

⊗E

⋃

ai∈LH1

{(

1
(

g ·
2βi

λ2

(2g−βi)
λ2+βi

λ2

)

,
⋃

ri∈ci

2ri
λ2

(2−ri)
λ2 +ri

λ2

)}

=
⋃

ai∈LH1

{(

1
(

g ·
2βi

λ1+λ2

(2g−βi)
λ1+λ2 +βi

λ1+λ2

)

,
⋃

ri∈ci

2ri
λ1+λ2

(2−ri)
λ1+λ2 +ri

λ1+λ2

)}

= LH
λ1+λ2

1
;

(7) (LH1⊕ELH2)⊕ELH3

=
⋃

ai∈LH1,aj∈LH2

{(

1
(

g2 ·
βi+βj

g2+βiβj

)

,
⋃

ri∈ci ,rj∈cj

ri+rj
1+rirj

)}

⊕E LH3

=
⋃

ai∈LH1,aj∈LH2,am∈LH3

{(

1
(

g2(βi+βj +βm)+βiβj βm

g2+βiβj +βj βm+βiβm

)

,

⋃

ri∈ci ,rj∈cj ,rm∈cm

ri+rj +rm+rirj rm
1+rirj+rmri+rj rm

)}

;

LH1⊕E(LH2⊕ELH3)

= LH1 ⊕E

⋃

aj∈LH2,am∈LH3

{(

1
(

g2 ·
βj+βm

g2+βj βm

)

,
⋃

rj∈cj ,rm∈cm

rj +rm
1+rj rm

)}

=
⋃

ai∈LH1,aj ∈LH2,am∈LH3

{(

1
(

g2(βi+βj +βm)+βiβj βm

g2+βiβj+βj βm+βiβm

)

,

⋃

ri∈ci ,rj ∈cj ,rm∈cm

ri+rj +rm+rirj rm
1+rirj +rmri+rj rm

)}

= (LH1⊕ELH2)⊕ELH3;

(8) (LH1⊗ELH2)⊗ELH3

=
⋃

ai∈LH1,aj∈LH2

{(

1(g ·
βiβj

g2+(g−βi)(g−βj )
),
⋃

ri∈ci ,rj∈cj

rirj
1+(1−ri)(1−rj )

)}

⊗ELH3

=
⋃

ai∈LH1,aj∈LH2,am∈LH3

{(

1
(

βiβj βm

4g2−2g(βi+βj+βm)+βiβj +βiβm+βj βm

)

,

⋃

ri∈ci ,rj∈cj ,rm∈cm

rirj rm
4−2(ri+rj +rm)+rirm+rirj +rj rm

)}

;

LH1⊗E(LH2⊗ELH3)

= LH1 ⊗E

⋃

aj∈LH2,am∈LH3

{(

1
(

g ·
βj βm

g2+(g−βj )(g−βm)

)

,

⋃

rj ∈cj ,rm∈cm

rj rm
1+(1−rj )(1−rm)

)}

=
⋃

ai∈LH1,aj ∈LH2,am∈LH3

{(

1
(

βiβj βm

4g2−2g(βi+βj +βm)+βiβj+βiβm+βj βm

)

,

⋃

ri∈ci ,rj ∈cj ,rm∈cm

rirj rm
4−2(ri+rj +rm)+rirm+ri rj+rj rm

)}

= (LH1⊗ELH2)⊗ELH3. �
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3.3. Order Relations Between 2-TLHFSs

Definition 9. For any 2-TLHFS LH , the expectation function of LH is denoted by

E(LH) = (sθi , αθi ) = 1−1(e(LH)), and

e(LH) =
1

|index(LH)|

(

∑

(sθi ,αθi
):(sθi ,αθi

)∈index(LH)

1−1(sθi , αθi )

|lh(sθi , αθi )|

(

∑

r∈lh(sθi ,αθi
)

r

))

where |lh(sθi , αθi )| is the count of real numbers in lh(sθi , αθi ), and |index(LH)| is the car-

dinality of index(LH) := {((sθi , αθi )|((sθi , αθi ), lh(sθi , αθi )) ∈ LH), lh(sθi , αθi ) 6= {0}},

with (sθi , αθi ) ∈ S.

Definition 10. For any 2-TLHFS LH , the variance function of LH is denoted by

V (LH) = (sθi , αθi ) = 1−1(v(LH)), and

v(LH) =
1

|index(LH)|

×

(

∑

(sθi ,αθi
):(sθi ,αθi

)∈index(LH)

(

1−1(sθi , αθi )

|lh(sθi , αθi )|

(

∑

r∈lh(sθi ,αθi
)

r

)

− e(LH)

)2)

where |lh(sθi , αθi )| is the count of real numbers in lh(sθi , αθi ), and |index(LH)| is the car-

dinality of index(LH) := {((sθi , αθi )|((sθi , αθi ), lh(sθi , αθi )) ∈ LH), lh(sθi , αθi ) 6= {0}},

with (sθi , αθi ) ∈ S.

Definition 11. The order relationship for any two 2-TLHFSs LH1 and LH2 is defined

by:

If E(LH1) < E(LH2), then LH1 < LH2.

If E(LH1) = E(LH2), then

{

V (LH1) > V (LH2), LH1 < LH2

V (LH1) < V (LH2), LH1 > LH2.

Example 1. Let LH1 and LH2 be two 2-TLHFSs, LH1 = {((s0,0.4),0.2,0.3), ((s1,−0.1),

0.7,0.8,0.9), ((s1,0.1),0.7)}, LH2 = {((s1,0.3),0.5,0.6,0.7), ((s1,−0.3),0.8)}.

e(LH1) =
1

3
×

[

0.4

2
(0.2 + 0.3) +

0.9

3
(0.7 + 0.8 + 0.9) + 1.1 × 0.7

]

≈ 0.52,

v(LH1) =
1

3

[

0.4

2
(0.2 + 0.3) − 0.52

]2

+
1

3

[

0.9

3
(0.7 + 0.8 + 0.9) − 0.52

]2

+
1

3
(1.1 × 0.7 − 0.52)2} ≈ 0.093.

Then E(LH1) = (s1,−0.48), V (LH1) = (s0,0.093).

e(LH2) =
1

2

[

1.3

3
(0.5 + 0.6 + 0.7) + 0.7 × 0.8

]

≈ 0.52,
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(LH2) =
1

2

[[

1.3

3
(0.5 + 0.6 + 0.7) − 0.52

]2

+ (0.7 × 0.8 − 0.52)2

]

≈ 0.0017.

Then E(LH2) = (s1,−0.48), V (LH2) = (s0,0.0017).

Thus, LH1 < LH2 for E(LH1) = E(LH2),V (LH1) > V (LH2).

4. The 2-Tuple Linguistic Hesitant Fuzzy Einstein Aggregation Operators

This section introduces 2-tuple linguistic hesitant fuzzy Einstein weighted averaging

(2-TLHFEWA) operator and 2-tuple linguistic hesitant fuzzy Einstein weighted geometric

(2-TLHFEWG) operator. In addition, some properties are studied.

4.1. Order Relations Between 2-TLHFSs

Definition 12. Let LH i (i = 1,2, . . . , n) be a collection of n 2-TLHFSs, A 2-tuple lin-

guistic hesitant fuzzy Einstein weighted averaging (2-TLHFEWA) operator is a function

LHn → LH , defined by

2-TLHFEWA(LH1,LH2,LH3, . . . ,LHn)

= w1LH1 ⊕E w2LH2 ⊕E · · · ⊕E wnLHn =

n
⊕

E
j=1

wjLHj

where w = (w1,w2, . . . ,wn)
T is the weight vector of LHj (j = 1,2, . . . , n), satisfying

wj ∈ [0,1] (j = 1,2, . . . , n) and
∑n

j=1
wj = 1.

Theorem 2. Let LH i (i = 1,2, . . . , n) be a collection of n 2-TLHFSs, then the aggregated

value by 2-TLHFEWA operator is also a 2-TLHFS, furthermore,

2-TLHFEWA(LH1,LH2,LH3, . . . ,LHn)

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθn ,αθn ),lh(sθn ,αθn ))∈LHn

{(

1

(

g ·

∏n
j=1

(g + 1−1(sθj , αθj ))
wj

−
∏n

j=1
(g − 1−1(sθj , αθj ))

wj

∏n
j=1

(g + 1−1(sθj , αθj ))
wj +

∏n
j=1

(g − 1−1(sθj , αθj ))
wj

)

,

⋃

r1∈lh(sθ1
,αθ1

),...,rn∈lh(sθn ,αθn )

∏n
j=1

(1 + rj )
wj −

∏n
j=1

(1 − rj )
wj

∏n
j=1

(1 + rj )
wj +

∏n
j=1

(1 − rj )
wj

)}

(6)

where g is the upper limit of the 2-tuple linguistic term set.
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Proof. Eq. (6) can be proven by using a mathematical induction on n.

(1) For n = 1,

2-TLHFEWA (LH1,LH2,LH3, . . . ,LHn)

= 2-TLHFEWA(LH1) = w1LH1

=

{

1

(

g ·
(g + 1−1(sθ1

, αθ1
))

w1
− (g − 1−1(sθ1

, αθ1
))

w1

(g + 1−1(sθ1
, αθ1

))
w1 + (g − 1−1(sθ1

, αθ1
))

w1

)

,

(1 + r1)
w1 − (1 − r1)

w1

(1 + r1)
w1 + (1 − r1)

w1

}

.

Therefore, the result of Eq. (6) is sure.

(2) Suppose Eq. (6) holds for n = k, that is

2-TLHFEWA(LH1,LH2,LH3, . . . ,LHk)

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθk ,αθk
),lh(sθk ,αθk

))∈LHk

{(

1

(

g ·

∏k
j=1

(g + 1−1(sθj , αθj ))
wj

−
∏k

j=1
(g − 1−1(sθj , αθj ))

wj

∏k
j=1

(g + 1−1(sθj , αθj ))
wj +

∏k
j=1

(g − 1−1(sθj , αθj ))
wj

)

,

⋃

r1∈lh(sθ1
,αθ1

),...,rk∈lh(sθk ,αθk
)

∏k
j=1

(1 + rj )
wj −

∏k
j=1

(1 − rj )
wj

∏k
j=1

(1 + rj )
wj +

∏k
j=1

(1 − rj )
wj

)}

.

When n = k + 1, by Definition 12. We have

2-TLHFEWA(LH1,LH2, . . . ,LHk+1)

= 2-TLHFEWA(LH1,LH2, . . . ,LHk) ⊕E wk+1LHk+1

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθk ,αθk
),lh(sθk ,αθk

))∈LHk

{(

1

(

g ·

∏k
j=1

(g + 1−1(sθj , αθj ))
wj

−
∏k

j=1
(g − 1−1(sθj , αθj ))

wj

∏k
j=1

(g + 1−1(sθj , αθj ))
wj +

∏k
j=1

(g − 1−1(sθj , αθj ))
wj

)

,

⋃

r1∈lh(sθ1
,αθ1

),...,rk∈lh(sθk ,αθk
)

∏k
j=1

(1 + rj )
wj −

∏k
j=1

(1 − rj )
wj

∏k
j=1

(1 + rj )
wj +

∏k
j=1

(1 − rj )
wj

)}

⊕E

{(

1

(

g ·
(g + 1−1(sθk+1

, αθk+1
))

wk+1
− (g − 1−1(sθk+1

, αθk+1
))

wk+1

(g + 1−1(sθk+1
, αθk+1

))
wk+1 + (g − 1−1(sθk+1

, αθk+1
))

wk+1

)

,

(1 + rk+1)
wk+1 − (1 − rk+1)

wk+1

(1 + rk+1)
wk+1 + (1 − rk+1)

wk+1

)}
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=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθk+1
,αθk+1

),lh(sθk+1
,αθk+1

))∈LHk+1

{(

1

(

g ·

∏k+1

j=1
(g + 1−1(sθj , αθj ))

wj
−
∏k+1

j=1
(g − 1−1(sθj , αθj ))

wj

∏k+1

j=1
(g + 1−1(sθj , αθj ))

wj +
∏k+1

j=1
(g − 1−1(sθj , αθj ))

wj

)

,

⋃

r1∈lh(sθ1
,αθ1

),...,rk+1∈lh(sθk+1
,αθk+1

)

∏k+1

j=1
(1 + rj )

wj −
∏k+1

j=1
(1 − rj )

wj

∏k+1

j=1
(1 + rj )

wj +
∏k+1

j=1
(1 − rj )

wj

)}

i.e. Eq. (6) holds for n = k + 1. Thus, Eq. (6) holds for all n. �

Proposition 2. Let LH = {LH1,LH2,LH3, . . . ,LHn} be a set of n 2-TLHFSs. If all

LHj (j = 1,2, . . . , n) are equal, i.e. LHj = LHb = ((sθb , αθb), lh(sθb , αθb )), for all

j = (1,2, . . . , n), then

2-TLHFEWA(LH1,LH2,LH3, . . . ,LHn) = LHb.

Proof.

2-TLHFEWA(LH1,LH2, . . . ,LHn) = 2-TLHFEWA(LHb, . . . ,LHb)

=
⋃

((sθb ,αθb
),lh(sθb ,αθb

))∈LHb

{(

1

(

g ·
(g + 1−1(sθb , αθb))

∑n
j=1

wj
− (g − 1−1(sθb , αθb))

∑n
j=1

wj

(g + 1−1(sθb , αθb))
∑n

j=1
wj + (g − 1−1(sθb , αθb))

∑n
j=1

wj

)

,

⋃

rb∈lh(sθb ,αθb
)

(1 + rb)
∑n

j=1
wj − (1 − rb)

∑n
j=1

wj

(1 + rb)
∑n

j=1
wj + (1 − rb)

∑n
j=1

wj

)}

= ((sθb , αθb), rb) = LHb. �

Proposition 3. Let LH = {LH1,LH2,LH3, . . . ,LHn} be a set of n 2-TLHFSs. If γ > 0,

then

2-TLHFEWA(γ LH1, γ LH2, γ LH3, . . . , γ LHn)

= γ 2-TLHFEWA(LH1,LH2,LH3, . . . ,LHn).

Proof. For the sake of simplicity, let αj = 1−1(sθj , βθj ),

2-TLHFEWA(γ LH1, γ LH2, γ LH3, . . . , γ LHn)

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθn ,αθn ),lh(sθn ,αθn ))∈LHn
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{(

1

(

g ·

∏n
j=1

(g + g
(g+αj )

γ −(g−αj )
γ

(g+αj )
γ +(g−αj )

γ )
wj

−
∏n

j=1
(g − g

(g+αj )
γ −(g−αj )

γ

(g+αj )
γ +(g−αj )

γ )
wj

∏n
j=1

(g + g
(g+αj )

γ −(g−αj )
γ

(g+αj )
γ +(g−αj )

γ )
wj

+
∏n

j=1
(g − g

(g+αj )
γ −(g−αj )

γ

(g+αj )
γ +(g−αj )

γ )
wj

)

,

⋃

rn∈lh(sθn ,αθn )

∏n
j=1

(1 +
(1+rj )

γ −(1−rj )
γ

(1+rj )
γ +(1−rj )

γ )
wj

−
∏n

j=1
(1 −

(1+rj )
γ −(1−rj )

γ

(1+rj )
γ +(1−rj )

γ )
wj

∏n
j=1

(1 +
(1+rj )

γ −(1−rj )
γ

(1+rj )
γ +(1−rj )

γ )
wj

+
∏n

j=1
(1 −

(1+rj )
γ −(1−rj )

γ

(1+rj )
γ +(1−rj )

γ )
wj

)}

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθn ,αθn ),lh(sθn ,αθn ))∈LHn

{(

1

(

g ·

∏n
j=1

(g + αj )
γwj −

∏n
j=1

(g − αj )
γwj

∏n
j=1

(g + αj )
γwj +

∏n
j=1

(g − αj )
γwj

)

,

⋃

rn∈lh(sθn ,αθn )

∏n
j=1

(1 + rj )
γwj −

∏n
j=1

(1 − rj )
γwj

∏n
j=1

(1 + rj )
γwj +

∏n
j=1

(1 − rj )
γwj

)}

.

γ 2-TLHFEWA(LH1,LH2,LH3, . . . ,LHn)

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθn ,αθn ),lh(sθn ,αθn ))∈LHn

{

(

g ·

(g + g ·

∏n
j=1

(g+αj )
wj −

∏n
j=1

(g−αj )
wj

∏n
j=1

(g+αj )
wj +

∏n
j=1

(g−αj )
wj )

γ

− (1 − g ·

∏n
j=1

(g+αj )
wj −

∏n
j=1

(g−αj )
wj

∏n
j=1

(g+αj )
wj +

∏n
j=1

(g−αj )
wj )

γ

(g + g ·

∏n
j=1

(g+αj )
wj −

∏n
j=1

(g−αj )
wj

∏n
j=1

(g+αj )
wj +

∏n
j=1

(g−αj )
wj )

γ

+ (1 − g ·

∏n
j=1

(g+αj )
wj −

∏n
j=1

(g−αj )
wj

∏n
j=1

(g+αj )
wj +

∏n
j=1

(g−αj )
wj )

γ ,

⋃

rn∈lh(sθn ,αθn )

(1 +

∏n
j=1

(1+rj )
wj −

∏n
j=1

(1−rj )
wj

∏n
j=1

(1+rj )
wj +

∏n
j=1

(1−rj )
wj )

γ

− (1 −

∏n
j=1

(1+rj )
wj −

∏n
j=1

(1−rj )
wj

∏n
j=1

(1+rj )
wj +

∏n
j=1

(1−rj )
wj )

γ

(1 +

∏n
j=1

(1+rj )
wj −

∏n
j=1

(1−rj )
wj

∏n
j=1

(1+rj )
wj +

∏n
j=1

(1−rj )
wj )

γ

+ (1 −

∏n
j=1

(1+rj )
wj −

∏n
j=1

(1−rj )
wj

∏n
j=1

(1+rj )
wj +

∏n
j=1

(1−rj )
wj )

γ

)

}

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθn ,αθn ),lh(sθn ,αθn ))∈LHn

{

(1(g ·

∏n
j=1

(g + αj )
γwj −

∏n
j=1

(g − αj )
γwj

∏n
j=1

(g + αj )
γwj +

∏n
j=1

(g − αj )
γwj

),

⋃

rn∈lh(sθn ,αθn )

∏n
j=1

(1 + rj )
γwj −

∏n
j=1

(1 − rj )
γwj

∏n
j=1

(1 + rj )
γwj +

∏n
j=1

(1 − rj )
γwj

)

}

.

Thus

2-TLHFEWA(γ LH1, γ LH2, γ LH3, . . . , γ LHn)

= γ 2-TLHFEWA(LH1,LH2,LH3, . . . ,LHn). �
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Proposition 4. Let LH = {LH1,LH2,LH3, . . . ,LHn} and LH ′ = {LH ′
1
,LH ′

2
,LH ′

3
, . . . ,

LH ′
n} be a set of n 2-TLHFSs, then

2-TLHFEWA
(

LH1 ⊕E LH ′
1
,LH2 ⊕E LH ′

2
, . . . ,LHn ⊕E LH ′

n

)

= 2-TLHFEWA(LH1,LH2, . . . ,LHn) ⊕E 2-TLHFEWA
(

LH ′
1
,LH ′

2
, . . . ,LH ′

n

)

.

Proof. For the sake of simplicity, let αj = 1−1(sθj , βθj ), αj
′ = 1−1(sθj , βθj )

′,

2-TLHFEWA(LH1 ⊕E LH ′
1
,LH2 ⊕E LH ′

2
, . . . ,LHn ⊕E LH ′

n)

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθn ,αθn )′,lh′(sθn ,αθn ))∈LH ′
n

{(

1

(

g ·

∏n
j=1

(g + g2 αj +αj
′

g2+αj αj
′ )

wj

−
∏n

j=1
(g − g2 αj +αj

′

g2+αj αj
′ )

wj

∏n
j=1

(g + g2
αj +αj

′

g2+αj αj
′ )

wj

+
∏n

j=1
(g − g2

αj +αj
′

g2+αj αj
′ )

wj

)

,

⋃

r1∈lh(sθ1
,αθ1

),...,rn′∈lh′(sθn ,αθn )

∏n
j=1

(1 +
rj +r ′

j

1+rj r ′
j
)
wj

−
∏n

j=1
(1 −

rj +r ′
j

1+rj r ′
j
)
wj

∏n
j=1

(1 +
rj +r ′

j

1+rj r ′
j
)
wj

+
∏n

j=1
(1 −

rj +r ′
j

1+rj r ′
j
)
wj

)}

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθn ,αθn )′,lh′(sθn ,αθn ))∈LH ′
n

{(

1

(

g ·

∏n
j=1

(1 + αj + αj
′ + αjαj

′)
wj −

∏n
j=1

(1 − αj − αj
′ + αjαj

′)
wj

∏n
j=1

(1 + αj + αj
′ + αjαj

′)wj +
∏n

j=1
(1 − αj − αj

′ + αjαj
′)wj

)

,

⋃

rn′∈lh′(sθn ,αθn )

∏n
j=1

(1 + rj + r ′
j + rj r

′
j )

wj −
∏n

j=1
(1 − rj − r ′

j + rj r
′
j )

wj

∏n
j=1

(1 + rj + r ′
j + rj r ′

j )
wj +

∏n
j=1

(1 − rj − r ′
j + rj r ′

j )
wj

)}

,

2-TLHFEWA(LH1,LH2, . . . ,LHn) ⊕E 2-TLHFEWA
(

LH ′
1
,LH ′

2
, . . . ,LH ′

n

)

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθn ,αθn )′,lh′(sθn ,αθn ))∈LH ′
n

{

(

1

(

g2 ·

g ·

∏n
j=1

(g+αj )
wj −

∏n
j=1

(g−αj )
wj

∏n
j=1

(g+αj )
wj +

∏n
j=1

(g−αj )
wj

+ g ·

∏n
j=1

(g+αj
′)

wj −
∏n

j=1
(g−αj

′)
wj

∏n
j=1

(g+αj
′)

wj +
∏n

j=1
(g−αj

′)
wj

g2 + g ·

∏n
j=1

(g+αj )
wj −

∏n
j=1

(g−αj )
wj

∏n
j=1

(g+αj )
wj +

∏n
j=1

(g−αj )
wj

g ·

∏n
j=1

(g+αj
′)

wj −
∏n

j=1
(g−αj

′)
wj

∏n
j=1

(g+αj )′)
wj +

∏n
j=1

(g−αj
′)

wj

)

,

⋃

rn′∈lh′(sθn ,αθn )

∏n
j=1

(1+rj )
wj −

∏n
j=1

(1−rj )
wj

∏n
j=1

(1+rj )
wj +

∏n
j=1

(1−rj )
wj +

∏n
j=1

(1+r ′
j )

wj −
∏n

j=1
(1−r ′

j )
wj

∏n
j=1

(1+r ′
j )

wj +
∏n

j=1
(1−r ′

j )
wj

1 +

∏n
j=1

(1+rj )
wj −

∏n
j=1

(1−rj )
wj

∏n
j=1

(1+rj )
wj +

∏n
j=1

(1−rj )
wj

∏n
j=1

(1+r ′
j )

wj −
∏n

j=1
(1−r ′

j )
wj

∏n
j=1

(1+r ′
j )

wj +
∏n

j=1
(1−r ′

j )
wj

)}

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθn ,αθn )′,lh′(sθn ,αθn ))∈LH ′
n
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{(

1

(

g ·

∏n
j=1

(1 + αj + αj
′ + αjαj

′)
wj −

∏n
j=1

(1 − αj − αj
′ + αjαj

′)
wj

∏n
j=1

(1 + αj + αj
′ + αjαj

′)wj +
∏n

j=1
(1 − αj − αj

′ + αjαj
′)wj

)

,

⋃

rn′∈lh′(sθn ,αθn )

∏n
j=1

(1 + rj + r ′
j + rj r

′
j )

wj −
∏n

j=1
(1 − rj − r ′

j + rj r
′
j )

wj

∏n
j=1

(1 + rj + r ′
j + rj r ′

j )
wj +

∏n
j=1

(1 − rj − r ′
j + rj r ′

j )
wj

)}

.

Thus we have that

2-TLHFEWA
(

LH1 ⊕E LH ′
1
,LH2 ⊕E LH ′

2
, . . . ,LHn ⊕E LH ′

n

)

= 2-TLHFEWA(LH1,LH2, . . . ,LHn) ⊕E 2-TLHFEWA
(

LH ′
1
,LH ′

2
, . . . ,LH ′

n

)

. �

4.2. 2-Tuple Linguistic Hesitant Fuzzy Einstein Weighted Geometric Operator

Definition 13. Let LH i (i = 1,2, . . . , n) be a collection of 2-TLHFSs. A 2-tuple lin-

guistic hesitant fuzzy Einstein weighted geometric (2-TLHFEWG) operator is a function

LHn → LH , defined by

2-TLHFEWG(LH1,LH2,LH3, . . . ,LHn)

= LH
w1

1
⊗ELH

w2

2
⊗E · · ·⊗ELHn

wn =

n
⊗

E
j=1

LHj
wj

where w = (w1,w2, . . . ,wn)
T is the weight vector of LHj (j = 1,2, . . . , n), satisfying

wj ∈ [0,1] (j = 1,2, . . . , n) and
∑n

j=1
wj = 1.

The 2-TLHFEWG operator has some similar properties with the 2-TLHFEWA opera-

tor, which is given as follows.

Theorem 3. Let LH i (i = 1,2, . . . , n) be a collection of n 2-TLHFSs, then the aggregated

value by 2-TLHFEWG operator is also a 2-TLHFS, furthermore,

2-TLHFEWG(LH1,LH2,LH3, . . . ,LHn)

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθn ,αθn ),lh(sθn ,αθn ))∈LHn

{(

1

(

g ·
2
∏n

j=1
(1−1(sθj , αθj ))

wj

∏n
j=1

(2g − 1−1(sθj , αθj ))
wj +

∏n
j=1

(1−1(sθj , αθj ))
wj

)

,

⋃

r1∈lh(sθ1
,αθ1

),...,rn∈lh(sθn ,αθn )

2
∏n

j=1
(rj )

wj

∏n
j=1

(2 − rj )
wj +

∏n
j=1

(rj )
wj

)}

(7)

where g is the upper limit of the 2-tuple linguistic term set.
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Proposition 5. Let LH = {LH1,LH2,LH3, . . . ,LHn} be a set of n 2-TLHFSs. If all

LHj (j = 1,2, . . . , n) are equal, i.e. LHj = LHb = ((sθb , αθb), lh(sθb , αθb )), for all

j = (1,2, . . . , n), then

2-TLHFEWG(LH1,LH2,LH3, . . . ,LHn) = LHb.

Proposition 6. Let LH = {LH1,LH2,LH3, . . . ,LHn} be a set of n 2-TLHFSs. If γ > 0,

then

2-TLHFEWG
(

LH
γ

1
,LH

γ

2
, . . . ,LH

γ
n

)

= 2-TLHFEWG(LH1,LH2,LH3, . . . ,LHn)
γ .

Proposition 7. Let LH = {LH1,LH2,LH3, . . . ,LHn} and LH ′ = {LH′
1
,LH ′

2
,LH ′

3
, . . . ,

LH ′
n} be a set of n 2-TLHFSs, then

2-TLHFEWA
(

LH1 ⊗E LH ′
1
,LH2 ⊗E LH ′

2
, . . . ,LHn ⊗E LH ′

n

)

= 2-TLHFEWA(LH1,LH2, . . . ,LHn) ⊗E 2-TLHFEWA
(

LH ′
1
,LH ′

2
, . . . ,LH ′

n

)

.

5. An Approach to 2-Tuple Linguistic Hesitant Fuzzy Multi-Attribute Decision

Making

In this section, the 2-TLHFEWA and 2-TLHFEWG operators are used to develop an ap-

proach to multi-attribute decision making with qualitative attributes, and a new model by

similarity to ideal solution for optimal weight vectors is developed. The multi-attribute

decision making approach can deal with the situation where there are complex linguistic

assessment and the unknown weight information.

For a multi-attribute decision-making problem with 2-tuple linguistic hesitant fuzzy

information, there are m alternatives A = {A1,A2, . . . ,Am} and n attributes C =

{C1,C2, . . . ,Cn}. Assume that the experts give their personal preferences for alternatives

Ai ∈ A (i = 1,2, . . . ,m) with respect to each attribute Cj ∈ C (j = 1,2, . . . , n) on the

predefined linguistic term set S = {s0, s1, . . . , sg}. If the experts have different assessments

for one alternative and they can’t come to consensus, then there can be several linguistic

terms with some possible membership degrees for the alternative Ai with respect to the

attribute Cj , which can be expressed by a 2-TLHFS LH ij . Then we can obtain a 2-tuple lin-

guistic hesitant fuzzy decision matrix H = (LH ij )m×n (i = 1,2, . . . ,m; j = 1,2, . . . , n).

If the weight information is completely known, then we can use the aggregation oper-

ators to obtain the alternative comprehensive values; otherwise, we must firstly obtain the

weight vectors, where attributes’ weight vectors w = (w1,w2, . . . ,wn)
T satisfy wj > 0

(j = 1,2, . . . , n) and
∑n

j=1
wj = 1.

5.1. Models for the Optimal Weight Vectors

The weights of an attribute could be different for different problems and they could be

affected by decision makers’ preference, so we should take objective factors and people’s
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subjective preference into consideration when determining the weight vectors. However,

existing methods for obtaining weight vectors do not consider the two factors simultane-

ously. In this subsection, we propose a new model to obtain weight vectors. In the model,

we firstly select the biggest value to be the positive ideal solution (PIS) and the small-

est value to be the negative ideal solution (NIS) with respect to each attribute. Then we

make alternatives satisfy the shortest distance from the PIS and the farthest distance from

the NIS with respect to each attribute, which can construct a linear programming model;

finally we can obtain weight vectors by solving linear programming model. The model

considers decision makers’ preference by selecting the PIS and NIS and approaching to

ideal solution, and it is objective and effective. The specific process of proposed model

for the optimal weight vectors is shown as follows:

(1) Selecting the PIS and NIS with respect to each attribute.

Under the 2-tuple linguistic hesitant fuzzy environment, we use Eqs. (8) and (9) to

select the positive ideal solution (PIS) A+
j and the negative ideal solution (NIS) A−

j ,

Aj
+ = max

16i6m
e(LHij ), (8)

Aj
− = min

16i6m
e(LHij ). (9)

(2) Measuring the distances between the every alternative and A+
j , A−

j , with respect

to each attribute, respectively.

For each attribute, we use Eq. (10) and (11) to measure the distances between every

alternative and A+
j , A−

j . And the distances are denoted by d+
j , d−

j , respectively.

dj
+ =

√

√

√

√

m
∑

i=1

(

e
(

LHij − Aj
+
))2

, (10)

dj
− =

√

√

√

√

m
∑

i=1

(

e
(

LHij − Aj
−
))2

. (11)

(3) Constructing a model to obtain the optimal weight vector.

We construct a model as Eq. (12) to obtain the optimal weight vector, which can mini-

mize the distance from every alternative to the positive ideal solution (PIS) and maximize

the distance to the negative ideal solution (NIS).

min

n
∑

j=1

dj
+

dj
+ + dj

−
wj

= min

n
∑

j=1

√

∑m
i=1

(e(LHij − Aj
+))

2

√

∑m
i=1

(e(LHij − Aj
+))

2
+

√

∑m
i=1

(e(LHij − Aj
−))

2

wj ,
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s.t.







∑n
i=1

wi = 1,

wi ∈ Wj ,

wi > 0,

(12)

where Wj is the partially known weight information.

5.2. A Multi-Attribute Decision Making Approach under 2-Tuple Linguistic Hesitant

Fuzzy Environment

Based on the above model for optimal weight vectors and proposed aggregation operators,

an approach to 2-tuple linguistic hesitant fuzzy sets is developed. The main decision steps

are shown as follows:

Step 1. Obtain decision matrix H .

The decision makers give their evaluated values of alternative Ai with respect to at-

tribute Cj , which are expressed by the 2-TLHFSs on the predefined linguistic term set

S = {s0, s1, . . . , sg}. Then we can obtain a 2-tuple linguistic hesitant fuzzy decision ma-

trix H = (LH ij )m×n (i = 1,2, . . . ,m; j = 1,2, . . . , n).

Step 2. Normalize decision matrix H .

As we all known, there are two usual kinds of attributes in MADM problems, such

as benefit attributes (the bigger the better) and cost attributes (the smaller the better). If

every attribute Cj (j = 1,2, . . . , n) is a benefit attribute, it does not normalize decision

matrix H . Otherwise, 2-TLHFSs decision matrix H = (LH ij )m×n should be transformed

into H = (LHij )m×n, where

LH ij =

{

LH ij , benefit,

LHc
ij , cost

with LHij
c = {(1[g − 1−1(si

j ,0)],
⋃

rij ∈lhj (si)
(1 − rij ))|lhj (si) ∈ s}.

Step 3. Determine the weight vectors.

If the weight information is completely known, then we can use the aggregation opera-

tors to obtain the alternative comprehensive values; otherwise, we must obtain the weight

vectors by using Eq. (12).

Step 4. Aggregate the LH ij (j = 1,2, . . . , n) for each alternative.

For alternative Aj , one can aggregate all 2-tuple linguistic hesitant fuzzy values LH ij

(j = 1,2, . . . , n) into a global value LH i by means of 2-tuple linguistic hesitant fuzzy

Einstein weighted averaging (2-TLHFEWA) operator or 2-tuple linguistic hesitant fuzzy

Einstein weighted geometric (2-TLHFEWG) operator.

Step 5. Calculate the expectation value E(LH i) and the variance value V (LH i).

According to the comprehensive 2-TLHFSs LH i (i = 1,2, . . . ,m), we calculate the

expectation value E(LH i) and the variance value V (LH i) in accordance with Definitions

9 and 10.

Step 6. Rank all alternatives according to the comprehensive 2-TLHFSs LH i (i =

1,2, . . . ,m), and select the best one(s).

Step 7. End.
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Table 1

2-TLHFSs decision matrix.

C1 C2 C3

A1 {((s5, 0), 0.1, 0.2), ((s6, 0), 0.7), ((s7, 0), 0.8)} {((s6, 0), 0.9)} {((s6, 0), 0.5, 0.4), ((s7, 0), 0.7)}

A2 {((s5, 0), 0.5, 0.6), ((s6, 0), 0.6, 0.5)} {((s7, 0), 0.6), ((s8, 0), 0.7)} {((s6, 0), 0.3, 0.5, 0.8)}

A3 {((s5, 0), 0.2), ((s6, 0), 0.7, 0.8)} {((s6, 0), 0.8, 0.9)} {((s7, 0), 0.4, 0.5), ((s8, 0), 0.1)}

6. Illustrative Example and Comparison Analysis

In this section, a real example is applied to illustrate the efficiency and practicality of the

above approach. Then, we give a detailed comparison between the approaches based on

2-TLHFEWA operator and HFLWA operator (Lin et al., 2014), GLHFHSWA operator

(Meng et al., 2014).

6.1. Illustrative Example

College plans to choose the most appropriate college faculty for tenure and promotion

(Martinez, 2007). Three evaluation criteria, including teaching, research and service, are

given. An expert team is invited to assess three faculty candidates. A linguistic term set S

= {s0: extremely poor, s1: very poor, s2: poor, s3: slightly poor, s4: fair, s5: slightly good,

s6: good, s7: very good, s8: extremely good} is given. Expert team assesses three faculty

candidates (alternatives) A = {A1,A2,A3} by the above linguistic term set S with respect

to three evaluation criteria: C1: teaching, C2: research and C3: service.

Expert team may have different assessments for one alternative. For example,

evaluating candidate A1 with respect to C1 teaching; one give the value 0.2 for

slightly good and the value 0.8 for very good, others give the value 0.1 for slightly

good and the value 0.7 for good. In this case, LH11 can be denoted by a 2-TLHFS,

{((s5,0),0.1,0.2), ((s6,0),0.7), ((s7,0),0.8)}. Therefore, in order to reflect experts in-

consistency and hesitancy, experts assessment values to every attribute are expressed by

2-TLHFS shown in Table 1.

For the weight of attribute, weight vector is unknown, but experts can provide partial

information: w1 ∈ [0.2,0.35], w2 ∈ [0.3,0.45], w3 ∈ [0.3,0.4].

Using the proposed MADM approach based on 2-TLHFEWA operator, the following

decision procedure is involved.

Step 1: The decision makers give their evaluated values of the alternative Ai with re-

spect to the attribute Cj . Then we can obtain a 2-tuple linguistic hesitant fuzzy decision

matrix H = (LH ij )m×n (i = 1,2, . . . ,m; j = 1,2, . . . , n) shown as Table 1. As each at-

tribute Cj (j = 1,2, . . . , n) is benefit attribute, there is no need to normalize the decision

matrix.

Step 2: The weight of attribute is unknown, so we should firstly determine the weight

vectors. The procedure for the optimal weight vectors is as follows: Using Eqs. (8) and (9)

to obtain the 2-tuple linguistic hesitant fuzzy PIS and NIS: A1
+ = 3.517, A1

− = 2.75;

A2
+ = 5.4, A2

− = 4.9; A3
+ = 3.8, A3

− = 1.975; Using Eqs. (10) and (11) to obtain the

distances: d1
+ = 0.911, d1

− = 0.815; d2
+ = 0.583, d2

− = 0.5385; d3
+ = 1.921, d3

− =
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2.198; finally, we get the following linear programming model by minimizing the distance

from every alternative to the positive ideal solution (PIS) and maximizing the distance to

the negative ideal solution (NIS) with respect to each attribute.

min

n
∑

j=1

dj
+

dj
+ + dj

−
wj = min 0.5278w1 + 0.5198w2 + 0.4664w3,

s.t.















∑

3

i=1
wi = 1,

w1 ∈ [0.2,0.35],

w2 ∈ [0.3,0.45],

w3 ∈ [0.3,0.4].

By solving the above model, we obtain the optimal weight vector w = (0.2,0.4,0.4).

Step 3: Based on the 2-TLHFEWA operator, we have (where g = 8):

LH1 = 2-TLHFEWA(LH11,LH12,LH13) = {((s6,−0.174),0.679,0.357,0.691,

0.663), ((s6,0.338),0.742,0.751), ((s6,0),0.754,0.731), ((s6,0.475),0.804), ((s6,

0.252),0.773,0.752), ((s7,−0.327),0.820)}.

LH2 = 2-TLHFEWA(LH21,LH22,LH23) = {((s6,0.338),0.471,0.542,0.679,0.493,

0.562,0.694), ((s8,0),0.523,0.589,0.714,0.544,0.608,0.728), ((s6,0.475),0.493,

0.562,0.694,0.471,0.542,0.679), ((s8,0),0.544,0.608,0.728,0.523,0.589,0.714)}.

LH3 = 2-TLHFEWA(LH31,LH32,LH33) = {((s6,0.338),0.571,0.604,0.663,0.691),

((s8,0),0.478,0.585), ((s6,0.475),0.654,0.682,0.731,0.754,0.678,0.706,0.752,

0.773), ((s8,0),0.574,0.665,0.604,0.690)}.

Step 4: By Definition 9, the expectation function E(LH i) (i = 1,2,3) is acquired as

follows:

E(LH1) = (s5,−0.315), E(LH2) = (s4,0.3089), E(LH3) = (s4,0.491).

Step 5: According to Definition 11, we have the following ranking: A1 > A3 > A2.

Using the proposed MADM approach based on 2-TLHFEWG operator, the following

decision procedure is involved.

Step 1: We can obtain a 2-tuple linguistic hesitant fuzzy decision matrix H =

(LH ij )m×n (i = 1,2, . . . ,m; j = 1,2, . . . , n) as Table 1. Because every attribute Cj

(j = 1,2, . . . , n) is benefit attribute, there is no need to normalize the decision matrix.

Step 2: The weight of attribute is unknown, so we should firstly determine the weight

vectors. By applying the model by similarity to ideal solution, we obtain the optimal

weight vector w = (0.2,0.4,0.4).

Step 3: Based on the 2-TLHFEWG operator, we have (where g = 8):

LH1 = 2-TLHFEWA(LH11,LH12,LH13) = {((s6,−0.207),0.496,0.455,0.554,

0.509), ((s6,0.182),0.571,0.634), ((s6,0),0.689,0.638), ((s6,0.394),0.778),

((s6,0.196),0.708,0.657), ((s7,−0.406),0.798)}.

LH2 = 2-TLHFEWA(LH21,LH22,LH23) = {((s6,0.182),0.445,0.539,0.654,0.462,

0.559,0.677), ((s7,−0.432),0.477,0.575,0.695,0.495,0.596,0.718), ((s6,0.394),
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0.462,0.559,0.677,0.445,0.539,0.654), ((s7,−0.216),0.495,0.596,0.718,0.477,

0.575,0.695)}.

LH3 = 2-TLHFEWA(LH31,LH32,LH33) = {((s6,0.182),0.479,0.522,0.509,0.554),

((s7,−0.432),0.289,0.310), ((s6,0.394),0.603,0.652,0.638,0.689,0.621,0.671,

0.657,0.708), ((s7,−0.216),0.376,0.401,0.389,0.415)}.

Step 4: By Definition 9, the expectation function E(LH i) (i = 1,2,3) is acquired as

follows:

E(LH1) = (s4,0.181), E(LH2) = (s5,−0.274), E(LH3) = (s3,0.006).

Step 5: According to Definition 11, we have the following ranking: A1 > A2 > A3.

From the above analysis, the best choice in both cases is A1. So we should choose

college faculty A1 for tenure and promotion.

6.2. Comparison Analysis

(1) A comparison with the approach based on HFLWA operator (Lin et al., 2014).

For the above numerical example, if the 2-TLHFEWA operator is replaced by the

HFLWA operator, the decision making result is as follows. It is known for the weight

vector of the attribute w = (0.2,0.4,0.4).

HFLWA(LH1,LH2,LH3, . . . ,LHn)

= w1LH1 ⊕ w2LH2 ⊕ · · · ⊕ wnLHn =

n
⊕

j=1

wjLHj

=
⋃

((sθ1
,αθ1

),lh(sθ1
,αθ1

))∈LH1,...,((sθn ,αθn ),lh(sθn ,αθn ))∈LHn

{(

s(
∑n

j=1
wj θj )

,
⋃

r1∈lh(sθ1
,αθ1

),...,rn∈lh(sθn ,αθn )

(

1 −

n
∏

j=1

(1 − rj )
wj

))}

.

Based on the LHFWA operator, we have:

LH1 = {(s5.8,0.705,0.682,0.711,0.690), (s6.2,0.0.759,0.765), (s6,0.763,0.745),

(s6.4,0.807), (s6.2,0.781,0.765), (s6.6,0.822)}.

LH2 = {(s6.2,0.477,0.543,0.683,0.500,0.563,0.700), (s6.6,0.534,0.592,0.7170,

0.554,0.610,0.730), (s6.4,0.500,0.563,0.700,0.477,0.543,0.683), (s6.8,0.554,0.610,

0.730,0.534,0.592,0.7170)}.

LH3 = {(s6.2,0.590,0.619,0.690,0.711), (s6.6,0.518,0.635), (s6.4,0.663,0.687,

0.745,0.763,0.690,0.711,0.765,0.781), (s6.8,0.604,0.700,0.635,0.723)}.

The expectation function E(LH i) (i = 1,2,3) is acquired as follows:

E(LH1) = (s4.779), E(LH2) = (s3.906), E(LH3) = (s4.255).

So we have ranking: A1 > A3 > A2.
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Table 2

2-TLHFSs of alternatives.

C1 C2 C3

A1 {((s5,0),0.1,0.2), ((s6,0),0.4), ((s7,0),0.3)} {((s6,0),0.4), ((s7,0),0.2,0.3)} {((s6,0),0.2,0.4), ((s7,0),0.3)}

A2 {((s5,0),0.2,0.4), ((s6,0),0.3,0.5)} {((s7,0),0.3,0.6), ((s8,0),0.2)} {((s6,0),0.3,0.5,0.8)}

A3 {((s5,0),0.2), ((s6,0),0.3,0.5)} {((s5,0),0.3,0.5), ((s6,0),0.2,0.3), ((s7,0),0.1)} {((s7,0),0.3,0.5), ((s8,0),0.1,0.3)}

According to the results, the LHFWA and the 2-TLHFEWA operators have the same

ranking results and the most desirable alternative A1.

(2) A comparison with the approach based on GLHFHSWA operator (Meng et al.,

2014).

We apply proposed approach based on 2-TLHFEWA operator to the Example 1 (Lin

et al., 2014), and the partially known weight vector is given by: w1 ∈ [0.2,0.35], w2 ∈

[0.3,0.45], w3 ∈ [0.3,0.4]. So decision procedure is involved as follows.

Step 1: A LHFSs decision matrix HF as Table 1 (Lin et al., 2014).

Step 2: Translate LHFSs into 2-TLHFSs and obtain a 2-TLHFSs decision matrix H as

Table 2. And because every attribute Cj (j = 1,2, . . . , n) is benefit attribute, it does not

need to normalize decision matrix H .

Step 3: Weight vectors are unknown, so we firstly determine the weight vectors. Using

the proposed model, we can obtain the following linear programming model to determine

the best weight vector.

min

n
∑

j=1

dj
+

dj
+ + dj

−
wj = min 0.4767w1 + 0.5316w2 + 0.5248w3,

s.t.















∑

3

i=1
wi = 1,

w1 ∈ [0.2,0.35],

w2 ∈ [0.3,0.45],

w3 ∈ [0.3,0.4].

By solving the above model, we get the optimal weight vector w = (0.35,0.3,0.35).

Step 4: Based on 2-TLHFEWA operator, we have (where g = 8):

LH1 = 2-TLHFEWA(LH11,LH12,LH13) = {((s6,−0.313),0.229,0.301,0.263,

0.333), ((s6,0.167),0.264,0.297), ((s6,0.104),0.165,0.239,0.196,0.269,0.2,0.273,

0.231,0.302), ((s7,−0.494),0.201,0.232,0.236,0.266), ((s6,0),0.333,0.4),

((s6,0.422),0.366), ((s6,0.367),0.273,0.343,0.302,0.371), ((s7,−0.281),0.307,

0.336), ((s6,0.422),0.297,0.366), ((s7,−0.237),0.331), ((s7,−0.281),0.236,0.307,

0.266,0.336), ((s7,0),0.271,0.3)}.

LH2 = 2-TLHFEWA(LH21,LH22,LH23) = {((s6,0.104),0.266,0.342,0.499,

0.369,0.439,0.581,0.336,0.408,0.555,0.434,0.499,0.630), ((s8,0),0.236,0.313,

0.745,0.307,0.381,0.532), ((s6,0.367),0.3,0.374,0.527,0.401,0.469,0.605,0.374,

0.444,0.585,0.469,0.532,0.655), ((s8,0),0.271,0.346,0.503,0.346,0.418,0.563)}.

LH3 = 2-TLHFEWA(LH31,LH32,LH33) = {((s6,−0.08),0.266,0.342,0.331,

0.404), ((s8,0),0.196,0.266,0.264,0.331), ((s6,0.167),0.236,0.313,0.266,0.342),

((s8,0),0.165,0.236,0.196,0.266), ((s7,−0.494),0.206,0.285), ((s8,0),0.135,0.206),
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((s6,0.205),0.3,0.375,0.364,0.434,0.374,0.444,0.434,0.5), ((s8,0),0.232,0.3,

0.299,0.364,0.310,0.374,0.373,0.434), ((s6,0.422),0.271,0.346,0.3,0.374,0.346,

0.418,0.374,0.444), ((s8,0),0.201,0.271,0.232,0.3,0.280,0.346,0.374,0.310),

((s7,−0.281),0.242,0.319,0.319,0.392), ((s8,0),0.172,0.242,0.252,0.319)}.

Step 5: By Definition 9, the expectation function E(LH i) (i = 1,2,3) is acquired as

follows:

E(LH1) = (s2,−0.056), E(LH2) = (s3,0.006), E(LH3) = (s2,0.041).

Step 6: The ranking is A2 > A3 > A1.

It is obvious that there are different orders, but the best choice in both cases is A2.

By the analysis of the two above comparisons, the validity of new proposed aggregation

operators is tested. And for the proposed MADM approach in this paper, there are four

main differences from existing approaches.

Firstly, we proposed a new uncertain linguistic variable, 2-tuple linguistic hesitant

fuzzy sets (2-TLHFSs), which can reflect decision makers’ uncertainty and hesitancy by

providing the information about several possible linguistic terms of a linguistic variable

and several possible membership degrees of each linguistic term. 2-TLHFSs have a wider

range of application and can express and address rather complex multi-attribute decision-

making problems that existing linguistic variables cannot address.

Secondly, 2-TLHFEWA and 2-TLHFEWG operators are based on 2-tuple linguistic

representation model, 2-tuple linguistic representation model can make linguistic variable

continuous and prevent information from losing in aggregation process. So 2-TLHFEWA

and 2-TLHFEWG operators are also efficient and can avoid information loss and the lack

of precision.

Thirdly, based on Einstein t-norm and t-conorm, we propose the new operational laws

and 2-TLHFEWA and 2-TLHFEWG operators. The new operational laws are closed and

can overcome granularity and logical problems. Compared with most aggregation opera-

tors based on Algebraic t-conorm and t-norm, the aggregation operators based on Einstein

t-norm and t-conorm can provide another choice for decision makers.

Finally, we propose a model to deal with the situation where the weights information

is unknown. The proposed model for optimal weight vector is advantaged and effective,

which takes both subjective and objective weights information into consideration.

7. Conclusion

In order to deal with rather complex linguistic assessment and express membership de-

grees of linguistic term, this paper proposed a new class of uncertain linguistic variables,

2-tuple linguistic hesitant fuzzy sets (2-TLHFSs). It can reflect sufficiently decision mak-

ers’ hesitancy and ensure information integrity in aggregation process. Then based on

Einstein t-norm and t-conorm, the new closed operational laws are defined, which can

overcome the granularity and logical problems. Based on the new closed operational

laws, 2-tuple linguistic hesitant fuzzy aggregation operators (2-TLHFEWA operator and
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2-TLHFEWG operator) and relative basic properties are defined. Additionally, to deal with

the situation where the weight information of attribute is unknown, a new model is build

to obtain optimal weight vectors, which take both subjective and objective factors into

consideration. Then a multi-attribute decision making approach under 2-tuple linguistic

hesitant fuzzy environment is developed and an example is presented to demonstrate the

application of the proposed approach. It should be noted that the proposed approach to

deal with 2-tuple linguistic hesitant fuzzy information needs to be further extended, and

other possible approaches addressing complex MADM linguistic problems will be studied

in the future.
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