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Abstract. This paper proposes the concepts of a neutrosophic number and a trapezoidal neutro-

sophic number (TNN), the basic operational relations of TNNs, and the score function of TNN.

Then, we develop a trapezoidal neutrosophic weighted arithmetic averaging (TNWAA) operator and

a trapezoidal neutrosophic weighted geometric averaging (TNWGA) operator to aggregate TNN in-

formation and investigate their properties. Furthermore, a multiple attribute decision making method

based on the TNWAA and TNWGA operators and the score function of TNN is established under a

TNN environment. Finally, an illustrative example of investment alternatives is given to demonstrate

the application and effectiveness of the developed approach.
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1. Introduction

Fuzzy decision making is an important topic in decision theory. Recently, many re-

searchers have proposed various fuzzy decision making methods (Liu and Yu, 2013;

Meng and Chen, 2014; Wang and Liu, 2014; Zhou and He, 2014; Wan and Dong, 2014).

However, these methods cannot handle decision-making problems with indeterminate and

inconsistent information.Then, Smarandache (1999) originally gave a concept of a neutro-

sophic set, which is a part of neutrosophy and generalizes fuzzy sets (Zadeh, 1965), inter-

val valued fuzzy sets (IVFSs) (Turksen, 1986), intuitionistic fuzzy sets (IFSs) (Atanassov,

1986), and interval-valued intuitionistic fuzzy sets (IVIFSs) (Atanassov and Gargov, 1989)

from philosophical point of view. To obtain the real applications, Wang et al. (2005, 2010)

presented single valued neutrosophic sets (SVNSs) and interval neutrosophic sets (INSs),

which are the subclasses of neutrosophic sets. They can independently express the truth-

membership degree, indeterminacy-membership degree and false-membership degree.

SVNSs and INSs, as the generalization of IFSs and IVIFSs, can handle incomplete, in-

determinate and inconsistent information which exists commonly in real situations, while
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IFSs and IVIFSs only express truth-membership degree and false-membership degree, but

cannot deal with indeterminate and inconsistent information. Hence, SVNSs and INSs are

very suitable for applications in decision making. Ye (2013) developed the correlation co-

efficient of SVNSs as the extension of the correlation coefficient of IFSs and proved that

the cosine similarity measure of SVNSs is a special case of the correlation coefficient

of SVNSs, and then applied it to single valued neutrosophic decision-making problems.

Chi and Liu (2013) proposed an extended TOPSIS method for multiple attribute deci-

sion making under an interval neutrosophic environment. Moreover, Ye (2014a) presented

the Hamming and Euclidean distances between INSs and the distances-based similarity

measures of INSs, and then a multi criteria decision making method based on the sim-

ilarity measures of INSs was established in interval neutrosophic setting. Furthermore,

Ye (2014b) proposed a cross-entropy measure of SVNSs and applied it to multi crite-

ria decision making problems with single valued neutrosophic information. Ye (2014c)

further introduced a simplified neutrosophic set (SNS) as a subclass of a neutrosophic

set, which includes SVNS and INS, and developed a simplified neutrosophic weighted

averaging (SNWA) operator and a simplified neutrosophic weighted geometric (SNWG)

operator, and then he applied them to multi criteria decision making under a simplified

neutrosophic environment. Liu et al. (2014) further proposed some generalized single

valued neutrosophic number Hamacher aggregation operators and applied them to group

decision making. Then, Zhang et al. (2014) defined the score, accuracy and certainty func-

tions for interval neutrosophic numbers (INNs) and presented a comparative approach for

INNs, and then they also developed some aggregation operators for INNs and a multi

criteria decision-making method by means of the aggregation operators. On the other

hand, Ye (2014d) put forward vector similarity measures, including the Dice, Jaccard and

cosine measures of SNSs, and applied them to multi criteria decision-making problems

in simplified neutrosophic setting. Biswas et al. (2014) established a single valued neu-

trosophic multiple attribute decision making method with unknown weight information,

where optimization models were used to determine unknown attribute weights and the

grey relational coefficient of each alternative from ideal alternative was utilized to rank

alternatives. Zhang and Wu (2014) also developed a method for solving single valued

neutrosophic multi criteria decision making problems with incomplete weight informa-

tion, in which the criterion values are given in the form of single-valued neutrosophic

sets (SVNSs), and the information about criterion weights is incompletely known or com-

pletely unknown. Also, Broumi and Smarandache (2014, 2015) further presented the co-

sine similarity measure and new operations of INNs. Ye (2014e) proposed the weighted

arithmetic average and weighted geometric average operators of interval neutrosophic lin-

guistic numbers (INLNs) and applied them to multiple attribute decision making problems

with interval neutrosophic linguistic information.

Intuitionistic fuzzy numbers (IFNs) and intuitionistic trapezoidal fuzzy numbers

(ITFNs) introduced in Wang and Zhang (2009) are the extension of IFSs in another way,

which extend discrete sets to continuous sets. Then the domains of SVNSs and INSs are

discrete sets, but not continuous sets in existing literature. The advantage of continuous

sets is that they include much information and the fuzziness in multiple attribute deci-

sion making has the better character because of the proposal of fuzzy number (Wang and
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Zhang, 2009). Liu and Yu (2013) proposed density aggregation operators of ITFNs for

multiple attribute decision making. Wan and Dong (2014) developed a multi-attribute

group decision making method with trapezoidal intuitionistic fuzzy numbers and applied

it to stock selection.

Furthermore, the domains of SVNSs and INSs are discrete sets, but not continuous sets

in existing literature. At present, there are no studies on neutrosophic numbers and trape-

zoidal neutrosophicnumbers (TNNs) in above mentioned decision-makingproblems. Mo-

tivated by Wang and Zhang (2009), we should make the truth-membership, indeterminacy-

membership and falsity-membership degrees in an SVNS or an INS no longer relative to

single or interval values, but relative to fuzzy numbers or trapezoidal fuzzy numbers. Thus

we can introduce the concepts of neutrosophic numbers and TNNs to extend the discrete

domains of SVNSs and INSs to continuous domains of TNNs, which are also the further

extension of IFNs and ITFNs (Wang and Zhang, 2009). However, a TNN is a special case

of a neutrosophic number and useful in practical applications. Then, the typical TNN is

of importance for neutrosophic multiple attribute decision making problems. Therefore,

the purposes of this article are: (1) to introduce the concepts of a neutrosophic number

and a TNN, some basic operational relations of TNNs and a score function for a TNN,

(2) to propose two aggregation operators: a trapezoidal neutrosophic weighted arithmetic

averaging (TNWAA) operator and a trapezoidal neutrosophic weighted geometric aver-

aging (TNWGA) operator, and (3) to establish a decision making approach based on the

TNWAA and TNWGA operators and the score function under a TNN environment.

The rest of the article is organized as follows. Section 2 briefly describes some concepts

of IFNs, ITFNs and operational relations for ITFNs. Section 3 proposes the concepts of a

neutrosophic number and a TNN and defines some basic operations of TNNs and the score

function of a TNN. In Section 4, we develop TNWAA and TNWGA operators for TNNs

and investigate their properties. Section 5 establishes a decision making approach based on

the TNWAA and TNWGA operators and the score function under a TNN environment. In

Section 6, an illustrative example is provided to illustrate the application of the developed

method. Section 7 contains conclusions and future research.

2. Intuitionistic Fuzzy Numbers and Intuitionistic Trapezoidal Fuzzy Numbers

In this section, we briefly describe some concepts of IFNs, ITFNs and operational relations

for ITFNs.

Definition 1. (See Wang and Zhang, 2009.) Let ã be an IFN in the set of real numbers R,

then its membership function is defined as

µã(x) =















fã(x), a1 6 x < a2,

µã, a2 6 x 6 a3,

gã(x), a3 < x 6 a4,

0, otherwise

(1)
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and its nonmembership function is defined as

νã(x) =















hã(x), b1 6 x < b2,

νã, b2 6 x 6 b3,

kã(x), b3 < x 6 b4,

1, otherwise

(2)

where µã, νã ∈ [0,1], 0 6 µã + νã 6 1 and a1, a2, a3, a4, b1, b2, b3, b4 ∈ R, and four

functions fã, gã, hã, kã : R → [0,1] are called the side of a fuzzy number. The functions

fã and kã are increasing continuous functions, and then the functions gã and hã are de-

creasing continuous functions.

Particularly, if the increasing functions fã and kã and decreasing functions gã and hã

are linear, then we have ITFNs, which are preferred in practice.

Definition 2. (See Wang and Zhang, 2009.) Let ã be an ITFN. Then, the membership

function and nonmembership function can be defined, respectively, as follows:

µã(x) =



























x − a1

a2 − a1

µã, a1 6 x < a2,

µã, a2 6 x 6 a3,

a4 − x

a4 − a3

µã, a3 < x 6 a4,

0, otherwise,

(3)

νã(x) =































b2 − x + νã(x − b1)

b2 − b1

, b1 6 x < b2,

νã, b2 6 x 6 b3,

x − b3 + νã(b4 − x)

b4 − b3

, a3 < x 6 a4,

1, otherwise

(4)

where µã, νã ∈ [0,1], 0 6 µã + νã 6 1 and a1, a2, a3, a4, b1, b2, b3, b4 ∈ R. Gener-

ally, if [a1, a2, a3, a4] = [b1, b2, b3, b4] in an ITFN ã, then the ITFN ã is denoted as

ã = 〈(a1, a2, a3, a4);µã, νã〉.

ITFNs have the following operational relations (Wang and Zhang, 2009).

Definition 3. (See Wang and Zhang, 2009.) Let ã = 〈(a1, a2, a3, a4);µã, νã〉 and b̃ =

〈(b1, b2, b3, b4);µb̃, νb̃〉 be two ITFNs and λ > 0. Then there are the following operational

relations:

(1) ã + b̃ = 〈(a1 + b1, a2 + b2, a3 + b3, a4 + b4);µã + µb̃ − µãµb̃, νãνb̃〉;

(2) ãb̃ = 〈(a1b1, a2b2, a3b3, a4b4);µãµb̃, νã + νb̃ − νãνb̃〉;

(3) λã = 〈(λa1, λa2, λa3, λa4); 1 − (1 − µã)
λ, νλ

ã
〉;

(4) ãλ = 〈(aλ
1
, aλ

2
, aλ

3
, aλ

4
);µλ

ã
,1 − (1 − νã)

λ〉.
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3. Neutrosophic Numbers and Trapezoidal Neutrosophic Numbers

In this section, motivated by IFNs and ITFNs, we propose neutrosophic numbers and

TNNs based on the combination of SVNSs and fuzzy numbers as the generalization of

IFNs and ITFNs, which extend discrete sets to continuous sets. Smarandache (1999) firstly

presented a neutrosophic set from philosophical point of view. To easily apply the neutro-

sophic set to practical problems, Wang et al. (2010) introduced the concept of an SVNS,

which is a subclass of the neutrosophic set.

Definition 4. (See Wang et al., 2010.) Let X be a space of points (objects) with generic

elements in X denoted by x . An SVNS N in X is characterized by a truth-membership

function TN (x), an indeterminacy-membership function IN (x) and a falsity-membership

function FN (x). Then, an SVNS N can be denoted by

N =
{〈

x,TN (x), IN (x),FN (x)
〉∣

∣x ∈ X
}

,

where the sum of TN (x), IN (x),FN (x) ∈ [0,1] satisfies 0 6 TN (x)+ IN (x)+FN (x)6 3

for each point x in X. For convenience,we can use the simplified symbol nx = 〈Tx , Ix ,Fx〉

to represent a basic element in an SVNS N , and call it a single valued neutrosophic number

(SVNN).

Different from the definition of an SVNS, we make the truth-membership, indeterminacy-

membership and falsity-membership degrees no longer relative to single values, but rel-

ative to fuzzy numbers. Then, we can give the following definitions of a neutrosophic

number and a TNN.

Definition 5. Let Ñ be a neutrosophic number in the set of real numbers R, then its

truth-membership function is defined as

Tñ(x) =















fñ(x), a1 6 x < a2,

Tñ, a2 6 x 6 a3,

gñ(x), a3 < x 6 a4,

0, otherwise,

(5)

its indeterminacy-membership function is defined as

Iñ(x) =















hñ(x), b1 6 x < b2,

Iñ, b2 6 x 6 b3,

kñ(x), b3 < x 6 b4,

1, otherwise

(6)
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and its falsity-membership function is defined as

Fñ(x) =















pñ(x), c1 6 x < c2,

Fñ, c2 6 x 6 c3,

qñ(x), c3 < x 6 c4,

1, otherwise

(7)

where Tñ, Iñ,Fñ ∈ [0,1], 0 6 Tñ + Iñ + Fñ 6 3 and a1, a2, a3, a4, b1, b2, b3, b4, c1, c2,

c3, c4 ∈ R, and six functions fñ, gñ, hñ, kñ,pñ, qñ : R → [0,1] are called the side of a

fuzzy number. The functions fñ, kñ and qñ are increasing continuous functions, and then

the functions gñ, hñ and pñ are decreasing continuous functions.

Especially, if the increasing functions fñ, kñ, qñ and the decreasing functions

gñ, hñ,pñ are linear, then we have a TNN, which is preferred in practice.

Definition 6. Let ñ be a TNN. Then, the truth-membership function, indeterminacy-

membership function and falsity-membership function can be defined, respectively, as

follows:

Tñ(x) =



























x − a1

a2 − a1

Tñ, a1 6 x < a2,

Tñ, a2 6 x 6 a3,

a4 − x

a4 − a3

Tñ, a3 < x 6 a4,

0, otherwise

(8)

Iñ(x) =































b2 − x + Iñ(x − b1)

b2 − b1

, b1 6 x < b2,

Iñ, b2 6 x 6 b3,

x − b3 + Iñ(b4 − x)

b4 − b3

, a3 < x 6 a4,

1, otherwise

(9)

Fñ(x) =































c2 − x + Fñ(x − c1)

c2 − c1

, c1 6 x < c2,

Fñ, c2 6 x 6 c3,

x − c3 + Fñ(c4 − x)

c4 − c3

, c3 < x 6 c4,

1, otherwise

(10)

where Tñ, Iñ,Fñ ∈ [0,1], 0 6 Tñ + Iñ + Fñ 6 3 and a1, a2, a3, a4, b1, b2, b3, b4, c1, c2,

c3, c4 ∈ R. Then, ñ = 〈([a1, a2, a3, a4];Tñ), ([b1, b2, b3, b4]; Iñ), ([c1, c2, c3, c4];Fñ)〉 is

called a TNN. Generally, if [a1, a2, a3, a4] = [b1, b2, b3, b4] = [c1, c2, c3, c4] in a TNN ñ,

then the TNN ñ can be denoted as ñ = 〈(a1, a2, a3, a4);Tñ, Iñ,Fñ〉.
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If a2 = a3 in a TNN ñ, the TNN ñ reduces to the triangular neutrosophic number,

which is considered as a special case of the TNN ñ. If a1 = a2 = a3 = a4 = 1 in a TNN ñ,

then the TNN ñ reduces to the SVNN.

If 0 6 a1 6 a2 6 a3 6 a4, then ñ is called a positive TNN. If a1 6 a2 6 a3 6 a4 6 0,

then ñ is called a negative TNN. If 0 6 a1 6 a2 6 a3 6 a4 6 1 and Tñ, Iñ,Fñ ∈ [0,1],

then ñ is called a normalized TNN, which is used for this paper.

Thus, we can introduce the following operational relations of TNNs:

Definition 7. Let ñ1 = 〈(a1, a2, a3, a4);Tñ1
, Iñ1

,Fñ1
〉 and ñ2 = 〈(b1, b2, b3, b4);Tñ2

,

Iñ2
,Fñ2

〉 be two TNNs and λ > 0. Then there are the following operational relations:

(1) ñ1 + ñ2 = 〈(a1 +b1, a2 +b2, a3+b3, a4+b4);Tñ1
+Tñ2

−Tñ1
Tñ2

, Iñ1
Iñ2

,Fñ1
Fñ2

〉;

(2) ñ1ñ2 = 〈(a1b1, a2b2, a3b3, a4b4);Tñ1
Tñ2

, Iñ1
+Iñ2

−Iñ1
Iñ2

,Fñ1
+Fñ2

−Fñ1
Fñ2

〉;

(3) λñ1 = 〈(λa1, λa2, λa3, λa4); 1 − (1 − Tñ1
)λ, Iλ

ñ1
,F λ

ñ1
〉;

(4) ñλ
1

= 〈(aλ
1
, aλ

2
, aλ

3
, aλ

4
);T λ

ñ1
,1 − (1 − Iñ1

)λ,1 − (1 − Fñ1
)λ〉.

Based on the expected value of an ITFN (Wang and Zhang, 2009) and the score func-

tion of an interval neutrosophic value (Zhang et al., 2014), we can give the following

definition of a score function for a TNN.

Definition 8. Let ñ = 〈(a1, a2, a3, a4);Tñ, Iñ,Fñ〉 be a TNN. Then there is the score

function of ñ:

S(ñ) =
1

12
(a1, a2, a3, a4)(2 + Tñ − Iñ − Fñ), S(ñ) ∈ [0,1]. (11)

For the comparison between two TNNs, a comparative method based on the score

function is defined as follows.

Definition 9. Let ñ1 = 〈(a1, a2, a3, a4);Tñ1
, Iñ1

,Fñ1
〉 and ñ2 = 〈(b1, b2, b3, b4);Tñ2

,

Iñ2
,Fñ2

〉 be two TNNs. If S(ñ1) > S(ñ2), then ñ1 > ñ2; if S(ñ1) = S(ñ2), then ñ1 = ñ2.

For example, let two TNNs be ñ1 = 〈(0.4,0.5,0.6,0.7); 0.4,0.2,0.3〉 and ñ2 =

〈(0.6,0.7,0.8,0.9); 0.6,0.3,0.4〉. In this case, we can compare them according to the

score values. Since S(ñ1) = (0.4 + 0.5 + 0.6 + 0.7)(2 + 0.4 − 0.2 − 0.3) ÷ 12 = 0.3483

and S(ñ2) = (0.6 + 0.7 + 0.8 + 0.9)(2 + 0.6 − 0.3 − 0.4) ÷ 12 = 0.475, by Definition 9,

there is ñ1 < ñ2.

4. Two Weighted Aggregation Operators of TNNs

Since aggregation operators are an important tool for aggregated information in decision-

making process, this section proposes two weighted aggregation operators to aggregate

TNNs as a generalization of the weighted aggregation operators for ITFNs (Wang and

Zhang, 2009), which are usually used in decision making.
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4.1. Trapezoidal Neutrosophic Weighted Arithmetic Averaging Operator

Definition 10. Let ñj = 〈(aj1, aj2, aj3, aj4);Tñj
, Iñj

,Fñj
〉 (j = 1,2, . . . , n) be a col-

lection of TNNs, then a TNWAA operator is defined as follows:

TNWAA(ñ1, ñ2, . . . , ñn) =

n
∑

j=1

wj ñj , (12)

where wj is the weight of ñj (j = 1,2, . . . , n) such that wj > 0 and
∑n

j=1
wj = 1. Spe-

cially, when wj = 1/n for j = 1,2, . . . , n, the TNWAA operator reduces to the trapezoidal

neutrosophic arithmetic averaging operator.

According to Definitions 7 and 10, we can introduce the following theorem.

Theorem 1. Let ñj = 〈(aj1, aj2, aj3, aj4);Tñj
, Iñj

,Fñj
〉 (j = 1,2, . . . , n) be a collec-

tion of TNNs, then according to Definitions 7 and 10, we can give the following TNWAA

operator:

TNWAA(ñ1, ñ2, . . . , ñn) =

n
∑

j=1

wj ñj

=

〈(

n
∑

j=1

wjaj1,

n
∑

j=1

wjaj2,

n
∑

j=1

wjaj3,

n
∑

j=1

wjaj4

)

;

1 −

n
∏

j=1

(1 − Tñj
)wj ,

n
∏

j=1

I
wj

ñj
,

n
∏

j=1

F
wj

ñj

〉

(13)

where wj is the weight of ñj (j = 1,2, . . . , n) such that wj > 0 and
∑n

j=1
wj = 1.

Theorem 1 can be proved by means of mathematical induction.

Proof. (1) When n = 2, then,

w1ñ1 =
〈(

w1a11,w1a12,w1a13,w1a14

)

; 1 − (1 − Tñ1
)w1, I

w1

ñ1
,F

w1

ñ1

〉

,

w2ñ2 =
〈(

w2a21,w2a22,w2a23,w2a24

)

; 1 − (1 − Tñ2
)w2, I

w2

ñ2
,F

w2

ñ2

〉

.

Thus,

TNWAA(ñ1, ñ2) = w1ñ1 + w2ñ2

=
〈(

w1a11 + w2a21,w1a12 + w2a22,

w1a13 + w2a23,w1a14 + w2a24

)

;
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1 − (1 − Tñ1
)w1 + 1 − (1 − Tñ2

)w2

− (1 − (1 − Tñ1
)w1)

(

1 − (1 − Tñ2
)w2
)

, I
w1

ñ1
I

w2

ñ2
,F

w1

ñ1
F

w2

ñ2

〉

.

(14)

(2) When n = k, by applying Eq. (13), we get

TNWAA(ñ1, ñ2, . . . , ñk) =

k
∑

j=1

wj ñj

=

〈( k
∑

j=1

wjaj1,

k
∑

j=1

wjaj2,

k
∑

j=1

wjaj3,

k
∑

j=1

wjaj4

)

;

1 −

k
∏

j=1

(1 − Tñj
)wj ,

k
∏

j=1

I
wj

ñj
,

k
∏

j=1

F
wj

ñj

〉

. (15)

(3) When n = k + 1, by applying Eqs. (14) and (15), we can yield

TNWAA(ñ1, ñ2, . . . , ñk+1) =

k+1
∑

j=1

wj ñj

=

〈(

k+1
∑

j=1

wjaj1,

k+1
∑

j=1

wjaj2,

k+1
∑

j=1

wjaj3,

k+1
∑

j=1

wjaj4

)

;

1 −

k
∏

j=1

(1 − Tñj
)wj + 1 − (1 − Tñk+1

)wk+1

−

(

1 −

k
∏

j=1

(1 − Tñj
)wj

)

×
(

1 − (1 − Tñk+1
)wk+1

)

,

k+1
∏

j=1

I
wj

ñj
,

k+1
∏

j=1

F
wj

ñj

〉

=

〈(

k+1
∑

j=1

wjaj1,

k+1
∑

j=1

wjaj2,

k+1
∑

j=1

wjaj3,

k+1
∑

j=1

wjaj4

)

;

1 −

k+1
∏

j=1

(

1 − T
wj

ñj

)

,

k+1
∏

j=1

I
wj

ñj
,

k+1
∏

j=1

F
wj

ñj

〉

. (16)

Therefore, considering the above results, we have Eq. (13) for any n. This completes

the proof. �
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Obviously, the TNWAA operator satisfies the following properties:

(1) Idempotency: let ñj (j = 1,2, . . . , n) be a collection of TNNs. If ñj (j =

1,2, . . . , n) is equal, i.e. ñj = ñ for j = 1,2, . . . , n, then TNWAA(ñ1, ñ2, . . . , ñn) = ñ.

(2) Boundedness: let ñj (j = 1,2, . . . , n) be a collection of TNNs and let ñ− =

〈(minj (aj1),minj (aj2),minj (aj3),minj (aj4)); minj (Tñj
),maxj (Iñj

),maxj (Fñj
)〉 and

ñ+ = 〈(maxj (aj1),maxj (aj2),maxj (aj3),maxj (aj4)); maxj (Tñj
),minj (Iñj

),minj (Fñj
)〉.

Then ñ− 6 TNWAA(ñ1.ñ2, . . . , ñn) 6 ñ+.

(3) Monotonicity: let ñj (j = 1,2, . . . , n) be a collection of TNNs. If ñj 6 ñ∗
j for

j = 1,2, . . . , n, then TNWAA(ñ1, ñ2, . . . , ñn)6 TNWAA(ñ∗
1
, ñ∗

2
, . . . , ñ∗

n).

Proof. (1) Since ñj = ñ for j = 1,2, . . . , n, we have

TNWAA(ñ1, ñ2, . . . , ñn) =

n
∑

j=1

wj ñj

=

〈(

n
∑

j=1

wjaj1,

n
∑

j=1

wjaj2,

n
∑

j=1

wjaj3,

n
∑

j=1

wjaj4

)

;

1 −

n
∏

j=1

(1 − Tñj
)wj ,

n
∏

j=1

I
wj

ñj
,

n
∏

j=1

F
wj

ñj

〉

=

〈(

a1

n
∑

j=1

wj , a2

n
∑

j=1

wj , a3

n
∑

j=1

wj , a4

n
∑

j=1

wj

)

;

×
(

1 − (1 − Tñ)
∑n

j=1
wj
)

, I

∑n
j=1

wj

ñ
,F

∑n
j=1

wj

ñ

〉

=
〈

(a1, a2, a3, a4); 1 − (1 − Tñ), Iñ,Fñ

〉

= ñ.

(2) Since the minimum TNN is ñ− and the maximum TNN is ñ+, there is ñ− 6 ñj 6

ñ+. Thus, there is
∑n

j=1
wj ñ

− 6
∑n

j=1
wj ñj 6

∑n
j=1

wj ñ
+. According to the above

property (1), there is ñ− 6
∑n

j=1
wj ñj 6 ñ+, i.e. ñ− 6 TNWAA(ñ1, ñ2, . . . , ñn) 6 ñ+.

(3) Since ñj 6 ñ∗
j for j = 1,2, . . . , n, there is

∑n
j=1

wj ñj 6
∑n

j=1
wj ñ

∗
j , i.e.

TNWAA(ñ1, ñ2, . . . , ñn)6 TNWAA(ñ∗
1
, ñ∗

2
, . . . , ñ∗

n).

Thus, we complete the proofs of these properties. �

4.2. Trapezoidal Neutrosophic Weighted Geometric Averaging Operator

Definition 11. Let ñj = 〈(aj1, aj2, aj3, aj4);Tñj
, Iñj

,Fñj
〉 (j = 1,2, . . . , n) be a col-

lection of TNNs, then a TNWGA operator is defined as follows:

TNWGA(ñ1, ñ2, . . . , ñn) =

n
∏

j=1

ñ
wj

j , (17)
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where wj is the weight of ñj (j = 1,2, . . . , n) such that wj > 0 and
∑n

j=1
wj = 1. Spe-

cially, when wj = 1/n for j = 1,2, . . . , n, the TNWGA operator reduces to the trapezoidal

neutrosophic geometric averaging operator.

According to Definitions 7 and 11, we can introduce the following theorem.

Theorem 2. Let ñj = 〈(aj1, aj2, aj3, aj4);Tñj
, Iñj

,Fñj
〉 (j = 1,2, . . . , n) be a collec-

tion of TNNs, then according to Definitions 7 and 11, the following TNWGA operator is

given by

TNWGA(ñ1, ñ2, . . . , ñn) =

n
∏

j=1

ñ
wj

j

=

〈(

n
∏

j=1

a
wj

j1
,

n
∏

j=1

a
wj

j2
,

n
∏

j=1

a
wj

j3
,

n
∏

j=1

a
wj

j4

)

;

n
∏

j=1

T
wj

ñj
,1 −

n
∏

j=1

(1 − Iñj
)wj ,1 −

n
∏

j=1

(1 − Fñj
)wj

〉

(18)

where wj is the weight of ñj (j = 1,2, . . . , n) such that wj > 0 and
∑n

j=1
wj = 1.

By a similar proof manner of Theorem 1, we can prove Theorem 2, which is not re-

peated here.

Obviously, the TNWGA operator satisfies the following properties:

(1) Idempotency: let ñj (j = 1,2, . . . , n) be a collection of TNNs. If ñj (j =

1,2, . . . , n) is equal, i.e. ñj = ñ for j = 1,2, . . . , n, then TNWGA(ñ1, ñ2, . . . , ñn) = ñ.

(2) Boundedness: let ñj (j = 1,2, . . . , n) be a collection of TNNs and let ñ− =

〈(minj (aj1),minj (aj2),minj (aj3),minj (aj4)); minj (Tñj
),maxj (Iñj

),maxj (Fñj
)〉 and

ñ+ = 〈(maxj (aj1),maxj (aj2),maxj (aj3),maxj (aj4)); maxj (Tñj
),minj (Iñj

),minj (Fñj
)〉.

Then ñ− 6 TNWGA(ñ1, ñ2, . . . , ñn)6 ñ+.

(3) Monotonicity: let ñj (j = 1,2, . . . , n) be a collection of TNNs. If ñj 6 ñ∗
j for

j = 1,2, . . . , n, then TNWGA(ñ1, ñ2, . . . , ñn) 6 TNWGA(ñ∗
1
, ñ∗

2
, . . . , ñ∗

n).

By a similar proof manner of the above properties, we can prove these properties (omit-

ted).

5. Decision Making Method with TNNs

In this section, we apply the TNWAA and TNWGA operators and the score function

to multiple attribute decision making problems under a TNN environment. For a mul-

tiple attribute decision making problem, assume that there are a set of alternatives A =

{A1,A2, . . . ,Am} based on a set of attributes C = {C1,C2, . . . ,Cn}. The weight vector
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Table 1

Linguistic values of TNNs for the linguistic term set.

Linguistic term Linguistic value of TNNs

Very poor 〈(0.1,0.1,0.1,0.1);0.5,0.3,0.3〉

Poor 〈(0.2,0.3,0.4,0.5);0.6,0.2,0.2〉

Fairly poor 〈(0.3,0.4,0.5,0.6);0.7,0.1,0.1〉

Medium 〈(0.4,0.5,0.6,0.7);0.8,0.0,0.1〉

Fairly good 〈(0.5,0.6,0.7,0.8);0.8,0.1,0.1〉

Good 〈(0.7,0.8,0.9,1.0);0.8,0.2,0.2〉

Very good 〈(1.0,1.0,1.0,1.0);0.9,0.1,0.1〉

of the attributes is W = (w1,w2, . . . ,wn)
T , which is given by the decision maker. Then,

the decision maker can evaluate the alternatives on the attributes by the linguistic values of

TNNs from the linguistic term set L = {Very poor, Poor, Fairly poor, Medium, Fairly good,

Good, Very good}, which are shown in Table 1. In the evaluation process, the decision

maker can easily assign the linguistic values of TNNs to the attributes according to

the linguistic terms, hence the evaluation information of the alternative Ai on the at-

tribute Cj is represented by the form of a TNN ñij = 〈(aij1, aij2, aij3, aij4);Tij , Iij ,Fij 〉

(i = 1,2, . . . ,m; j = 1,2, . . . , n). Thus, we can establish a trapezoidal neutrosophic de-

cision matrix D = (ñij )m×n.

Then, we apply the TNWAA or TNWGA operator and the score function to the multi-

ple attribute decision making problems with trapezoidal neutrosophic information to rank

the alternatives and to select the best one. The steps of the decision making process are

described as follows:

Step 1: Utilize the TNWAA operator of Eq. (13) to obtain the collective overall number ñi

for Ai (i = 1,2, . . . ,m) with respect to the weight vector W = (w1,w2, . . . ,wn)
T

for Cj (j = 1,2, . . . , n) or the TNWGA operator of Eq. (18) to obtain the collective

overall value ñi for Ai (i = 1,2, . . . ,m) with respect to the weight vector W =

(w1,w2, . . . ,wn)
T for Cj (j = 1,2, . . . , n).

Step 2: Calculate the score function S(ñi) (i = 1,2, . . . ,m) of the collective overall num-

ber ñi (i = 1,2, . . . ,m).

Step 3: Rank the alternatives according to the score values, and then select the best one.

Step 4: End.

6. An Illustrative Example

In order to demonstrate the application of the proposed method, an example about the

investment selection of a company is adapted from Ye (2014c). There is a company, which

wants to invest a sum of money to an industry. A panel considers four alternatives: (1) A1

is a car company; (2) A2 is a food company; (3) A3 is a computer company; (4) A4 is an

arms company. The evaluation on the alternatives is based on three attributes: (1) C1 is

the risk; (2) C2 is the growth; (3) C3 is the environmental impact. The weight vector of the

three attributes is W = (0.35,0.25,0.4)T . Then the four possible alternatives with respect
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to the above three attributes are evaluated by the expert or decision maker according to

the linguistic values of TNNs for the linguistic term set in Table 1. Thus, we can establish

the following trapezoidal neutrosophic decision matrix D:

D =









〈(0.2,0.3,0.4,0.5); 0.6,0.2,0.2〉 〈(0.3,0.4,0.5,0.6); 0.7,0.1,0.1〉

〈(0.4,0.5,0.6,0.7); 0.8,0.0,0.1〉 〈(0.5,0.6,0.7,0.8); 0.8,0.1,0.1〉

〈(0.2,0.3,0.4,0.5); 0.6,0.2,0.2〉 〈(0.3,0.4,0.5,0.6); 0.7,0.1,0.1〉

〈(0.7,0.8,0.9,1.0); 0.8,0.2,0.2〉 〈(0.5,0.6,0.7,0.8); 0.8,0.1,0.1〉

〈(0.2,0.3,0.4,0.5); 0.6,0.2,0.2〉

〈(0.3,0.4,0.5,0.6); 0.7,0.1,0.1〉

〈(0.3,0.4,0.5,0.6); 0.7,0.1,0.1〉

〈(0.3,0.4,0.5,0.6); 0.7,0.1,0.1〉









.

Hence, the proposed method can be applied to this decision making problem according

to the following computational process:

Step 1: Utilize the TNWAA operator of Eq. (13) to obtain the collective overall value ñi

for Ai (i = 1,2,3,4) as follows:

ñ1 =
〈

(0.2250,0.3250,0.4250,0.5250);0.6278,0.1682,0.1682
〉

,

ñ2 =
〈

(0.3850,0.4850,0.5850,0.6850);0.7648,0,0.1000
〉

,

ñ3 =
〈

(0.2650,0.3650,0.4650,0.5650);0.6682,0.1275,0.1275
〉

,

ñ4 =
〈

(0.4900,0.5900,0.6900,0.7900);0.7648,0.1275,0.1275
〉

.

Step 2: Calculate the score values of S(ñi) (i = 1,2,3,4) of the collective overall value

ñi (i = 1,2,3,4) by Eq. (11), we can obtain:

S(ñ1) = 0.2864, S(ñ2) = 0.4752, S(ñ3) = 0.3338, and S(ñ4) = 0.5354.

Step 3: Ranking order of the four alternatives is A4 ≻ A2 ≻ A3 ≻ A1 according to the

score values. Thus, the alternative A4 is the best choice among the four alternatives.

On the other hand, we can also utilize the TNWGA operator to give the following

computational procedure:

Step 1′: By utilizing the TNWGA operator of Eq. (18) for Ai (i = 1,2,3,4), each col-

lective overall value ñi (i = 1,2,3,4) is obtained as follows:

ñ1 =
〈

(0.2213,0.3224,0.4229,0.5233);0.6236,0.1761,0.1761
〉

,

ñ2 =
〈

(0.3770,0.4786,0.5797,0.6805);0.7584,0.0662,0.1000
〉

,

ñ3 =
〈

(0.2603,0.3617,0.4624,0.5629);0.6632,0.1363,0.1363
〉

,

ñ4 =
〈

(0.4585,0.5642,0.6681,0.7710);0.7584,0.1363,0.1363
〉

.
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Step 2′: By using Eq. (11), we calculate the score values of S(ñi) (i = 1,2,3,4) of the

collective overall value ñi (i = 1,2,3,4) as follows:

S(ñ1) = 0.2820, S(ñ2) = 0.4570, S(ñ3) = 0.3282, and S(ñ4) = 0.5100.

Step 3′: Hence, the ranking order of the four alternatives is A4 ≻ A2 ≻ A3 ≻ A1. Thus,

the alternative A4 is still the best choice among the four alternatives.

Obviously, above two kinds of ranking orders and the best alternative are identical and

the same as Ye’s results (2014c).

Compared with the relevant paper (Wang and Zhang, 2009) which proposed the in-

tuitionistic trapezoidal fuzzy decision making approach, the decision making method in

this paper uses the information of TNNs, whereas the decision making method in Wang

and Zhang (2009) uses the information of ITFNs. As mentioned above, the TNN is a

further generalization of the ITFN. So the decision making method proposed in this pa-

per is more typical and more general in actual applications since the decision making

method proposed in Wang and Zhang (2009) is a special case of the decision making

method proposed in this paper. Furthermore, compared with the relevant papers (Ye, 2013;

Chi and Liu, 2013; Ye, 2014a, 2014b, 2014c, 2014d; Liu et al., 2014; Zhang et al., 2014;

Biswas et al., 2014; Zhang and Wu, 2014), the decision-making approach proposed in this

paper can be used to solve decision making problems with triangular and trapezoidal neu-

trosophic information, whereas the decision-making methods in Ye (2013), Chi and Liu

(2013), Ye (2014a, 2014b, 2014c, 2014d), Liu et al. (2014), Zhang et al. (2014), Biswas et

al. (2014), Zhang and Wu (2014) are not suitable for the decision making problems in this

paper because the domains of SVNSs and INSs are discrete sets, but not continuous sets in

existing literature. Therefore, the method proposed in the paper is a further generalization

of existing methods.

7. Conclusions

This paper proposed neutrosophic numbers and TNNs and the operational relations of

TNNs as the extension of IFNs and ITFNs and introduced the score function of a TNN for

comparing TNNs. Then we developed the TNWAA and TNWGA operators to aggregate

TNNs and investigated their properties. Further, we established a decision making method

based on the TNWAA or TNWGA operator and the score function to solve multiple at-

tribute decision making problems with TNN information. Finally, an illustrative example

was given to show the application of the developed decision making method. Since this pa-

per extends the discrete domains of SVNSs and INSs to the continuous domain of TNNs,

the developed decision making method includes much information and the fuzziness char-

acter in multiple attribute decision making problems with TNN information. In the future

research, it is necessary to investigate the applications of these aggregation operators to

the other domains such as pattern recognition and medical diagnosis.
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