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Abstract. A novel approach to pricing on data marketplaces is proposed, which is based on the

Name Your Own Price (NYOP) principle: customers suggest their own price for a (relational) data

product and in return receive a custom-tailored one. The result is a fair pricing scheme where sellers

can achieve a higher revenue, while buyers receive a product which matches both their preferences

and budget. NYOP is contrasted with previous research on view-based pricing on data marketplaces

as well as on discount schemes to increase revenue.
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1. Introduction

Information is one of the key elements of the Internet and has been described as the fuel

of an information economy (Hui and Chau, 2002). Consequently, data – as the basic unit

of information – and data-related products are now being traded on data marketplaces,

which act as intermediaries between providers and users (customers) of data. In this paper,

a pricing scheme is introduced that is fair to both buyers and sellers.

Even though there is undoubtedly a market for data and data-related services as well

as the recognition that data has a price (Miller, 2012; Bodenbenner et al., 2011; Tempich

et al., 2011), there is little understanding so far of where this price stems from Balazinska

et al. (2011), Miller (2012). Similar to the observation that data quality can best be gauged

by an eventual consumer, it can be argued that its value is different to distinct people

(Shapiro and Varian, 1999). From an interview study (Muschalle et al., 2012) and the

relevant economic literature, e.g. (Shapiro and Varian, 1999), it is obvious that the value

of data is highly domain-specific, owing to the fact that data has no inherent meaning

(Davenport and Prusak, 2000). The combination of both subjective quality attribution and

subjective value attribution makes the matter even more complicated. Thus, it can be stated

that pricing on data marketplaces in general is still a vastly unsolved issue. In particular the

fact that it is difficult for providers to gauge the willingness to pay of customers, as they do

not know the purpose the data is being bought for. Furthermore, no pricing model exists

that considers two providers offering similar information goods (Balazinska et al., 2013).

*Corresponding author.
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In this paper, which extends (Stahl and Vossen, 2016a) and is based on Stahl (2015), we

present a novel framework addressing these issues.

As an illustrative example, consider two providers of weather forecast data. Weather

data has a number of characteristics that makes it particularly interesting. For instance, it

is relevant that weather forecast data is a consumable information good which allows for

considering timeliness when pricing because most of the time weather data is only relevant

for future dates. To create this data, the weather is constantly observed and different data

are collected using a number of weather stations. These raw weather data are then used to

forecast the weather for several days to come. More precisely, particular attributes of the

weather, such as temperature, are forecast. Thus, it is supposed that weather data providers

A and B both provide past, current, and forecast weather data, i.e. providers constantly fill

their database with new data as well as update forecast data which becomes more precise

the closer the forecast date comes. It is further supposed that the data is not complete, as

some data may get lost due to equipment malfunction.

In the remainder of this paper, we first review previous work on pricing of data on data

marketplaces and define the exact research gap from that, namely a pricing mechanism

that considers heterogeneous willingness to pay and is able to provide custom-tailored

data products even when competing data sources are available. Based on this, we look at

the most important factor when buying data products, which is data quality; we do this in

pricing-focused fashion. Then, data marketplaces will be formally defined in Section 3.

Subsequently, Section 4 will extensively discuss data quality and its dimensions, in or-

der to establish which dimensions can be used when pricing data products. After that,

Section 5 develops a quality-based pricing model for data marketplaces using the MCKP.

Eventually, this paper is concluded in Section 6 by summarizing the main points and out-

lining possible future work.

2. Related Work and Problem Outline

In 2011, Balazinska et al. (2011) put the topics of data marketplaces and data pricing on the

research agenda of the database community, identifying an understanding of how the price

of data is determined and modified on data marketplaces as one of the main problems.

In general, work on data pricing can be categorized into two groups: (1) query-based

pricing and (2) quality-based pricing. In the first context, Koutris et al. (2012a) present

a framework that allows data providers to set prices for some (sets of) views and then

computes prices for queries automatically. Furthermore, it is ensured that the resulting

price function is arbitrage-free as well as discount-free. A prototype has been described

in Koutris et al. (2012b). It provides guidance to sellers in that it highlights if the set

prices violate the arbitrage-free criterion. In a next step, presented in Koutris et al. (2013),

the group introduced QueryMarket, a middle-layer software that can be run atop of any

database management system that supports the SQL. Besides the arbitrage-free criterion

it allows multiple sellers and shares revenue fairly between them. While this system has

an advanced capability to calculate prices for individual queries based on an overall price,
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it does not address the problem of how much data is actually worth. Also, it does not take

into account that the same query may have a different value to different people, which can

be exploited to maximize profits.

Balazinska et al. (2013) present a discussion of pricing on relational data, arguing

that views can essentially be interpreted as versions of data, a suggestion that will also be

applied in this paper. Furthermore, they identify three open problems. Firstly, they name

pricing of data updates, i.e. what price to charge if a consumer has purchased a data set

that has been updated in the meantime and the consumer only wants to pay for the new

data. Secondly, they mention the pricing of integrated data and present a complex value

chain in which provider A generates data, provider B conducts data mining, and provider

C integrates the mining result with other data sets. Finally, they discuss the pricing of

competing data sources that provide essentially the same data, but in a different quality.

The first challenge can be addressed by calculating the difference between the full

price of the new and the old data product. This is similar to the approach suggested by

Tang et al. (2014) for buying samples of XML data. The second problem can be addressed

by introducing intermediary pricing for all providers refining the raw data. This means the

raw data vendor operates using established means. Furthermore, all vendors following in

the value chain have to deal with the output price of the lower level vendor as cost and

build their prices accordingly. The last challenge will be addressed in this paper.

Another group that investigates data pricing and that focuses on quality-based pricing

is formed around Tang. They argue that using views to attach prices is too coarse and adopt

the idea of attaching prices to tuples and use a pricing model that is based on minimal

provenance (Tang et al., 2013a). However, computing prices in this model is NP-hard.

Therefore, they also present and evaluate heuristics to approximate the prices. In Tang

et al. (2013b), the authors introduce the concept of trading data quality for a discount,

with cheaper data being less accurate. This is in contrast to all other work looked at so far,

in which buying data is a “take-it-or-leave-it-decision” – a customer may buy the data at

the advertised price or not buy it at all. The authors propose to offer buyers the option of

naming their own price in order to address customers with a willingness to pay below the

full price.

Tang et al. (2013b) present a framework in which – if less than the full price is offered –

values are randomly drawn from a probability distribution, where the distance between the

probability distribution and the real distribution correlates to the discount. This approach

is similar to Li et al. (2013) in that both approaches offer data with lower quality at cheaper

prices. While Tang et al. (2013b) allow customers to name a price and decrease the quality

accordingly, Li et al. (2013) use the standard deviation to calculate prices.

Tang et al. (2014) present a framework to price XML data, keeping the idea of allowing

users to trade quality for a discount. In this work, the authors focus on completeness as a

quality criterion, i.e. users can decide to get an incomplete sample by proposing a price

lower than that advertised by the vendor. To this end, an algorithm collocates a sub-tree

of the overall XML tree at random that matches the price offered by the customer. They

suppose two application scenarios for this framework. Users might be on a restricted bud-

get and hence satisfied with a subset of the data, or users might want to get a sample to
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explore the data set. While the latter is a reasonable argument, bearing in mind that data

is an experience information good, the first case has a minor weakness: customers with

limited funds are usually particularly price-sensitive; therefore, it is questionable whether

they are willing to buy random data as they would not know what they get for their little

budget. That said, the idea of asking customers to reveal their preferences by naming a

price is further explored here.

From an economic point of view, this can be seen as a form of Pay What You Want

(PWYW) or Name Your Own Price (NYOP) pricing. In this case, the speciality is that

the threshold value is known and that for prices below it quality is adjusted. Furthermore,

the provider receives exactly the reservation price of the customer who in turn receives

a personalized (i.e. quality degraded) offer, as long as a customer’s willingness to pay

is below the ask price. If it is above the ask price, the demander receives some surplus.

From this, it can be concluded that the profit with NYOP is greater, as it reaches additional

customers. However, this only holds true if customers do not change from the high-end

product to a cheaper version.

Commonly, it is suggested that online retailers can employ much more fine-grained

pricing models compared to offline alternatives (Hinz et al., 2011). However, there is lit-

tle guidance for firms (Hinz et al., 2011; Balazinska et al., 2011). Despite initial attempts

(Balazinska et al., 2011; Koutris et al., 2012a, 2012b; Tang et al., 2013a, 2013b, 2014),

the challenge of lacking guidance remains, particularly if multiple data providers are con-

cerned (Balazinska et al., 2013). Furthermore, to date, there is no understanding for value

of data (Miller, 2012). Both research groups, while providing technical means to model

prices, do not address the more pressing issue of pricing data based on perceived customer

value. Our work will particularly focus on a pricing scheme that supports data providers

in setting appropriate prices which will also incorporate the idea that data sets are not of

equal value to different people, which can be exploited to maximize profits. In this way, we

follow the view-based approach of Balazinska et al. (2013) as well as the idea of quality-

based pricing suggested by Tang et al. (2013b) and we are able to provide a value-based

pricing scheme that even allows for pricing competing sources.

Precisely, we introduce an approach that does not require sellers to have an idea of

the value of their goods. This will be done by adopting the NYOP idea implicitly used

by Tang et al. (2013b) and combining it with a hidden threshold and Goldilocks Pricing

as described by Shapiro and Varian (1999). This means data sets – actually views – will

initially be offered at a rather high price. Then customers can name the price they are

willing to pay. If it is greater than a possibly undisclosed threshold price, customers get

the full quality product at their suggested price. If it is smaller, however, the view – or

version for that matter – is transparently adjusted extemporaneously to meet the customer’s

price. To this end, customers will have a say in how the data product is modified by stating

preferences. Hence buying a data product could be compared to buying a car: for the

full price one receives the full-fledged car with all possible features, such as powerful

engine, expensive interior and entertainment system. However, it is also possible to buy

the same car for a cheaper price if one waives one or more of the expensive features

and chooses a mediocre engine and/or a less expensive interior. This mode of pricing
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is particularly promising if customers have very heterogeneous will (or possibilities) to

pay. While basically similar to previous studies by (Tang et al., 2013b; Tang et al., 2014)

here more than one quality dimension will be looked at.

In order to make use of versioning of products, which has been established to be bene-

ficial (Shapiro and Varian, 1999), some assumptions are made to satisfy the prerequisites

for versioning identified in Reinartz (2002), Narahari et al. (2005):

1. Customers are heterogeneous in their willingness to pay.

2. Customers are identifiable (e.g. student id’s for student discounts).

3. Customers are not allowed to resell products.

Given that quality is also data-inherent it builds a perfect starting point for versioning.

Furthermore, it also allows for an objective value comparison – if supposing that quality

is the value-bearing factor for customers – of two data sets that have similar content. To

this end, a reversed pricing mechanism is proposed that builds upon the idea of NYOP

pricing incorporating quality as a versioning factor as well as a possibility for users to

express their preferences for certain quality criteria, in order to receive a custom-tailored

data product. To this end, a framework will be presented that is capable of deriving a data

quality score for data traded on a data marketplace adjusted with users’ preferences. Given

that data quality is inherent to all data, the method can be used domain-independently and

data quality criteria have only to be adjusted with domain-specific weights.

3. A Relational View on Data Marketplaces

In this work, we focus on structured data, which will be provided through an infrastructure

where a data marketplace will be an electronic platform that allows for the exchange of

data. It is further assumed that this data marketplace is an independent one fitting the

framework presented in Stahl et al. (2016) in order to exclude any potential bias. While

the pricing of services provided through such a platform is also interesting, the focus here

will be on the pricing of the good data. More precisely, data marketplaces host data for a

number of providers who sell tabular, i.e. relational, data.

Providers sell data in a tabular format with given column names or attributes. This

data can be described as a relation r with k unique attributes Ai with domain dom(Ai),

1 6 i 6 k. The set of attributes is X = {A1, . . . ,Ak}. Consequently, the data (relation) may

be described as an instance r of the relational schema R, which for simplicity is identified

with X. Most of the time, data providers will not only sell one relation but many of them.

Let a provider sell s > 1 relation instances, then one provider can be considered providing

a database instance d of size s with the corresponding schema D comprising s relation

schemas.

While, in some cases, it might be appropriate to view an entire data marketplace as

a database, in this work every provider is supposed to provide an individual database in-

stance. This is a practical presumption based on the assumption that it would be difficult to

enforce a common schema across providers. Furthermore, this would require data vendors

to adapt their data to the schema of any data marketplace they are selling on.
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Table 1

Relation uA for provider A.

Station AirPressure Humidity Temperature Date LastUpdated

FRA 1021 52 17 2017-05-08 14:00

FRA 1020 43 19 2017-05-09 15:00

FRA 1005 40 15 2017-05-10 16:00

LHR 1025 69 16 2017-05-08 14:00

LHR 1008 65 14 2017-05-09 15:00

LHR 1003 70 12 2017-05-10 16:00

Even viewing data offerings as databases can be complicated, as customers will of-

ten require data from different relations, which then have to be joined upon request. To

simplify this and to add clarity, in this work data providers’ offerings will be treated as a

universal relation u, a tool which has a long history in database theory, e.g. Maier et al.

(1984). For our purposes, a universal relation is created by joining all rj ∈ d in such a

way that no data is lost, using a full outer join. It can be argued that joining could be done

only when necessary – an approach that might be followed in an implementation; however,

using only a universal relation has the advantage that no further joins are necessary dur-

ing subsequent formal elaborations, which improves understandability. Furthermore, any

original relation rj may be arrived at by appropriate selections and projections over u.

Formally, the universal relation u over a database instance d can be defined as the full

outer join of relations r1, . . . , rl .

It should be noted that this approach requires attribute names to be unique within each

single database. However, this is a minor technicality and can be achieved by renaming

when necessary.

Returning to the weather data example, in the following provider A uses very reli-

able weather sensors but fewer, which results in more complete but less extensive data.

Nevertheless, because of the better sensors, provider A can forecast three days, which

provider B cannot. In contrast, provider B collects more data (more attributes) using less

reliable sensors and has more weather stations. Moreover, both providers collect similar

but not identical data. Provider A offers data for AirPresure in hPa, Humidity in percent,

and Temperature in degree centigrade. Provider B offers the same as provider A and ad-

ditionally WindSpeed in km/h, Cloudage in percent, and Precipitation (rainfall) in mm.

The data sets of both providers also include the date and station for which the weather is

forecast (or has been recorded), as well as when the data were last updated.

In this sample scenario, a customer such as an airline wants to buy weather forecast

data at 5 pm (17:00) on 7th May 2017 for the next three days from three different airports

(FRA, LHR, AMS). The relevant data sets of providers A and B are depicted in Table 1

and Table 2, respectively. For reasons of clarity and comprehensibility, only the relevant

view on u is depicted.

4. Data Quality

Data has a price that is highly dependent on the context as well as on what it can do for

potential buyers, and it is therefore sensible to create different versions in order to tap
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Table 2

Relation uB for provider B.

Station AirPressure Humidity Temperature WindSpeed Cloudage Precipitation Date Last update

FRA 1022 ⊥ 18 8 70 0 2017-05-08 14:00

FRA ⊥ 50 20 ⊥ 25 0 2017-05-09 15:00

LHR 1015 ⊥ ⊥ 23 ⊥ 41 2017-05-08 15:00

LHR 1004 79 13 ⊥ 93 17 2017-05-09 16:00

AMS 1021 59 13 16 ⊥ ⊥ 2017-05-08 14:00

AMS 1002 82 12 23 97 70 2017-05-09 16:00

the willingness to pay of heterogeneous customers. Data quality can be considered as a

promising aspect for differentiating data products. Given that there is a number of data

quality criteria that are relevant for customers and consequently allow for price discrim-

ination, the approaches described in Tang et al. (2013b), Tang et al. (2014) can be con-

sidered somewhat limited. Furthermore, data quality, if expressed in a meaningful score,

allows the comparison of two offers from different providers.

Much work regarding data quality and how to measure it has been published over the

last decades. Focusing on data quality in a Web context – precisely the context of most

data marketplaces and data providers –, Naumann (2002) aggregated several works on

data quality, namely (Basch, 1990; Redman, 1996; Wang and Strong, 1996; Jarke and

Vassiliou, 1997; Chen et al., 1998; Weikum, 1999). Therefore, we build our argument

on Naumann (2002), rather than on the individual works. In Stahl and Vossen (2016b),

Stahl (2015) we reviewed the quality criteria and discussed how a data quality score that

helps judging the value for money or quality for money of relation data products can be

developed. This helps when evaluating which source to buy data from. Here, we will again

review the quality criteria of Naumann (2002) with a particular focus on how well they

are usable in the context of versioning.

Naumann’s criteria sets are: a) content-related, i.e. directly rooted in the data; b) tech-

nical, i.e. related to the organization and delivery of the data; c) intellectual, i.e. related to

the knowledge of eventual users; and d) instantiation-related, i.e. related to the presenta-

tion of the data. In the following a brief description of each measure is given along with

an elaboration of how it is relevant in the context of data marketplaces, i.e. whether it can

be used for versioning.

4.1. Content-Related Quality Criteria

The following content-related criteria are mentioned in Naumann (2002):

• Accuracy, the percentage of correct values in the data set;

• Completeness, the percentage of non-null values in the data set;

• Customer support, the amount and usefulness of available human help;

• Documentation, the extent of available meta data regarding the data sets;

• Interpretability, the match between a user’s technical understanding and the data;

• Relevancy, the degree to which the data satisfies a user’s information needs;

• Value-added, the value the use of the data provides to its users.
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As previously argued, the value of data is highly customer-dependent. The same is

true for the value-added. We want to approximate this through the other quality dimen-

sions. Hence, it will not be further analysed to avoid recursion. Most other criteria cannot

be calculated fully automatically, the exemption being completeness. All others require

knowledge going beyond the actual data.

Regarding customer support and documentation, the existence and the extent can be

evaluated. While this is a first step that allows for versioning, it does not say anything about

the actual quality. Moreover, some criteria remain that cannot be automatically examined,

namely interpretability and relevancy, as both require an in-depth understanding of users,

which cannot be achieved in an automated way. Consequently, they cannot be used for

versioning. For accuracy, it can be said that it cannot be (fully) automatically computed

without external knowledge, it allows for the creation of numerous versions by lowering

the accuracy. In this work – similar to Tang et al. (2013b), who suppose that the available

accuracy is worth the full price – we assume that the accuracy is data inherent.

For completeness, differently complete versions can be created easily. At this point, it

should be mentioned we suppose that all information about the data necessary for pricing

is already contained within the data. In other words, we follow a Closed World Assumption

(CWA) (Batini and Scannapieca, 2006). While this potentially restricts the model, for the

purpose of this work, it is not particularly relevant why a value is missing. The fact is,

it cannot be delivered to the customer. Completeness, as defined in Stahl (2015), Stahl

and Vossen (2016a), will serve as an example later on. It is calculated as the number of

non-null value cells divided by the overall number of cells:

c(u) = 1 − nv

|u| × |Xu|
. (1)

4.2. Technical Quality Criteria

Naumann (2002) mentions the following technical criteria:

• Availability, the probability that a query is answered within a given time period;

• Latency, the time between issuing a query and receiving its first response;

• Price, the amount of money a user has to pay for the data;

• Quality of service, the error rate when transmitting (mainly relevant in streaming);

• Response time, the time between issuing a query and receiving its full response;

• Security, the degree of protection through encryption and anonymization;

• Timeliness, the freshness of the data.

Following the argument of value-added, price will be excluded. The remaining criteria

can all be influenced by providers in the same way accuracy or completeness can, i.e.

while there is a (technical) upper limit, they can be lowered. Thus, they all can be used for

versioning. The exemption is quality of service for which it has to be defined what quality

specifically means. Thus, it is overall not very precise and has, therefore, been excluded

from further examination. Moreover, availability requires multiple measurements over

time in order to be properly evaluated. As a second example, we will consider timeliness
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which we defined (Stahl, 2015; Stahl and Vossen, 2016a) as the average freshness of a

tuple based on the delivery time, the last update timestamp and the usual volatility v for

this type of data.

tim(u) =
∑

µ∈u max
{

0,1 − DeliveryTime−µ[LastUpdated]
v∗

}

|u|
. (2)

4.3. Intellectual Quality Criteria

Next, the intellectual criteria shall be outlined:

• Believability, the expected accuracy;

• Objectivity, the degree to which the data is free of any bias;

• Reputation, the degree of high standing of the source perceived by customers.

All of these criteria are value drivers; however, regarding versioning, none of them can

be used as it is difficult to influence them in the short run because they are perceived by

the user rather than actively created.

4.4. Instantiation-Related Quality Criteria

Finally, the group of instantiation-related criteria will be discussed:

• Amount of data, the number of bytes returned as a query result;

• Representational conciseness, how well the representation matches the data;

• Representational consistency, how well the representation matches previous repre-

sentations of the same data;

• Understandability, the degree to which a data set can be understood by a user;

• Verifiability, the degree to which a data set can be checked and verified.

While the amount of data and the representational consistency can be assessed au-

tomatically, the other three cannot. Representational conciseness and understandability

cannot be assessed automatically because only humans can judge whether the data format

matches the data or whether they understand the data. Verifiability depends very much on

the actual use-case and is hard to generalize. Thus, it has been categorized as not auto-

matically assessable.

The amount of data and the representational consistency can be used for versioning.

For representational consistency it is technically possible to change the representation

(access API or data format); however, it seems inappropriate to do so just to adjust the

quality of the product. Nevertheless, different versions could have different guarantee lev-

els that the representation does not change over certain time intervals. Thus, it has been

categorized as applicable to versioning. The representational conciseness can be used for

versioning, in that there could be a low quality version that simply stores all data in one

binary large object and a high-quality version in which the data is organized in an appro-

priate relational structure. As a further example, we will consider amount of data. More
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precisely, we will look at the amount of attributes or columns – AoC – which we defined

as Stahl (2015), where Y denotes chosen (or available) columns: AoC(u) := |Y |
|Xu| .

Having described the most relevant data quality criteria as well as having evaluated

them with regards to versioning, they shall now be grouped into different sets for easy

future reference. Regarding pricing and versioning, all criteria that allow for the dynamic

creation of a large number of versions build the set V = {Accuracy, Amount of Data,

Availability, Completeness, Latency, Response Time, Timeliness}. Furthermore, there are

criteria that generally allow for versioning but where the number of versions is strongly

limited. For instance, it is not sensible to create a large number of customer support tiers.

Sticking with the Goldilocks principle, it seems reasonable to provide three categories for

all attributes in this set, which will be referred to as G = {Customer Support, Documen-

tation, Representational Conciseness, Representational Consistency, Security}. All of the

criteria in this set but representational consistency and security are limited in their appli-

cability as comparison criterion. As these are the only relevant quality criteria regarding

versioning, they are combined in Qv = V ∪ G.

In our running example, the completeness, as an example for a criterion in V , can be

calculated as follows: for provider A the maximum completeness is

c(u) = 1 −
nv

|u| × |Xu|
= 1

and for provider B it is c(u) = 0.67̄; possible tiers for customer support, as an example

for a criterion in G, are:

1. E-mail support with a 48 hour response guarantee;

2. Telephone support 9 to 5 and 24 hours response time e-mail support;

3. Telephone and e-mail support 24/7.

5. Quality-Based Pricing

Building on the data quality criteria review, this section proposes an approach of data

pricing in which not only one quality dimension of a relational data product is adjusted

according to a user’s willingness to pay but all dimensions are, taking user preferences

into account. So let providers advertise a price P . If P exceeds a user’s willingness to pay,

they may suggest a price W of their own and reveal their preferences for certain quality

criteria. If customers want to pay less, i.e. W < P , then a data product will be tailored to

their needs and willingness to pay is created and delivered.

A physical good with a similar procedure of a quality reduction for different use cases

is ethanol. If it is sold for drinking, it is commonly expensive and highly taxed. However,

if it is used as a fuel or as a solvent, it is comparatively cheap. In order to prevent abuse, i.e.

drinking the cheaper alcohol, additives are used that make it bitter or toxic. Transferring

this idea to data, it can be offered cheaper if it is of lesser quality as it provides less utility

to consumers.
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We now assume that users know their preferences and can express them in the form

qi > qj f.a. qi, qj ∈ Qv . Furthermore, preferences enjoy two properties (Pindyck and Ru-

binfeld, 2013): a) completeness, i.e. preferences exist for all combinations qi and qj ;

b) transitivity, i.e. preferences are totally ordered, formally: if q1 > q2 ∧ q2 > q3 then

q1 > q3. In order to express these preferences users are asked to provide their apprecia-

tion of each quality measure.

Seven quality criteria were identified that allow for continuous versioning (tailoring).

This means that for these criteria an arbitrarily large number of versions can be created.

They were assembled in the set V = {Accuracy, Amount of Data, Availability, Complete-

ness, Latency, Response Time, Timeliness}. Furthermore, five criteria have been estab-

lished for which a limited number of versions can be created, i.e. which allow for discrete

versioning, collocated in G = {Customer Support, Documentation, Security, Representa-

tional Conciseness, Representational Consistency}. To handle all alike, all criteria will

be treated in a way to create discrete versions. In the following the differentiation is sub-

ordinated and it will be referred to all quality criteria as: Q = V ∪ G. However, the or-

der will be of importance, hence, from now on, a list of quality criteria q will be used:

q = (q1, . . . , qn) with n = |Q| elements.

5.1. Introducing Utility

A common assumption is that goods provide utility.2 Commonly, micro economists inves-

tigate utility functions for a set of g goods, which will be referred to as benefit function

b = f (x1, . . . , xg) (Pindyck and Rubinfeld, 2013) to not confuse utility and the universal

relation. We here do not consider sets of goods, but focus on one relational data good and

its quality attributes, the utility of which may be formalized as b = f (q1, . . . , qn), where

qi represents the quality scores for quality criterion qi .

We consider quality criteria to be independent, i.e. the consumption of one quality

criterion does not have an effect on the utility of another. While this is not the case for

extremes, e.g. an incomplete data set is less likely to be accurate than a complete one, this

is a necessary simplification to handle all dimensions in the followingmodel. Furthermore,

it can be argued that when looking at one item only, and keeping the others constant, it is

a valid assumption.

Two well-known classes of functions can be used as utility functions, logarithm func-

tions – for which the natural logarithm has been chosen as representative – as well as any

root function a
√

x , a ∈ N>2. Given that the quantity of a good cannot be negative, the

relevant domain for both functions is R+
0 .

Since we propose to create versions based on the expected utility, the utility function

is used to create ml utility-based versions or levels so that bj −bj−1 = const, 1 6 j 6 ml .

To this end, the quality scores which have been standardized to fit the domain [0,1] will

be scaled to match a sector of the utility function’s domain [xmin, xmax], e.g. [0,100] for

the square root. Note that data with some quality scores beneath a certain threshold tq are

useless. To address this, it is also possible to transform only the interval [tq ,1], 0 6 tq 6 1

2In the sequel, we will use the terms benefit and utility interchangeably.
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Table 3

Used utility levels mapped to versions; showing required quality score (QS).

Utility level (lj ) 0 1 2 3 4 5 6 7 8 9 10

QS required to reach version (q ∈ V ) 0 1 4 9 16 25 36 49 64 81 100

QS required to reach version (q ∈ G) 0 ⊥ ⊥ X ⊥ ⊥ X ⊥ ⊥ X ⊥

from the original score to the representative sector of the utility function, i.e. at quality

score tq the utility level of that quality score is 0. To arrive at the necessary minimum

quality score for each utility level, the inverted utility function is used, e.g. x2 for
√

x .

While for the square root model the utility-based levels increase linearly with x because

the difference of two levels can be calculated as x2 − (x − 1)2 = 2x − 1, for the natural

logarithm they increase exponentially in x because the difference of two levels is ex −
1 − (ex−1 − 1) = ex − ex

e = ex(1 − 1
e ). Thus, in the following, the square root function

will be used as it produces more illustrative utility levels. The case can be made that other

root functions a
√

x, which scale polynomially with the degree a −1, could be used as well.

However, this is a matter of implementation as the model is – as will be seen – independent

of the function.

The utility-based quality level vector l contains the concrete values of the utility

level lj in order. In the example manifestation presented here, it is supposed that lj = j ,

0 6 j 6 ml . While this applies for those quality criteria that allow for continuous version-

ing (i.e. q ∈ V ), for those that only allow for discrete versioning (i.e. q ∈ G) a smaller

number has to be chosen, here four utility levels l0, l3, l6, l9 are chosen from the utility

function for q ∈ G – according to Goldilocks principle, proposed in Shapiro and Varian

(1999). To differentiate between the utility level vectors of both sets, they have an accord-

ing superscript, resulting in the two vectors lV and lG. Since quality levels in lG do not

correspond to concrete quality scores, determining a value for them is meaningless. It is

rather advisable to manually determine the amount of service for each level. Sample fig-

ures for both variants are presented in Table 3, where levels for the second type have been

marked with an X. The used utility function and according versions are depicted in Fig. 1.

While in reality utility does differ between customers, the general trend is the same,

and will here be approximated by the same function. Furthermore, it is acknowledged that

not all quality criteria have the same importance for customers. For example, complete-

ness may be more important for a customer than timeliness because they want to do some

time-independent analysis, while for another customer timeliness might be more impor-

tant because they base time-critical decisions on the data. To represent this in the model,

the utility gained from each qi’s quality score is weighted with a user-provided ωi that

represents the importance of all quality criteria relative to each other.

To receive ωi , users are asked to express their preferences. This results in a stack of

utility functions in which different aspects have a different influence on the overall utility

for any individual customer. This is illustrated in Fig. 2. Moreover, this results in a weight

vector ω such that:

∀qi∃! ωi ,1 6 i 6 nq and

nq
∑

i=1

ωi = 1.
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Fig. 1. Exemplary used utility functions with ten util-

ity levels.
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Fig. 2. Example utility function as stack of: ω
√

x for

ω1 = 0.5, ω2 = 0.3, and ω3 = 0.2.

Based on all this, a benefit matrix b can be calculated for each user. This matrix shows

for which quality criterion qi with an according weight ωi what actual utility bij can be

reached for the different utility levels lVj and lGj . It is calculated as follows:

bij =
{

ωi × lVj for all qi ∈ V,

ωi × lGj for all qi ∈ G.

For future reference, the subscript i refers to elements in Q and j to elements in LV

or LG, respectively.

5.2. Price Attribution

Having extensively discussed for each quality criterion how a utility level is arrived at, we

now elaborate on how prices can be attached to the different levels. Besides the overall

ask price P providers want to achieve, they have to specify the importance of different

quality criteria from their point of view. This may either be done based on the cost the dif-

ferent quality criteria caused when being created or based on the perceived utility of the

different criteria. As argued before, the utility-based approach is preferable; however, the

cost-based approach can serve as point of reference if no further information is available.

Additionally, it is also an option to attribute an equal weight to all quality criteria. What-

ever method is chosen, the weights may be adapted in the course of time when providers

learn about their customers. Similar to the user weighting vector ω, providers define a

weight vector κ such that:

∀qi∃!κi, 1 6 i 6 nq and

nq
∑

i=1

κi = 1.

For the actual distribution of the overall ask price P to the different quality levels and

quality criteria two fundamentally different approaches can be implemented. Prices can

either be attributed to the different quality levels using the utility levels or using the relative

satisfaction of each quality criterion. In any case the overall price would be distributed to

the different quality criteria using κ . The first will lead to linear prices corresponding to

the benefit, which is arguably a fair way of pricing a data product. In this case, the price
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wij for each quality criterion qi at each quality level lj is calculated using a formula of

the form wij (bij ), in detail: wij = P × κi × bij

bi,nq
.

The alternative is to model prices linearly to the actual quality scores required to reach

this level. This will result in increasing prices for the utility levels. However, looking at

it from the discount perspective, this means that the biggest discount is granted for the

sacrifice of the first utility level and then it decreases. Put differently, in this way cus-

tomers will receive a product of comparably high quality at a very reasonable price.

The calculation of wij in this case is conducted based on the inverted utility function

wij (x) = P × κi × b−1(x), in this case b−1(x) = x2 and the overall utility levels in l:

wij =















P × κi × b−1(lVj )

b−1(lVml
)

for all qi ∈ V, 1 6 j 6 lVml
,

P × κi × b−1(lGj )

b−1(lGml
)

for all qi ∈ G, 1 6 j 6 lGml
.

It cannot be decided per se which of the two alternatives is the better one. There are

some quality scores, such as the amount of data, for which it is sensible to grant a good

discount if less data is to be delivered. In other cases, such as accuracy, it might make more

sense to scale prices according to the utility levels. That being said, what model to choose

is a business decision that has to be made for each individual criterion depending on the

attributes of the criterion as well as on the intended fairness of the pricing model. Given

the stronger decrease when using the inverted utility function, the average price across

all levels is smaller than in the linear case; this speaks in favour of the latter model from

a customer’s perspective. After all, it is not important what product is actually delivered

as the cost of creating it is marginal. What is more important is that customers get a fair

discount for their sacrifice of quality. This is achieved by either of the two.

5.3. Fair Knapsack Pricing

Having shown how to attribute utility as well as a price to different quality criteria for

relational data products, we now demonstrate that the pricing problem can be perceived

as a Multiple-Choise Knapsack Problem (MCKP).

The objective of the knapsack problem, which we describe according to Kellerer et al.

(2004), is to fit items (numbered from 1 to ml ) with a benefit bi and a weight wi into a

knapsack, in a way that maximizes the utility given a maximum weight W . This standard

knapsack problem has been extended in several ways. One of the most flexible knapsack

models is the herein-applied MCKP (Kellerer et al., 2004). In a MCKP, items are cho-

sen from nq sets of available items rather than from just one set of available items, an

additional restriction being that from each set exactly one item has to be chosen. Using

the variables from the previous sections and extending the vector a, which stores for each

available item whether or not it has been put in the knapsack as ai ∈ {0,1}, to a matrix,

pricing can be formalized using the MCKP as presented in Kellerer et al. (2004). In the

following, Eq. (3) extends the original knapsack problem to multiple sets to choose from.



Name Your Own Price on Data Marketplaces 169

Equation (4) restricts the choice to one item per set and determines that items are indivis-

ible.

maximize

nq
∑

i=1

ml
∑

j=1

bijaij subject to

nq
∑

i=1

ml
∑

j=1

wijaij 6 W, (3)

and

ml
∑

j=1

aij = 1, aij ∈ {0; 1}, i = 1, . . . , nq , j = 1, . . . ,ml . (4)

5.4. Solving the Multiple-Choice Knapsack Pricing Problem

In order to create a custom-tailored relational data product, the Multiple-Choice Knapsack

Pricing Problem (MCKPP) has to be solved. Despite the fact that MCKP is NP -complete,

it can be solved in pseudo-polynomial time using, for instance, dynamic programming;

several algorithms have been presented to achieve this (Pisinger, 1995). Most algorithms

start by solving the linear MCKP to obtain an upper bound. For the linear MCKP the

restriction aij ∈ {0; 1} has been relaxed to aij ∈ [0,1], which means it allows the choosing

of a fraction of an item (Pisinger, 1995).

Algorithm 5.1 presents a general greedy algorithm to solve the MCKPP. It has been

adapted from the one outlined in Kellerer et al. (2004). The main difference is that the

original algorithm contains a preparation step which is not necessary for the MCKPP.

The algorithm eventually results in a matrix a indicating which items to choose, a value

W − c̄, which represents the total cost of these items, and a score z, indicating the total

utility achieved.

The greedy algorithm, presented in a pricing-tailored form in Algorithm 5.1, has a

runtime of O(nt lognt ) – with nt being the total number of items over all quality criteria

nt =
∑nq

i=1 ml int =
∑nq

i=1 ml i – owing to the sorting in Line 13. This form of a greedy-

type algorithm is often used as a starting point for further procedures such as branch and

bound (Kellerer et al., 2004). Furthermore, the split solution is generally a good heuristic

solution; however, it has to be pointed out that as a solution algorithm – despite being

illustrative – it is unsuited. The reason for this is that its performance is arbitrarily bad,

i.e. while performing quickly, the solution is not guaranteed to be the optimal solution

(Kellerer et al., 2004).

Further approximation algorithms exist that do have certain performance guarantees.

Gens and Levner (1998) have presented a binary search approximation algorithm running

in time O(nt lognq), where nq is the number of quality criteria. At this point, it should be

mentioned that ml i is used here to indicate that depending on whether qi ∈ V or qi ∈ G,

ml
G or ml

V has to be substituted. However, the guarantee is ǫ = 0.8, which is still a

considerably bad result – 0 being the perfect solution – even though the authors argue

that the actual performance may be much better than that. Using dynamic programming,

a fully polynomial time approximation scheme can be developed (Kellerer et al., 2004).

Lawler (1977) presents an ǫ-approximation that runs in O(nt lognt + ntnq

ǫ
), the first term

being due to sorting which might be omitted here. A similar approach is also presented in

Kellerer et al. (2004).
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Algorithm 5.1 Greedy algorithm to solve MCKPP adapted from Kellerer et al. (2004).

1: # Let i be the index for quality scores and n denote the number of quality scores; j is the utility

level index and m denotes the total number of levels.

2: #Initialize:

3: for i = 1 . . . n do

4: c̄ = W − wi1 ⊲ Residual weight

5: z = ui1 ⊲ Achieved utility

6: for j = 2; j < m do

7: ˜bij = bij − bi,j−1 ⊲ Incremental benefit matrix

8: w̃ij = wij − wi,j−1 ⊲ Incremental weight matrix

9: ẽij = ũij

w̃ij
⊲ Incremental efficiency matrix

10: end for

11: end for

12: #Sort:

13: L := sort(ẽij ) ⊲ List of ẽij ; maintaining original indices

14: #Solve:

15: for all ẽij in L do

16: if c̄ − w̃ij > 0 then ⊲ If space left add to knapsack

17: z += p̃ij

18: c̄ −= w̃ij

19: aij = 1

20: ai,j−1 = 0

21: else ⊲ Split item ast has been found

22: at s = c̄
w̃ts

23: at,s−1 = 1 − at s

24: z += p̃st

25: break loop

26: end if

27: end for

Approaches to solve the MCKP to optimality include branch and bound (Dyer et al.,

1984), dynamic programming (Dudzinski and Walukiewicz, 1987) (which is often used

to solve dynamic pricing challenges (Narahari et al., 2005)), hybrid algorithms of the for-

mer (Dyer et al., 1995), and expanding core algorithms (Pisinger, 1995). Pisinger (1995)

presents a minimal expanding core algorithm solving the MCKP to optimality. It is based

on the idea that the problem is first solved for a core set of classes, i.e. quality criteria,

C ⊆ Qv based on the split item. Then, gradually more classes are added. This results in

a runtime of O(nt + W
∑

qi∈C ml i), where W denotes the weight limit. This results in

a linear solution time for a minimal core and pseudo-polynomial time for larger cores

(Pisinger, 1995).

Notwithstanding this, the MCKP can commonly be solved quickly in practise (Dyer

et al., 1995). Given that in the MCKPP the weights correlate with the benefits per def-

inition, this results in strongly correlated data instances, which are particularly hard

for knapsack algorithms, as no dominated items exist (Pisinger, 1995; Kellerer et al.,

2004).
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Table 4

Experimental results for MCKP calculations using Pisinger (1995) algorithm.

1995 (Pisinger, 1995) 2004 (Kellerer et al., 2004)

Max Bid 1 Max Bid 2 Max Bid 1 Max Bid 2

Case 1 0.37 5.16 0.061 0.561

Case 2 0.33 6.93 0.52 0.828

Pisinger (1995) presented computational experiments on commodity hardware for his

algorithm. Nearly a decade later, in 2004, results for the same algorithm on more recent

commodity hardware were presented in Kellerer et al. (2004). Table 4 shows the results

relevant for strongly correlated data instances in the problem scope of MCKPP. Two real-

istic cases will be presented for each year: Case 1 considers 100 quality dimensions and

10 quality levels and Case 2 considers 100 quality dimensions and 100 quality levels.

Furthermore, two different maximum bid prices are considered Max Bid 1 which is set to

1,000 and Max Bid 2 which is set to 10,000. The time is reported in seconds.

5.5. Application to the Running Example

Returning to our weather example, suppose that the customer has opted to buy data from

provider A presented in Table 1 before it is modified, i.e. u. The advertised price P is

$ 1200.00 for both providers; however, the customer is only willing to pay W = 1000.00.

For reasons of clarity and comprehensibility this section investigates only three quality

attributes, namely:

V =
{

Timeliness(q1),Amount of Data (Columns)(q2)
}

,

G = {Customer Service(q3)}.

For customer service, the provider offers the three service levels described previously:

1. E-mail support with a 48 hour response guarantee;

2. Telephone support 9 to 5 and 24 hours response time e-mail support;

3. Telephone and e-mail support 24/7.

Furthermore, at quality level 0 no support is provided. The customer-provided prefer-

ences for the different quality criteria are: ω = (0.35,0.5,0.15) and the provider specifies

κ = (0.5,0.3,0.2). In the following, the index i (rows) refers to quality criteria and the

index j (columns) refers to utility levels. Based on this the utility matrix b, the weight

matrix w as well as the incremental utility matrix b̃ and the incremental weight matrix w̃

can be calculated. Eventually, this can be used to arrive at the incremental efficiency ẽ:

b =





0.35 0.7 1.05 1.4 1.75 2.1 2.45 2.8 3.15 3.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.45 0.9 1.35



 ,
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Table 5

Development of c̄ after each processing step.

Iteration 1 2 3 4 5 6 7 8 9 10

Selected ẽij ẽ2,2 ẽ2,3 ẽ2,4 ẽ1,2 ẽ2,5 ẽ2,6 ẽ1,3 ẽ2,7 ẽ2,8 ẽ1,4

c̄ 952,93 934,93 909,73 891,73 859,33 819,73 789,73 742,93 688,93 646,93

Iteration 11 12 13 14 15 16 17 18 19 20

Selected ẽij ẽ2,9 ẽ2,10 ẽ1,5 ẽ3,2 ẽ1,6 ẽ1,7 ẽ1,8 ẽ1,9 ẽ3,3 ẽ1,10

c̄ 585,73 517,33 463,33 383,33 317,33 239,33 149,33 47,33 −86,00 −200,00

w =





6 24 54 96 150 216 294 384 486 600

3.6 14.4 32.4 57.6 90 129.6 176.4 230.4 291.6 360

26.6̄ 106.6̄ 240



 ,

b̃ =





0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.45 0.45 0.45



 ,

w̃ =





6 18 30 42 54 66 78 90 102 114

3.6 10.8 18 25.2 32.4 39.6 46.8 54 61.2 68.4

26.6̄ 80 133.3̄



 ,

ẽ =
(

0.0729 0.0194 0.0117 0.0083 0.0065 0.0053 0.0045 0.0039 0.0034 0.0031
0.1389 0.0463 0.0278 0.0198 0.0154 0.0126 0.0107 0.0093 0.0082 0.0073

0.0169 0.0056 0.0033

)

.

This results in the following ordered list of ẽij . Nota bene, ẽ1,1, ẽ21, and ẽ31 are missing

because they are used to initialize the knapsack.

{

ẽ2,2 = 0.0463, ẽ2,3 = 0.0278, ẽ2,4 = 0.0198, ẽ1,2 = 0.0194, ẽ2,5 = 0.0154, ẽ2,6 = 0.0126,

ẽ1,3 = 0.0117, ẽ2,7 = 0.0107, ẽ2,8 = 0.0093, ẽ1,4 = 0.0083, ẽ2,9 = 0.0082, ẽ2,10 = 0.0073,

ẽ1,5 = 0.0065, ẽ3,2 = 0.0056, ẽ1,6 = 0.0053, ẽ1,7 = 0.0045, ẽ1,8 = 0.0039, ẽ1,9 = 0.0034,

ẽ3,3 = 0.0033, ẽ1,10 = 0.0031
}

.

The knapsack is initialized as follows:

xi1 := 1 for all i,1 6 i 6 nq ,

z :=
n

∑

i=1

bi1 = 1.3,

c̄ := W −
n

∑

i=1

wi1 = 963.73̄.

Then, the MCKPP is solved using Algorithm 5.1. The sequence of c̄, and the selected

ẽij in each step is shown in Table 5. Again, it has to be pointed out that this is just for

illustrative purposes as better but less easy to comprehend algorithms exist to solve this.
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Table 6

Utility levels offered by providers.

Utility Level (lj ) 0 1 2 3 4 5 6 7 8 9 10

QS required to reach 0.0 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00

version (q ∈ V )

Completeness A/B A/B A/B X A/B A/B A/B A/B A/B A/B A

Amount of columns A/B A/B A/B X A/B A/B A/B A/B A/B B B

As can be seen in Table 5, the items that do not fit in the knapsack are ẽ3,3 and ẽ1,10.3 By

implication, this means that items x1,9, x2,10 and x3,2 are chosen, i.e. timeliness at level 9,

amount of data at full level and customer support at level 2. Thus, customer support is

served as 9 to 5 telephone support and 24 hours response time e-mail support.

Note that MCKPP can be applied to multiple vendors as well. In this case not the

scores of one provider have to be mapped to the quality levels but only the best scores of

all providers. This results in a problem scenario, where some providers might not be able

to deliver all quality criteria to the highest level. To this end, consider one customer who

is unsure which provider to buy from. Given that the average timeliness of both providers

is the same, we now look at:

V =
{

Completeness(q1),Amount of Data (Columns)(q2)
}

,

G = {Customer Service(q3)}.

Again, customer service does not need to be calculated and the three levels stated above

are considered here, too. For the other two criteria, the maximum scores for each provider

have to be calculated. For provider A completeness was = 1 and amount of columns is 0.67̄;

provider B offers a maximum completeness of 0.8125 and an AoC of 1. Both provide the

service levels as stated above. From this it can be concluded that the relevant mapping

overall again is 0 to 1. However, it has to be stated that no provider can satisfy the highest

level of all categories.

As with the previous example, the customer-providedpreferences for the different qual-

ity criteria are: ω = (0.35,0.5,0.15) and the provider specifies κ = (0.5,0.3,0.2). There-

fore, the above calculus can be reused. As a result, the items that do not fit in the knapsack

are ẽ3,3 and ẽ1,10; in this case customer support at level 3 and completeness at level 10.

Consequently, the customer should chose/will be served by provider B because they can

provide the data that has been found to be optimal. In contrast, provider can provide AoC

only up to level 8, this is illustrated in Table 6.

However, if the customer favoured completeness over AoC, and supposing the same

weights, the result would be different. In this case, provider A while being able to provide

full completeness, still lacks the ability to provide AoC greater than level 8. Making up for

this the algorithm would also suggest customer support at level 3 leaving a weight of 16

unused. Provider B in the same scenario is not able to offer completeness at level 10 but

at level 9. Furthermore, provider B will in this case also offer AoC at level 9 and customer

3Note that the split has not been considered to keep the example simple.
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support at level 2. Given the customer’s preferences provider B is not a good choice de-

spite leaving a residuum of less than 2. All this shows that while solving the MCKPP for

all providers given a customer’s query and preference, it can also be determined which

provider offers the best product for a customer.

5.6. Modifying Quality

For any of the quality measures presented previously an algorithm can easily be stated that

creates a quality-adjusted relational data product according to a proposed discount. For

accuracy, this has extensively been described in Tang et al. (2013b). Largely,modifications

to the quality can be grouped into three categories:

1. The modification of accompanying services, e.g. delivery conditions and compre-

hensiveness of support;

2. The modification of the data itself, e.g. decreasing the accuracy;

3. The modification of the view on the data, e.g. a limited amount of data.

As examples this section will present algorithms to modify the completeness as repre-

sentation of the second as well as timeliness and amount of data as representation of the

third. No representation for the first will be given as this is a rather trivial contractual task

and does not affect the data as such. Nevertheless, an example will be provided in the next

subsection.

Obviously, the order in which the quality is decreased plays an important role. For

instance, if null values are inserted first and then the accuracy is reduced, the accuracy

reduction might build on a wrong distribution. Here, it is suggested to apply criteria first

that reduce the size, i.e. criteria of the third type and also accuracy, before the rest of the

quality is lowered.

The first quality measure to be looked at in more detail is completeness as presented

in Eq. (1). This implies that in order to reduce the completeness further, null values have

to be inserted at random. In the following u is the universal relation to be sold before

any modification and u∗ afterwards. The same applies to all other relevant variables, nv

is the number of null values before and nv t after the quality modification. The suffix t

indicates a target value. Furthermore, xmax denotes the maximum of the domain of the

utility function and x the utility score at the chosen level. To lower the completeness the

actual value for completeness has to be determined and the target value for completeness

has to be calculated based on the selected quality level:

ct = x

xmax
× c(u). (5)

Based on this the target number of null values nv t can be calculated:

x

xmax
× c(u)

!= 1 − nv t

|u| × |Xu|
. (6)
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Algorithm 5.2 Adapting the relation to the amount of columns score.

1: #In the following u is the relation to be sold and Y the according set of attributes

2: function AdaptColumns(yt , u
∗,Z)

3: n := 0

4: Y := [] ⊲ An empty list, to be filled with attributes.

5: while n++ < yt do

6: Y+ = shift(Z) ⊲ Remove the first element in Z and add it to Y.

7: end while

8: u := πY (u∗)

9: return u,Y

10: end function

Resulting in:

nv t =
⌈

|u| × |Xu| ×
(

1 − x

xmax
c(u)

)⌉

. (7)

Note that the ceiling function has to be used in Eq. (7) to ensure nt is an integer as

no half null values exist. Alternatively, the floor function could be used, this is at the

provider’s discretion but would result in a slightly different product version. Based on this

target value for null values nt Algorithm 5.3 presents an exemplary method to achieve the

modified data set u.

Given AoCt = yt

xmax
, yt = |Y | can be calculated. Similar to completeness, the ceiling

function is used to ensure that yt is an integer.

yt = |Y | =
⌈

AoCt × |Xu|
⌉

. (8)

Furthermore, it is supposed that the customer provides a list of attributes Z ⊆ Xu in

decreasing order of their liking, such that the first attribute is the most important and the

last is the least important. If Z is not provided, it is at the provider’s discretion which

attributes actually to deliver. While this could also be the standard, giving customers the

choice seems more fair. Algorithm 5.2 presents a sample method to achieve Y ⊆ Xu pro-

vided yt , u,Z.

Timeliness does not require an algorithm as it is concerned with delayed delivery.

However, it requires some calculus, presented in the following building on Eq. (2). For

better readability µ[LastUpdated] will be denoted as LU and DeliveryTime will be de-

noted as DT. Furthermore, the max function can be omitted supposing that the target

score ttarget = x
xmax

is positive. Additionally |u| will be represented by n. Thus:

tim(u) =
∑

µ∈u

(

1 − DT−LU
v

)

n
. (9)

Plugging in a target value ttarget yields

ttarget

!
>

∑

µ∈u

(

1 − DT−LU
v

)

n
⇔ ttarget × n × v > n × v −

∑

µ∈u

DT − LU. (10)
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Algorithm 5.3 Adapting the relation to the completeness score.

1: #In the following u is the relation to be sold and Xu denotes the according attributes.

2: #µi indicates the ith tuple in u

3: #a = nt − n∗; by definition: nt > n∗

4: function IncreaseNulls(a,u,Xu)

5: nonNulls = array()

6: a = nt − n∗ ⊲ by definition: nt > n∗

7: for i = 1 to |u| do

8: for j = 1 to |Xu| do

9: if µi [Aj ]! =⊥ then

10: nonNulls[] = (i,j) ⊲ add to list of nonNulls

11: else

12: continue

13: end if

14: end for

15: end for

16: nonNulls = randomize(nonNulls) ⊲ order randomly

17: while a- - > 0 do

18: list(i,j) = shift(nonNulls)

19: µi [Aj ] :=⊥
20: end while

21: Return u

22: end function

Given that only LU is variable:

ttarget × n × v > n × v −
(

n × DT −
∑

µ∈u

LU

)

, (11)

1

n
×

∑

µ∈u

LU 6 v × (ttarget − 1) + DT . (12)

Eq. (12) shows what the average timeliness depending on the target value ttarget should be

and could also be written as:

AvgLU(t) 6 v × (ttarget − 1) + DT or LUtarget 6 v × (ttarget − 1) + DT .

The delivery time will always be the current time. Thus, it will be represented by the

variable now, which will be replaced by the current timestamp upon query time. This

allows for further modification to result in:

LU target 6 now − v × (1 − ttarget).

Introducing a delay function:

d(v, ttarget) := v × (1 − ttarget) results in LU target 6 now − d(v, ttarget). (13)
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At first sight one might require each data set to have an average timeliness not greater than

LUtarget . However, using the overall average of a data set is slightly problematic, as this

allows the selection of data that is very old together with very fresh data and then only

use the fresh data. To avoid this, the timeliness of any record is required to be not greater

than LU target . In this way it is ensured that records with a timeliness worse than or equal

to what has been paid for is delivered. In practical terms customers do query a view u∗ on

u such that:

u∗ = σµ[LastUpdated∗]6now−d(v,ttarget)(u).

In this model it is important that when records are updated, the original record is kept so

that customers can still access the older record rather than receiving an empty result set.

Continuing our example, remember that timeliness was to be provided at level 9,

amount of data at full level and customer support at level 2. The last dimension counts as

a contractual category that does not influence the data. Since amount of data is served at

full level it also does not influence the data. Therefore, u = u∗ holds as no modifications

to the data have to be made. However, given that time restrictions apply, in that the data

cannot be queried as soon as it is entered into the system, a view has to be derived at. Here,

the assumption is made that the volatility of weather forecast data is 24 hours. Given that

the target quality score of tt = 81
100

= 0.81 is a result of the optimization process, based on

the quality level 9, now the delay may be calculated using Eq. (13):

d(v, tt ) = v∗ × (1 − tt ),

d = 24 ∗ 0.19 = 4.45.

Having identified a delay of 4.45 hours and supposing that constant now is expressed in

hours, too, the final delivery view can be expressed as:

σµ[LastUpdated∗]6now−4.56(u).

6. Conclusions and Future Work

In this paper, we have demonstrated how data quality measures can be applied when pric-

ing relational data goods. Concretely, we have presented a model that allows providers to

apply an NYOP scheme for data. This paper also shows how this model can be used when

competitive data sources exist. Thus, the model enables data providers to tap the willing-

ness to pay of customers, who would otherwise not buy their relational data product; in

turn customers receive a highly custom-tailored data product. By adjusting the quality,

it can be ensured that customers get exactly what they pay for. In fact, using this model

providers do not have to specify a price publicly at all. They also could use an internal

price P and still apply the same pricing model. While this would require users to bid

exactly the price they are willing to pay it lacks transparency. An alternative would be ad-

vertising a price Pp greater than P publicly. This would result in additional profits from

customers paying a price W for which P 6 W 6 Pp holds.
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This paper has excluded the issue of potential cannibalization, i.e. that customers who

would have bought expensive products switch to a cheaper version if it becomes available.

This is an organisational aspect subject to future research. Furthermore, it should be eval-

uated whether this pricing model is perceived as fair as this is an important issue when

pricing (Reinartz, 2002; Narahari et al., 2005). To this end, it could be experimented with

an alternative pricing model, in which not all prices are calculated automatically but users

are provided with feedback regarding the actual quality levels while entering their prices

and preferences. This might also increase the perceived fairness. Furthermore, using sta-

tistical analyses on the bid prices, data providers can learn what value customers attribute

to their offerings. In this context, truth revelation might be an issue (Narahari et al., 2005);

the question remains if customers can actually cheat the system by not mentioning their

true preference. At this point, no formal proof can be provided but the argument is made

that if the used algorithm indeed delivers optimal results, then customers cannot cheat the

system as it delivers a custom-tailored product for exactly the suggested price. Depending

on the number and size of the quality-based utility levels, there might be little room to

minimize the residual capacity c̄ which might still occur; however, this is ineluctable.

Developing a quality-based pricing model, it has been shown that pricing on a data

marketplace can be expressed as an MCKP. An implementation is important future work

in order to evaluate the algorithm presented in Section 5.4 in the context of pricing. In

this regard, it is particularly interesting from which number of quality levels and quality

scores the algorithms become inefficient – if at all. Conducting such experiments, it can be

verified if the assumption that using the proposed solution to the MCKPP the quality level

can be determined in fractions of seconds can be held. Furthermore, some work has to be

invested into the question of how to actually create the required relational data products

on the spot as this might take a considerable amount of time.

To summarize, MCKPP is influenced by Quality Criteria, Customer Info comprising

the preference vector ω and a bid price W , Provider Info comprising a weighting vec-

tor κ and an ask price P , a versioning function b, a weighting function w(x) or w(b),

and a Quality Adaptation Algorithm for each Quality Criterion. It is a distinct feature of

this model that all components can be adjusted to match the needs of data marketplace

providers as well as the needs of data providers.
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