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Abstract. Analysing massive amounts of data and extracting value from it has become key across

different disciplines. As the amounts of data grow rapidly, current approaches for data analysis are

no longer efficient. This is particularly true for clustering algorithms where distance calculations

between pairs of points dominate overall time: the more data points are in the dataset, the bigger the

share of time needed for distance calculations.

Crucial to the data analysis and clustering process, however, is that it is rarely straightforward:

instead, parameters need to be determined and tuned first. Entirely accurate results are thus rarely

needed and instead we can sacrifice little precision of the final result to accelerate the computa-

tion. In this paper we develop ADvaNCE, a new approach based on approximating DBSCAN. More

specifically, we propose two measures to reduce distance calculation overhead and to consequently

approximate DBSCAN: (1) locality sensitive hashing to approximate and speed up distance calcu-

lations and (2) representative point selection to reduce the number of distance calculations.

The experiments show that the resulting clustering algorithm is more scalable than the state-of-

the-art as the datasets become bigger. Compared with the most recent approximation technique for

DBSCAN, our approach is in general one order of magnitude faster (at most 30× in our experiments)

as the size of the datasets increase.
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1. Introduction

Unlocking the value in the masses of the data stored and available to us has become a

primary concern. Medical data, banking data, shopping data and others are all analysed

in great detail to find patterns, to classify behaviour or phenomena and to finally predict

behaviour and progression. The outcome of these analyses is ultimately hoped to predict

behaviour of customers, to increase sales in marketing (Chen et al., 1996), to optimize

diagnostic tools in medicine, to detect disease earlier, to optimize medical treatments for

a better outcome (Adaszewski et al., 2013; Venetis et al., 2015) and so on.

Generating insightful knowledge from data, however, is not efficient today. While there

exists a plethora of tools and algorithms for the analysis and clustering of data, most of
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them have a considerable complexity, meaning they will not scale well to the massive

datasets we see today. They are very efficient on the small datasets we dealt with until

recently but as the amounts of data grow rapidly, these algorithms do not scale and fail to

provide a fast analysis.

At the same time, data analysis rarely is a straightforward process. All clustering al-

gorithms require the tuning of parameters, e.g. number of clusters in k-means, maximum

distance (ǫ) in DBSCAN, etc., and also the data preparation process frequently needs to

be repeated, for example, to adjust the level or aggregation or similar. Clearly, throughout

the process of iteratively improving the analysis, the results need not be exact. Instead,

by sacrificing little precision, we can substantially accelerate each analysis and thus the

overall process.

More formally, the problem we address is density-based clustering, i.e. given a set of

points P in d-dimensional space R
d (with typically a very high d), the goal is to group

points into clusters, i.e. to divide the points into dense areas separated by sparse areas.

Existing approaches generally differ in how dense and sparse areas are defined but all

approaches share that distance calculations account for the majority of the execution time.

By reducing the number of distance calculations and approximating the remaining ones,

we can trade accuracy for efficiency and scalability.

In this paper we propose ADvaNCE (Approximate DeNsity-Based ClustEring) (Li et

al., 2016), a novel approximation approach for DBSCAN, arguably the most prominent

density-based clustering approach used today. Our approach reduces the overhead of cal-

culating distances with two measures. First, we use locality sensitive hashing (LSH) to

approximate each distance calculation and thus accelerate it. Clearly, this step in itself

already introduces approximation. Second, we approximate the dataset by only retain-

ing representative points which summarize its structure. Doing so reduces the number of

points and consequently also the number of distance calculations. Like locality sensitive

hashing, this measure approximates the result as well.

The resulting approach outperforms the classic DBSCAN by orders of magnitude by

sacrificing the accuracy in the order of 0.001%. More importantly,ADvaNCE outperforms

the state-of-the-art approximate DBSCAN approaches by at most 30×. It scales well with

an increasing size of datasets for small ǫ’s and consistently outperforms the state of the

art.

The remainder of this paper is structured as follows. In Section 2 we discuss in de-

tail DBSCAN along with its known optimizations but also its challenges. We then move

on to give an overview of ADvaNCE in Section 3 and discuss in more detail the approxi-

mate acceleration based on locality sensitive hashing in Section 4.2 and the approximation

based on representative points in Section 5. To understand the benefits and limitations of

ADvaNCE we first analyse it analytically in Section 6 and then compare ADvaNCE’s ef-

ficiency to related approaches in Section 7. We then analyse its performance in detail in

Section 8. We discuss the state-of-the-art of clustering algorithms (approximate and exact)

in Section 9 and finally draw conclusions in Section 10.
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2. DBSCAN and Its Challenges

DBSCAN is arguably the most renowned density based clustering algorithm. We first give

an overview of DBSCAN, present a first optimization and then motivate our approach with

a motivation experiment.

2.1. DBSCAN Recap

DBSCAN is a density based clustering algorithm that takes two parameters ǫ and minPts

to determine what areas of the datasets are dense/sparse and finally to compute the clus-

tering result. For every input point p, if the neighbourhood within radius ǫ contains at

least minPts number of points, we call point p a core point.

Definition 1. Point p is density reachable from point q if there exists a sequence of points

p1,p2,p3, . . . , pn such that either:

1. p1 = p and pn = q ;

2. p1,p2,p3, . . . , pn−1 are core points;

3. pi+1 is in the neighbourhood of pi with radius ǫ.

Points that are not core points themselves but are density-reachable from any core point

are called border points. A cluster defined by DBSCAN starts from a single core point and

gradually adds all density-reachable points from any points in this cluster, which leads to

a chain effect, and the cluster grows until it is finally complete. Points that are neither core

points nor border points are called noise points and do not belong to any cluster.

2.2. Grid-Based Optimization

Naive implementations of the DBSCAN algorithm (Ester et al., 1996) compute distances

between all pairs of data points in the dataset in O(n2). A first proposed optimization

uses a KD-Tree (Bentley, 1975) to reduce the number of distance calculations between

data points.

At the centre of ADvaNCE is a grid-based optimization (Gunawan, 2013) of DBSCAN

that further reduces the distance calculations. The grid used has the same dimensions as

all points in the dataset. With this grid we can considerably reduce the number of distance

calculations: given a point p, we only have to search in a fixed number of cells around p

to find other points within distance ǫ of p. More precisely, given the centre cell c in which

p is located, we only have to search the cells c′ with dist(c, c′) < ǫ, i.e. the neighbouring

cells N(c) (red in Fig. 1).

The grid uses uniform spacing of the cells in all dimensions, making assignment of

points to cells and related calculations straightforward. With the grid, the algorithm has

four distinct phases.

Grid construction: in the assignment phase the algorithm iterates over all points and maps

each point to the grid cell that encloses it. To eventually reduce the number of distance
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Fig. 1. Neighbouring cells of c are in red.

calculations, we choose the grid cell width as ǫ√
D

with D as the dimension, guaranteeing

that all points within a cell are by definition within distance ǫ of each other and thereby

form a cluster.

Determining core points: the goal of this phase is to determine core points. For this phase

the choice of grid cell width used in the first phase is crucial. As mentioned previously,

if the grid cell width in the first phase is set to ǫ√
D

, then the diagonal of the cell is ǫ and

consequently the distance between any two points in the same cell is at most ǫ. If a cell c

contains more than minPts points, all the points inside cell c are consequently core points.

Merge clusters: most important in this phase is that we consider each non-empty cell as

a small cluster. Further, if two core points in two different cells are within distance less

than ǫ of each other, these two points belong to the same cluster and the clusters need to

be merged.

To compute all clusters, the optimization generates a graph G= (V ,E) where V rep-

resents all non-empty cells. Given two cells c1 and c2, E contains an edge between c1

and c2 if there exist core points p1 in c1 and p2 in c2 with dist(p1,p2) < ǫ. The result

of the merge cluster phase consequently is the connected components of graph G which

represent the clusters.

Determine border points: given a non-core point p in cell c (by definition a cell with

less than minPts), we check all core points in neighbouring cells N(c), and find the core

point q with the minimum distance to p. Then p is a border point and belongs to the

cluster of core point q . If there are no core points in N(c), then p is a noise point and does

not belong to any cluster.

2.3. DBSCAN Challenges

A considerable challenge of DBSCAN (and other clustering approaches) is the number

of distance calculations and the time needed for them. Even for the optimized DBSCAN

algorithm (Gunawan, 2013) the number of distance calculations is substantial. To make

matters worse, the number grows rapidly with increasing dataset size.
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Fig. 2. Share of overall time needed for distance calculations.

We demonstrate this problem with a motivation experiment where we increase the size

of the dataset from 0.125 millions to 1 million. The datasets used have five dimensions

and are randomly generated (Gan and Tao, 2015). For DBSCAN we set the parameters to

ǫ = 5000 and the minimum number of points to 100 (Gan and Tao, 2015). We repeat the

experiment for each dataset three times and report the average.

As the results in Fig. 2 show, the share of the total time needed to execute distance

calculations in DBSCAN starts with a few seconds for a very small dataset of 125’000 and

grows rapidly to a substantial share of more than 60% for a dataset of 1 million. Clearly,

the share of the overall time spent on distance calculations is substantial and grows rapidly.

As we will show in the remainder of this paper, we speed up DBSCAN considerably and

enable it to scale by using approximation in two respects. First, we use approximation to

reduce the total number of distance calculations, and second, we use approximation to

accelerate the remaining distance calculations. As we will show, only little precision has

to be sacrificed using ADvaNCE to accelerate the clustering process considerably.

3. ADvaNCE Overview

ADvaNCE uses the key insight that for large multi-dimensional datasets the time needed

to find clusters is primarily driven by the number of distance computations needed. While

in the previous work Gunawan (2013) has substantially reduced this number, it is still

considerable and grows rapidly for increasingly big datasets. By approximating the cluster

computation in a grid-based DBSCAN (Gunawan, 2013) implementation we considerably

accelerate the process.

The first approximation reduces the number of distance calculations, or more precisely,

the number of neighbouring cells a cell has to speed up clustering. Using locality sensi-

tive hashing (Andoni and Indyk, 2008) (LSH) we can approximate distances between the

points and efficiently establish whether two points are within distance ǫ of each other.
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A second approximation reduces the points considered in each cell. To decide whether

or not two grid cells, each containing more than minPts and thus containing only core

points, should be joined, not all points need to be considered. To obtain an approximate

result it is sufficient to take into account primarily points closer to the border of the cell:

if each of two cells has a point within distance ǫ of each other, then there is no need to test

further points.

Particularly, the former optimization merges the cells with at least minPts (which are

consequently all core points) approximately and efficiently. It does, however, only join a

subset of neighbouring cells at a time and consequently several iterations are needed to

join all neighbouring cells of core points. ADvaNCE consequently is run iteratively to join

cells. It runs iteratively until the result converges, i.e. until the result no longer changes

between two iterations (set as a parameter).

4. ADvaNCE: Approximate Neighbourhood

While the basic Grid based algorithm is very efficient in two dimensions with D = 2 and

in case the width of each cell is set to
D
√

ǫ

2
(and the diagonal of each cell consequently

is ǫ), in higher dimensions the number of N(c) cells grows considerably. For example, in

five dimensions the cell width becomes very small with ǫ/
√

(5), meaning that three cells

need to be searched in each dimension and N(c) thus contains 7
5 cells. Merging cells into

clusters will be very time consuming as all of N(c) (75 cells in five dimensions) has to be

searched for every core point.

In the following we first discuss the basic concept of approximating the neighbourhood

and then present how to design the algorithm that (a) approximates the neighbourhoodand

(b) clusters based on the approximation.

4.1. Using Locality Sensitive Hashing to Approximate

As discussed previously, searching in the neighbouring cells N(c) is crucial to the ex-

ecution of grid-based DBSCAN (Gunawan, 2013) as it is an integral part of every step

(except when constructing the grid). The number of cells in N(c), however, is growing

uncontrollably with an increasing number of dimensions. The basic idea of our approx-

imate algorithm is to find an approximate neighbour for each core point using locality

sensitive hashing instead of searching in the potentially large number of cells in N(c).

We consequently use the approximate neighbours to finish DBSCAN with a controllable

precision.

In the context of ADvaNCE we use locality sensitive hashing (LSH, Andoni and Indyk,

2008) to approximate and reduce the neighbourhood that needs to be considered. The

LSH functions H we use are random hyperplane projection functions. More precisely,

given two points p,q in dimension D1 (the dimension of the input data) we use H a set

of random hyperplane distance functions to project p and q into dimension D2, thereby

approximating the distance between them. With this, we can assert the following about

the approximate distance between p and q :
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Algorithm 1: HashAndAssign.

Input: P : set of input points

ǫ: distance threshold

Output: NG: grid in higher dimension

Data: D1: dimension of input data

D2: dimension to project to

Create D2 random hyperplane in D1 space

Initialize uniform grid NG in D2 space with cellWidth= ǫ

foreach Point p ∈ P do

foreach i ∈D2 do
dist[i] = distance between p and hyperplane[i]

set coordinates of p in D2 to dist

assign p with coordinates dist to NG
return (NG)

1. If dist(p, q) < ǫ, then for every function Hi ∈H , we have Hi(p)−Hi(q) < ǫ;

2. If dist(p, q) > ǫ, then for every function Hi ∈ H , there is a considerable chance

that Hi(p)−Hi(q) > ǫ and there is a small possibility that Hi(p)−Hi(q) < ǫ.

With this we consequently can construct a new grid NG in D2 with cellWidth= ǫ and

assign each point to the corresponding cell. Given a point p, we define the cell c in the

new grid NG that contains p as the approximate neighbour of p, denoted by AN(p) and

all points in c will serve as approximate neighbour points of p. The algorithm is shown

in pseudocode in Algorithm 1.

Given our approach to approximation, it is possible that points that are within the ǫ

neighbour sphere B(p, ǫ) can not be found in a neighbour cell in NG due to the approxi-

mation. In the grid NG in D2 space B(p, ǫ) may be split into two parts. We address this

issue by iterating and accumulating the hashing results to obtain a good approximation of

the true ǫ neighbours.

4.2. ADvaNCE-LSH – Approximate, LSH-Based DBSCAN

Using the approximate neighbours in NG generated based on locality sensitive hashing we

propose ADvaNCE-LSH, our approximate grid-based DBSCAN algorithm using LSH as

described in Andoni and Indyk (2008). The functions we use are hashing functions with

a p-stable distribution (Andoni and Indyk, 2008). Independent of the dimensionality of

the input data, we project to 8 dimensional space. An overview in pseudocode is given in

Algorithm 2.

The Construct Grid and Determine Core Points functions are very similar to the func-

tions explained for the basic grid-based DBSCAN implementation. In this version we only

mark the points as core points when the cell contains more than minPts points and leave

it to Determine Core Points Hash to determine which of the remaining points are core

points.
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Algorithm 2: ADvaNCE-LSH – approximate, LSH-based DBSCAN.

Input: P : set of input points

ǫ: distance threshold

minPts: minimum number of points to form a cluster

G= ConstructGrid(P )

DetermineCorePoints(G)

while true do
NG =HashAndAssign(P );
DetermineCorePointsHash(NG,P );
MergeClustersHash(NG,G,P );

DetermineBorderPointsHash(NG,G,P );

The condition for the while loop in Algorithm 2 can be set to a fixed number of itera-

tions. Alternatively, and to control the precision of the result better, we can use a heuristic

termination condition that counts the number of core points or the number of clusters and

stops when the accuracy no longer improves, i.e. when there is no more change between

two iterations.

The function Determine Core Points Hash and Determine Border Points Hash are the

approximate versions of Determine Core Points and Determine Border Points described

previously. More precisely, in Determine Core Points Hash, for every non-core point p,

we count the number of points in AN(p) within ǫ of point p. Although AN(p) is not

equal to B(p, ǫ), we can converge to it through iterations. The accumulation of AN(p)

in successive iterations will converge to B(p, ǫ) and we can gradually compute the full

result. In Determine Border Points Hash we find the nearest core point for every non-core

points p in AN(p) generated by LSH. This step can also be repeated several times to

improve the accuracy.

The function Merge Clusters Hash is the approximate version of Merge Clusters dis-

cussed previously. If two core points p and q are in the same cell in NG and their distance

is less than ǫ, the two small clusters that contain p and q are merged. The algorithm is

illustrated in Algorithm 3.

In Algorithm 3 we merge the clusters in D1 using the hashing result in D2 space.

Crucially, we add a break in the for-loop because we do not merge all possible clusters in

one go but instead use a number of iterations to gradually merge the clusters and terminate

when we meet the condition of the while loop in the main algorithm (Algorithm 2).

5. ADvaNCE: Representative Points Approximation

Given the basic approximation discussed before, we can further accelerate Grid-based

DBSCAN featuring locality sensitive hashing called ADvaNCE-LSH. More particularly,

in case of very dense datasets, the number of points in a cell that need to be compared to

points in neighbouring cells is considerable, leading to substantial overhead. This leads
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Algorithm 3: Approximate cluster merging.

Input: NG: grid in higher dimension

G: initial grid

P : set of points

foreach Point p ∈ P do
c← cell in NG containing p

foreach Point q ∈ c do

if dist(q,p) < ǫ then
c1← cell in G containing p

c2← cell in G containing q

merge c1 and c2

break

to a bottleneck in the main iteration described previously as we have to iterate through all

points in a cell and need to determine their relationship to points in neighbouring cells.

To address this issue we have designed a further optimization. Given minPts, which is

the minimum number points to form a cluster, we set the maximum number of points in

each cell to be maxNum where maxNum > minPts and ignore the other points in the main

iteration.

For every cell c in the original grid G there are three cases:

1. If |c| < minPts, then we can not (yet) determine whether the points in c are core

points and c is thus not affected by this approximation;

2. If |c|> minPts and |c|6 maxNum, then all points in c are core points and this cell

will also not be affected by this approximation;

3. If |c|> maxNum, then it follows that |c|> minPts and all points in c are core points.

All points in c belong to the same cluster so we only need to identify which cluster

this cell c belongs to during the main iteration. Although we ignore |c| −maxNum

points we can still determine which cluster they belong to.

Key to the approach is to choose maxNum points such that we do not lose information

(or at least can limit the information lost).

Using Algorithm 4 we select up to maxNum of the points that are near the border of

each cell and in the Merge Clusters Hash function we calculate the distance to determine

the relationship between different cells. The points on the border of each cell are the most

useful in determining what cells should be merged while the points near the centre of the

cell are not very useful and we potentially ignore them. Consequently, Algorithm 4 will

first calculate the geometric centre of all points and take the first maxNum points furthest

away from the geometric centre.

To illustrate the algorithm we randomly generate 400 points in 4 cells and set the

maxNum in each cell to be 50 and obtain the result in Fig. 3: the red-small points in the

centre of each cell are points that are ignored by Merge Clusters Hash algorithm while the

big blue points around the border are still considered.
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Algorithm 4: Reducing points in a cell.

Input: G: initial grid

maxNum: maximum number of points per cell

foreach Cell c ∈G do
gc← geometric centre of all points in c

foreach Point p ∈ c do
diff[p]← dist(p,gc);

sort(diff);

take first maxNum from diff

Fig. 3. Neighbouring cells of c in red.

6. ADvaNCE: Analytical Analysis

To use ADvaNCE it is crucial to appreciate its benefits and to understand its limitations.

In the following we therefore first analyse the accuracy of the algorithm and then reason

about its time complexity.

6.1. Algorithm Accuracy

As ADvaNCE only approximates the DBSCAN result, it is of course crucial to analyse

its accuracy. In the functions Determine CorePoints Hash and Merge Clusters Hash we

use the approximate neighbours AN(p) based on locality sensitive hashing instead of the

actual ǫ neighbours B(p, ǫ). This may lead to a decreased accuracy in the following sce-

narios:

1. Given a point p, the number of points in AN(p) is less than minPts, but B(p, eps)

has more than minPts points. A core point p may therefore not be identified as core

point in the current iteration;
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2. Given cells c1 and c2, core points p1 ∈ c1, p2 ∈ c2 and dist(p1,p2) < ǫ, but p1

and p2 are not in the same bucket after locality sensitive hashing. The two cells that

should be merged may not be merged in the current iteration.

In both scenarios, merging of clusters or identification of core points may not occur.

Crucial to ADvaNCE, however, is that it merges clusters in multiple iterations. As the num-

ber of iterations grows ADvaNCE will gradually determine more core points and merge

more clusters that need to be merged. The impact of these two scenarios on the accuracy

will consequently decrease monotonically and the algorithm will converge depending on

the stop criteria which is either a fixed number of iterations or no change (in clusters or

core points) in the last iterations.

Also note that we still perform distance calculations for points in AN(p) to select the

points that are truly in B(p, ǫ) and use these points to determine core points or merge

clusters. We can therefore rule out the following two cases to occur in ADvaNCE:

1. Point p is determined as core point but actually it is not;

2. Two cells are merged together but should not be.

In conclusion, the accuracy of ADvaNCE will increase monotonically with the number

of iterations and an excessive number of iterations therefore cannot adversely affect the

accuracy.

6.2. Time Complexity

The most time consuming part of ADvaNCE is the iterations of hashing and merging. In

the following we thus analyse the time complexity of each iteration of ADvaNCE. Since

Determine Core Points Hash and Merge Clusters Hash perform a linear search in the ap-

proximate neighbourhood AN(p), the expected size of the AN , which is also the expected

number of collisions for each query point in locality sensitive hashing, is the key to deter-

mining the running time of each iteration. We first discuss characteristics of level-i cells

(number and distance between them) and the p-stable hashing functions used (probability

of collision) before we reason about the time complexity.

Level-i cell characteristics: let P be the set of points in R
d where d is a constant (di-

mensions) and we construct the original grid G for all points in P . We start by defining

level-i cells.

Definition 2. Level-i cells: For a point q we find the cell c in G that contains q . Cells that

are directly connected to c are level-0 cells. For level-i cells, the outer cells that directly

connect to level-i cells are level-(i + 1) cells.

An example of level-i cells in a 2D grid is shown in Fig. 4. Relative to the red cell, the

yellow cells are level-0 cells, the green cells are level-1 cells, etc. The number of level-i

cells Ni is

Ni = (2i + 3)d − (2i + 1)d =O
(

id−1
)

.
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Fig. 4. Cells neighbouring the red cell are level-0 cells.

For every point q in level-i cells, the minimum distance between q and p, Mi is

Mi = i × cellWidth= i ×
ǫ
√

d
.

The maximum number of points in level-i cell is a constant maxNum as we discussed in

the context of the representative points approximation.

Hashing functions characteristics: if fp(t) is the probability density function of the

absolute value of the p-stable distribution, then for two vectors v1, v2 and with c= ‖v1−
v2‖, the probability of collision p(c) is:

p(c)= Pra,b

[

ha,b(v1)= ha,b(v2)
]

=
∫ r

0

1

c
fp

(

t

c

)(

1−
t

r

)

dt

where a, b and r are parameters for p-stable LSH functions. In order to get a desirable

hash result, we can also concatenate k functions h in H and redefine the hash function as

g(v)= h1(v), h2(v), . . . , hk(v). In this case, the probability of collision p(c) is as follows:

pk(c)=
1

ck

[∫ r

0

1

c
fp

(

t

c

)(

1−
t

r

)

dt

]k

.

With p (the possibility function defined by a p-stable LSH) and k (the number of hash

functions used) the number of collisions for a query point q then is:

E[#Collision] =
∑

x∈D
pk

(

‖q − x‖
)

where pk(‖q − x‖) is the possibility of collision if two points with distance ‖q − x‖ and

D is the size of the dataset.
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Time complexity analysis: since we divide the whole dataset into cells of levels, we can

redefine the number of collision by level-i cells. In order to determine an upper bound for

the number of collisions, we can assume that all points in level-i cells have the distance Mi ,

which is the minimum distance they can have.

E[#Collision] =
∑

x∈D
pk

(

‖q − x‖
)

6

∞
∑

i=0

maxNum×Ni × pk(Mi)

6

∞
∑

i=0

maxNum×O
(

id−1
)

× pk

(

iǫ
√

d

)

6

∞
∑

i=0

maxNum×O
(

id−1
)

×
(

√
d

iǫ

)k

= maxNum×
(

√
d

ǫ

)k

×
∞
∑

i=0

1

O(ik−d+1)
.

The expected number of collisions is proportional to an infinite series of i . Given any d

(the dimension of the input data) we can always find k > (d + 1) and the infinite series

of i will consequently converge to a constant regardless of how big i is. The expected

number of collisions can be expressed by the following function, where C is a constant

independent of the size of the dataset:

= maxNum×
(

√
d

ǫ

)k

×C.

The expected size of the approximate neighbour AN(p) therefore is O(1). In function

Determine Core Point Hash and Merge Clusters Hash, we perform a linear search in AN

for every point, making the time complexity O(n). Also, the hashing process itself is O(n)

and so the time complexity of one whole iteration consequently is O(n).

7. Experimental Evaluation

In this section we first describe the experimental setup and then we perform a sensitivity

analysis using synthetic datasets to understand the performance by changing one work-

load variable at a time. To demonstrate the benefits of our approach we also use real world

datasets. Before we conclude we also analyse our algorithm in depth by discussing a break-

down of its performance.

7.1. Experimental Setup

The experiments are run on a Linux Ubuntu 2.6 machine equipped with Intel(R) Xeon(R)

CPU E5-2640 0 CPUs running at 2.5 GHz, with 64 KB L1, 256 KB L2 and 12 MB L3
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cache and 8 GB RAM at 1333 MHz. The storage consists of 2 SAS disks of 300 GB

capacity each. Storage, however, is only used once to read the data into memory. In the

following we discuss the software setup as well as the configuration details.

7.2. Software Setup and Datasets

We compare our algorithm against the most recent approximate DBSCAN implementa-

tion, ρ-approximate DBSCAN available and set ρ to 0.001 as recommended (Gan and

Tao, 2015). We use two different versions of our approach, the first using the hashing

approximation only (ADvaNCE-LSH) and the second using the representative point re-

duction as well (ADvaNCE). Crucially, the stop criteria for ADvaNCE (for both versions)

is set so that it achieves the same accuracy as ρ-approximate DBSCAN. Our approach is

configured to use eight p-stable hashing functions and convergence stops once no more

clusters are merged.

Each algorithm implemented uses a single CPU core to ensure a fair comparison. Our

approach is written in C++ while we use the executable provided for Gan and Tao (2015).

All implementations are compiled using g++ with -o3.

All experiments are repeated five times and the execution time is averaged.

We use the same synthetic datasets as in Gan and Tao (2015) defined with a dimen-

sionality d , a restart probability ρrestart, a target cardinality and a noise percentage ρnoise.

The datasets are generated using a random walk: the walk moves step by step a distance

of rshift towards a random direction every c number of steps. In each step, with probability

ρrestart , the walker restarts by jumping to a random location in the data space, resetting

the step counter to c. No matter if a restart has happened, the walker produces a point

uniformly at random in the ball centred at its current location with radius 100. We repeat

a total of n× (1− ρnoise) steps generating the same number of points and add n× ρnoise

uniformly distributed noise points. Put simply, we start to generate a cluster and in every

step, with probability ρrestart, start to generate a new cluster.

We also use two real datasets (Bache and Lichman, 2013): the Household dataset in

7D as well as the KDD Cup ’99 dataset (after PCA on the attributes) in 9D. The House-

hold dataset measures electric power consumption in one household with a one-minute

sampling rate over a period of almost 4 years resulting in 2’049’280 data points. The KDD

Cup ’99 dataset consists of 4’898’431 data points representing detected network intrusion

events.

All data is normalized in a domain of [0, 10’000] in all dimensions.

7.3. Accuracy Metric

To measure the accuracy of the approximate result we compare it to the exact result. We

use the established omega-index to measure the quality of the clustering result (Collins

and Dent, 1988; Murray et al., 2012). The omega-index assesses the similarity of two

clustering results as the ratio of consistent pairs of points, i.e. a point p needs to be in the

same clusters in both clustering results. We compare the exact result obtained with the
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Fig. 5. Average execution time for experiments in 5, 7 and 9 dimensions with increasing dataset size.

grid-based DBSCAN algorithm with either version of ADvaNCE. A value of the omega-

index of 100% consequently means ADvaNCE’s result is precise and all values below that

indicate how much the approximate result deviates from the precise result.

7.4. Synthetic Data

The synthetic datasets we use are generated as described previously. The DBSCAN pa-

rameter minPts is set to 100 (Gan and Tao, 2015). maxNum for the representative points

approximation is set to
√

minPts×M where M is the maximum points per cell.

7.4.1. Increasing Dataset Size

In this first experiment we compare the execution time of our approach (both optimiza-

tions) with the most recent DBSCAN approximation technique.We cannot compare it with

a basic, accurate DBSCAN as this takes too long to execute but infer from experiments

that the exact DBSCAN implementation (Ester et al., 1996) is slower than ρ-approximate

DBSCAN (Gan and Tao, 2015). We execute the experiment in 5, 7, and 9 dimensions,

increase the data points from 100’000 to 10 millions and set ǫ to 5000.

As can be seen in Fig. 5, our approach using both approximations (ADvaNCE) out-

performs ρ-approximate DBSCAN (Gan and Tao, 2015) consistently and up to 100×
(for 9 dimensions). As the number of dimensions increases, the execution time of ρ-

approximate DBSCAN grows. Our approach, on the other hand, shows consistent per-

formance and improves execution time with an increase in the number of dimensions.

This is because approximation by hashing works particularly well in higher dimensions.

Overall our approach scales better with an increasing number of points in the dataset.

The gap between the two versions of our approach, ADvaNCE-LSH and ADvaNCE

narrows as the number of dimensions grows. This effect can be attributed to hash-based

approximation improving with an increasing dimensionality. As a consequence, the rela-

tive contribution of the representative points approximation shrinks and does not improve

the result considerably for higher dimensions.
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Fig. 6. Number of distance calculations with increasing dataset size.

In Fig. 6 we measure the number of distance calculations instead of the execution time

for the Grid-based DBSCAN implementation as well as both versions of ADvaNCE (we

cannot measure it for ρ-approximate DBSCAN as we only have access to the executable).

Given the considerable execution time of analysing and measuring the number of distance

calculations, we only measure the number of distance calculations from 0.2 to 1.6 million

data points. Comparing the trends of the number of distance calculations as well as of the

execution time in Fig. 5, we can see they have a similar shape which clearly indicates that

the number of distance calculations is indeed the major contributor to the overall execution

time.

7.4.2. Increasing Epsilon

In a next experiment we compare the approaches with increasing ǫ ranging from 5’000 to

50’000. Also here the basic, precise DBSCAN version takes too long to execute, we cannot

include it in the results and consequently only compare ADvaNCE with ρ-approximate

DBSCAN.

As the results in Fig. 7 show, for an increasing ǫ the performance of ρ-approximate

DBSCAN improves at first but then grows again (as can be seen in the experiment for five

dimensions). Our approach based on hashing alone does not perform well as its execution

time grows very rapidly. The problem with using hashing to compute distance calculations

is that the precision degrades the bigger the ǫ grows. Using the representative point ap-

proximation as well, however, again reduces the execution time considerably, to the point

where it again outperforms ρ-approximate DBSCAN.

For a very big ǫ (which is rarely used in real clustering applications), however, the

ρ-approximate DBSCAN outperforms ADvaNCE. This effect is due to the dataset rather

than the algorithm. As outlined previously, the data points are normalized to an interval

of [0, 10’000] in all dimensions. In these experiments, however, the ǫ finally grows to

50’000 and, for example, in 5D the cell width is almost 23’000, resulting in only 5 cells
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Fig. 7. Average execution time for experiments in 5, 7 and 9 dimensions with increasing ǫ.

Fig. 8. Average execution time for experiments with an increasing number of dimensions.

in each dimension. With this few cells ADvaNCE cannot considerably reduce the number

of distance calculations.

7.4.3. Increasing Dimensions

We also test the performance, i.e. execution time of our approach with an increasing num-

ber of dimensions (beyond 9 dimensions) and compare it with ρ-approximate DBSCAN.

As we increase the dimension, we fix the remaining parameters: we use a synthetic dataset

with three million data points and an ǫ of 5’000.

As the result in Fig. 8 shows, although concave down and appearing to converge, the

execution time of ρ-approximate DBSCAN grows faster than the one of both ADvaNCE

versions, resulting in a speed up of more than 10× for the biggest dimension tested.

The inaccuracy LSH introduces grows with the number of dimensions of the input

data. As our results show, however, the impact of this effect is minimal in the experiments

we carried out.
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Fig. 9. Number of distance calculations with an increasing number of dimensions.

Also here, the relative difference between the two versions of ADvaNCE indicates that

the higher the dimension, the more the hashing approximation contributes to the result of

the execution time reduction thanks to the fact that the representative points approximation

diminishes with increasing dimensionality. Towards the biggest number of dimensions

tested, the execution time for ρ-approximate DBSCAN and our approach are parallel with

ADvaNCE still outperforming the state-of-the-art by more than 10×.

The results in Fig. 9 show a similar picture. In this experiment we measure the num-

ber of distance calculations needed for an increasing number of dimensions for the same

experimental setup. As the results show, the trend in both curves is the same as for the

execution time in Fig. 8 and consequently the number of distance calculations is indeed

what drives the execution time.

7.5. Real World Datasets

As a final litmus test of the overall execution time of ADvaNCE, we also compare it against

ρ-approximate DBSCAN on real world data. More specifically, we execute ADvaNCE

and ρ-approximate DBSCAN on the KDD cup ’99 dataset as well as on the Household

dataset (Bache and Lichman, 2013). Given that the number of points per cell is very un-

balanced in the real world datasets, we set maxNum for the representative approximation

to
√

A×M where M is the maximum number of points in a cell and A is the average

number of points per cell.

As the results in Fig. 10 show, ADvaNCE generally outperforms ρ-approximate

DBSCAN. As we have already seen on the synthetic data, the ADvaNCE version which

also features the representative points approximation further improves the efficiency and

in general improves execution time by a factor of 5×. Interestingly, for the KDD cup ’99

data the trend both versions of ADvaNCE exhibit is similar to ρ-approximate DBSCAN

but ADvaNCE is still 10x faster. For the Household dataset both versions of ADvaNCE
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Fig. 10. Average execution time for experiments on real data with increasing epsilon.

Fig. 11. Average execution time for experiments on real data with increasing dataset size.

scale substantially better compared to ρ-approximate DBSCAN: the execution time of

ρ-approximate DBSCAN grows very fast while ADvaNCE stays nearly flat.

In a next experiment we measure the execution time on the same real world datasets

but we increase the size of the datasets. More precisely, we start with a tenth of the dataset

and then increase it until we arrive at their full size.

As the results in Fig. 11 show, ADvaNCE also outperforms ρ-approximate DBSCAN

by more than a factor of 10. The trends are similar, but for an increasing dataset size,

ADvaNCE has an edge over ADvaNCE-LSH as the gap between the trends grows bigger.
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Fig. 12. Maximum and average number of points per cell for increasing dimensions.

8. In-Depth Analysis

Crucial to understanding the benefits of ADvaNCE is to analyse its behaviour in detail. In

the following we thus first analyse the impact of increasing dimension and ǫ on the number

of points (and thus execution time) and further analyse ADvaNCE through a breakdown

of the execution time.

8.1. Number of Representative Points

As the dimension grows bigger, the maximum number of points and the average number

of points in each cell is getting smaller (because the size of the cell is getting smaller:

cellWidth = ǫ√
(d)

and because there are more directions to spread the data). Fig. 12 con-

firms this by measuring the maximum as well as average number of points per cell for

an increasing number of dimensions. Consequently, ADvaNCE will perform well for an

increasing number of dimensions even if only ADvaNCE-LSH, the version which does

not curb the number of points per cell, is used.

For an increasing ǫ the picture is different as Fig. 13 shows. In this experiment we

measure the maximum (Max Num), the average (Avg Num) as well as the reduced number

(Redu Num) of points ADvaNCE considers. The reduced number of points is determined

based on the maximumnumber of points in a cell M and minPts as follows:
√

minPts×M .

The results clearly show that as ǫ grows bigger, the size of cell grows and the num-

ber of points in each cell grows as well. The number of points in each cell, however, is

unbalanced: some cells contain a very large number of points while others contain only

few. The second optimization of ADvaNCE, representative points, effectively addresses

this by reducing the number of points considered (while only sacrificing little accuracy).
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Fig. 13. Maximum, average and reduced number of points per cell for a growing ǫ.

Fig. 14. Breakdown of the execution time of ADvaNCE.

8.2. Algorithm Breakdown

To understand the behaviour of ADvaNCE, we analyse the performance of its major build-

ing blocks Determine Core Point LSH and Merge Clusters LSH in the main iteration of

our algorithm. We analyse the behaviour for an increasing ǫ. As the results in Fig. 14 (left)

show, if we only use ADvaNCE-LSH (i.e. ADvaNCE without the representative points ap-

proximation) as ǫ grows, the time for determining core points will increase considerably

from less than 0.1 s to more than 100 s. This is because in this step, for every non-core

point, we have to search for all points in the approximate neighbourhood to see if this point

is a core point. As ǫ grows larger, the number of points in the approximate neighbourhood
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grows substantially and the time of this step will become the bottleneck. If we limit the

number of points in each cell by the representative points approximation, however, the

execution time is curbed.

As Fig. 14 (right) shows, as ǫ grows, if we only use the hashing algorithm but do not

limit the number of points, the time for Merge Clusters LSH also increases. The increase,

however, is moderate, going from less than 1 second to 10 seconds. This is because in this

step we only find one core point in the approximate neighbourhood and then merge cells

for every point. As ǫ grows bigger, the number of points in the approximate neighbourhood

also grows, but the time of this step consequently does not change substantially. If we limit

the number of points in each cell to the representative number of points, the execution time

of this step remains the same.

Assessing the execution time of these two functions, we see that if we only use

ADvaNCE-LSH, the execution time will increase as ǫ grows, mainly because of the

time spent on Determine Core Points. The execution time of both optimizations we use

in ADvaNCE, however, remains almost the same (growing slightly) for an increasing ǫ

thanks to the representative points approximation.

9. Related Work

In the discussion of related work we first give a brief overview of exact density-based clus-

tering approaches before we move on to discuss in more detail the approximate algorithms

devised.

9.1. Exact Approaches

Arguably the most renowned density based clustering approach is DBSCAN (Ester et al.,

1996) itself. Given a set of points in typically high-dimensional space, it groups together

points that are closely packed together (points with many nearby neighbours), marking

as outliers points that lie alone in sparse regions. More formally, DBSCAN takes param-

eters ǫ, minPts and identifies core points (points with at least minPts within radius ǫ).

DBSCAN then assigns core points within distance ǫ of each other (along with non-core

points within distance ǫ) to a cluster. All other points are noise. DBSCAN can efficiently

partition dense and sparse space but cannot deal well with varying density.

OPTICS (Ankerst et al., 1999; Breunig et al., 1999) addresses this issue of DBSCAN.

Instead of using a fixed distance predicate, ǫ is only used as a maximum distance and the

distance is set in different areas of the dataset such that clusters can also be identified in

areas of varying densities.

9.2. Approximate Approaches

More important to put our work in context, several approximate DBSCAN algorithms

have also been devised in recent years.
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ADBSCAN (Yeganeh et al., 2009) approaches the problem of accelerating the cluster-

ing of DBSCAN by reducing the number of region queries needed. The approach is based

on the assumption that clusters are discovered by executing range queries on the dataset.

It consequently tries to minimize the number of range queries. To do so, it defines skeletal

points as the minimum number of points where range queries (with radius ǫ) need to be

executed to capture all clusters. The problem of finding the skeletal points is NP-complete

and the ADBSCAN thus essentially proposes how to approximate the set of skeletal points

using a genetic algorithm. By approximating the skeletal points, of course, the result of

the clustering computation is approximate as well.

IDBSCAN (Borah and Bhattacharyya, 2004) works similarly and approximates and

thus accelerates DBSCAN by reducing the range or neighbourhood queries needed. In-

stead of executing a query for all points in the vicinity of a core point, IDBSCAN only

samples the neighourbood and executes a query on a subset of the points. To do so, the

neighbourhood of a core point is partitioned into quadrants and a range query is only exe-

cuted for the points in quadrants randomly chosen. The speed up achieved reaches a factor

of six for the datasets tested. However, no guarantees about the results can be made.

l-DBSCAN (Viswanath and Pinkesh, 2006) uses the concept of leaders to accelerate

clustering. Leaders are a concise but approximate representation of the patterns in the

dataset. l-DBSCAN on a first level clusters the leaders instead of the full dataset thereby

accelerating the process. In a second step it replaces the leaders with the actual points from

the dataset. With this process l-DBSCAN outperforms the precise version of DBSCAN

by a factor of at most two.

ρ-approximate DBSCAN (Gan and Tao, 2015) guarantees the result of its clustering

to be between the exact result of DBSCAN with (ǫ,minPts) and (ǫ × (1 + ρ),minPts).

The approximation comes with a substantial speed up and scalability: ρ-approximate

DBSCAN is proven to run in O(n). The approach accomplishes this by using a grid ap-

proach where data points are assigned to a grid with cell width ǫ√
d

. For an exact result the

algorithm has to connect/combine all pairs of cells c1, c2 that (a) contain at least minPts

and (b) contain two points (p1 ∈ c1 and p2 ∈ c2) within the distance of each other ǫ.

This problem is known as the biochromatic closest pair (BCP) and solving it precisely is

exceedingly costly. However, solving BCP approximately (in ǫ × (1+ ρ)) can be accom-

plished in linear time. Clearly, the main benefit of this approach are the proven and firm

theoretical bounds on error/approximation as well as the execution time.

Pardicle (Patwary et al., 2014) approximates DBSCAN in a supercomputing environ-

ment. It accelerates the basic DBSCAN approach by parallelization: after partitioning

the multi-dimensional dataset into contiguous chunks, DBSCAN finds clusters in each

chunk in parallel on different CPUs/cores of the supercomputing infrastructure. To ac-

count for clusters that span several chunks (analysed independently and in parallel on

different cores), Pardicle replicates the border (of width ǫ) of a chunk and copies it to

adjacent chunks, i.e. to cores in the supercomputer. Doing so in essence makes the chunks

overlap but also ensures correctness of the result. To reduce the overhead in terms of repli-

cation and distance calculations, not the exact border is calculated but it is sampled. Doing

so approximates the results: the result in each chunk is accurate, but merging of clusters

between adjacent chunks may fail.
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10. Conclusions

In this paper, we develop ADvaNCE, a novel approach for approximating density-based

clustering. ADvaNCE builds on a Grid-based optimization of DBSCAN and uses two ap-

proximations to accelerate and enable scalability of the clustering process. Understanding

that distance calculations are the major contributor to the execution time of DBSCAN,

ADvaNCE accelerates clustering by (a) approximating distance calculations and (b) re-

ducing the distance calculations required, thereby further approximating the result. To

achieve the necessary level of approximation, ADvaNCE iterates over intermediate re-

sults to monotonically increase the accuracy.

Approximate clustering results oftentimes are sufficient as has been established by

related work (Ankerst et al., 1999; Gan and Tao, 2015). Compared to the most recent

state-of-the-art algorithms in approximate density-based clustering (Gan and Tao, 2015),

ADvaNCE achieves the same accuracy but manages to do so more than one order of mag-

nitude faster (30×) in the best case. With our experimental evaluation we also show that

ADvaNCE executes faster when varying parameters like ǫ, dataset size or the number of

dimensions. In general, ADvaNCE scales better than the state-of-the-art algorithms.
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