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Abstract. The redundancy allocation problem (RAP) has been studied for many different system
structures, objective functions, and distribution assumptions. In this paper, we present a problem
formulation and a solution methodology to maximize the system steady-state availability and min-
imize the system cost for the repairable series-parallel system designs. In the proposed approach,
the components’ time-to-failure (TTF) and time-to-repair (TTR) can follow any distribution such as
the Gamma, Normal, Weibull, etc. We estimate an approximation of the steady-state availability of
each subsystem in the series-parallel system with an individual meta-model. Design of experiment
(DOE), simulation and the stepwise regression are used to build these meta-models. Face centred
design, which is a type of central composite design is used to design experiments. According to a
max–min approach, obtained meta-models are utilized for modelling the problem alongside the cost
function of the system. We use the augmented ε-constraint method to reformulate the problem and
solve the model. An illustrative example which uses the Gamma distribution for TTF and TTR is
explained to represent the performance of the proposed approach. The results of the example show
that the proposed approach has a good performance to obtain Pareto (near-Pareto) optimal solutions
(system configurations).

Key words: redundancy allocation problem, bi-objective RAP, design of experiment, simulation,
ε-constraint method.

1. Introduction

System reliability analysis and optimization are important to utilize available resources
and part types efficiently and to develop the preferred or optimal system design archi-
tecture. The roots of the mathematical treatment of optimization problems can be traced
even in Antiquity (Žilinskas and Zhigljavsky, 2016). In recent years, reliability and avail-
ability have expanded their influence in various industries and fields, thus these concepts
serve as essential quality elements in many systems. Allocating redundant elements in
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the subsystems has been recognized as an effective means to meet the system reliability
or availability requirement. The RAP problem is the problem of finding an optimal al-
location of redundant components subject to a set of resource constraints (Caserta and
Voß, 2015). It is one of the best-developed problems in reliability engineering studies.
The RAP, which involves choosing appropriate elements and placing them redundantly
to form an optimal system structure with high reliability and low cost, has received much
attention in the literature. This essential problem has many applications in the real-world
systems, such as production systems design, etc. The optimal reliability design aims to
determine a system structure that achieves higher levels of reliability by exchanging the
existing components with more reliable components or/and using redundant components.

Researchers have studied this problem from many different perspectives (Kuo and
Wan, 2007; Yeh and Hsieh, 2011). The RAP is commonly considered in a multi-criteria
decision-making (MCDM) environment, which has many applications in engineering
problems (Keshavarz Ghorabaee, 2016; Keshavarz Ghorabaee et al., 2014). MCDM prob-
lems are generally divided into two classes: multi-objective decision-making (MODM)
methods and multi-attribute decision-making (MADM) methods. MODM methods are
generally used for dealing with the RAP. The traditional objectives for the RAP are max-
imizing the reliability and minimizing the cost of the system. Both of these objectives are
increased by including more components. This trade-off requires the problem to be eval-
uated in the multi-objective context. In multi-objective problems, a set of non-dominated
Pareto optimal solutions are obtained instead of a single optimal solution (Radziukynienė
and Žilinskas, 2014). Data perception is frequently a complex problem, especially when
data point to a complicated phenomenon described by many parameters, i.e. multidimen-
sional data are analysed (Dzemyda et al., 2013). The estimation of intrinsic dimensionality
of high-dimensional data still remains a challenging issue (Karbauskaitė and Dzemyda,
2015, 2016). Various methods are used to determine the Pareto optimal solutions of a
multi-objective problem. The ε-constraint is one of the MODM methods that can be ap-
plied to find them (Soylu and Kapan Ulusoy, 2011). One of early program realizations of
MODM methods is the system MOP (Dzemyda and Šaltenis, 1994).

System availability, a concept closely related to reliability, refers to the scale of mea-
suring the reliability of a repairable system. The repairable system indicates a system that
can be repaired to operate normally in the event of any failure. When the time-to-repair
(TTR) is not negligible in relation to the operational time, system’s reliability is measured
by its availability (Høyland and Rausand, 2004).

RAP is a challenging subject which has attracted the attention of many authors. Gen-
erally, in the RAP there are two strategies for using the redundant components: active and
standby (Ardakan et al., 2015).

Generally, there are two types of the redundancy allocation problems. In the first type,
we deal with discrete component choices with predefined characteristics (reliability, cost,
weight, etc.). The aim of solving the problems in this type is choosing the components and
the corresponding redundancy levels. In the second type, component reliability or a distri-
bution parameter is treated as a design variable, and component cost is a known increas-
ing function of component reliability (Coit and Liu, 2000). The majority of works in the
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first type have focused on the reliability of non-repairable systems. Using the metaheuris-
tics is the most common approach for dealing with this problem because the RAP is an
NP-hard problem and the computational time of optimal algorithms for the NP-hard prob-
lems is exponentially increased by enlarging the size of the problem (Amiri et al., 2014;
Chern, 1992). Gupta et al. (2009) considered the problem of constrained redundancy allo-
cation of the series system with interval valued reliability of components. They formulated
the problem as an unconstrained integer programming problem with interval coefficients
by penalty function technique and solved it by an advanced genetic algorithm (GA). Beji
et al. (2010) proposed a hybrid algorithm based on particle swarm optimization and local
search algorithm for the RAP. In addition, they introduced an adaptive penalty function
for encouraging the algorithm to explore the feasible and near feasible region. Zhang et al.
(2014) proposed a practical approach, combining bare-bones particle swarm optimization
and sensitivity-based clustering for solving multi-objective reliability redundancy alloca-
tion problems. Wang and Li (2014) advanced a meta-heuristic approach called particle
swarm optimization and applied it to obtain near-optimal solutions of the RAP in the
multi-state systems with bridge topology. Keshavarz Ghorabaee et al. (2015) considered a
RAP related to a system of s independent k-out-of-n subsystems in series. Maximization
of the system reliability and minimization of the system cost were the objectives of the
problem. They proposed four multi-objective genetic algorithms to handle this problem.
It should be said that the current study is also related to the first type of the redundancy
allocation problems.

Ardakan and Hamadani (2014) applied the mixed-integer non-linear optimization of
reliability–redundancy allocation problem. Later, Abouei Ardakan et al. (2016) presented
a new interpretation and formulation of the reliability–RAP and compared solution with
traditional approaches.

Most of the studies for availability maximization have pertained to the second class
of problems. There are few researches on availability of repairable systems that belong to
the first type of problems. Castro and Cavalca (2003) presented an availability optimiza-
tion problem of an engineering system assembled in a series configuration which has the
redundancy of units and teams of maintenance as optimization parameters and developed
a genetic algorithm to solve this problem. Zoulfaghari et al. (2014) studied a bi-objective
RAP for a system with mixed repairable and non-repairable components. They proposed
a new mixed integer nonlinear programming (MINLP) model to analyse this problem
and used an efficient genetic algorithm to solve it. Lins and Droguett (2011) proposed a
multi-objective genetic algorithm (GA) coupled with discrete event simulation to solve
redundancy allocation problems in systems subjected to imperfect repairs. They validated
the multi-objective GA via examples with analytical solutions and showed its superior
performance when compared to a multi-objective ant colony algorithm (ACO).

The majority of these studies have considered systems that involve components with
constant failure and repair rates. In these cases, time-to-failure (TTF) and time-to-repair
(TTR) of the components have an exponential distribution. The hypotheses of constant
failure rates are rarely met in real situations and may reduce the estimation accuracy of the
entire system reliability or availability. In the classical system reliability theory, problems
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with such features are usually handled by a Markovian model. If we consider a system with
components that have other distributions (e.g. Gamma, Normal, Weibull, etc.) for TTF and
TTR, we cannot usually use an analytical method to obtain the system availability. In this
study, we propose a new approach to design a system with the components that could have
any distribution for their TTF and TTR.

The flexibility given by the simulation enables us to interpret many real aspects in
problem modelling. Simulation is especially useful in situations where an analytical treat-
ment is not utilizable (Lins and Droguett, 2009). A simulation model is a causal model of
a real system. A meta-model is an approximation of the input/output (I/O) transformation
that is implied by the simulation model. There are different types of meta-models such
as polynomial regression models, splines, neural networks, etc. (Kleijnen and Sargent,
2000). Many researchers have developed meta-model-based approaches for optimization
engineering problems. Aytug et al. (1996) proposed a method optimizing the number of
kanbans in a pull production system by using simulation meta-modelling. Through meta-
modelling, they determined the relationship between the number of kanbans and the av-
erage time to fill a customer order. Yang and Tseng (2002) introduced a new approach
to optimize throughput and cycle time performance of integrated circuit ink-marking ma-
chines based on a simulation meta-model, a hybrid response surface method, and lexico-
graphical goal programming approach. Noguera and Watson (2006) developed a general
simulation meta-model in a particular company of chemicals industry in order to under-
stand better how plant design parameters could be optimized in order to maximize plant
throughput under certain environmental conditions and with certain asset investment con-
straints. Wang and Shan (2007) reviewed the meta-model-based techniques in supporting
design optimization, including model approximation, design space exploration, problem
formulation, and solving various types of optimization problems. Azadeh et al. (2010) pre-
sented an integrated approach based on simulation, meta-modelling using DOE and goal
programming to solve the job shop scheduling problem with multiple objectives. Zakerifar
et al. (2011) described the application of Kriging meta-modelling in multiple-objective
simulation optimization. They utilized a simulation model of an (s, S) inventory system
to demonstrate the capabilities of Kriging meta-modelling as a simulation tool. Amiri
and Mohtashami (2012) proposed a multi-objective formulation of the buffer allocation
problem in unreliable production lines. They used a factorial design which has to build a
meta-model for estimating production rate based on simulation. A genetic algorithm was
utilized for solving the model and determining the optimal (or near optimal) size of each
buffer storage.

In this research, we consider a bi-objective RAP in a series-parallel repairable system.
Maximization of the system steady-state availability and minimization of the system cost
are the objectives of the problem, and the system is constrained by a predefined weight.
Although the TTF and TTR of the components could have any distribution in the pro-
posed approach, we consider an example where the components’ TTF and TTR follow
Gamma distribution. The Gamma distribution is considered because it is a flexible one
and it can be used to model increasing, decreasing, and constant failure rates, similarly
to the Weibull distribution. Moreover, it can be used to approximate several component
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Fig. 1. A series-parallel system with s independent subsystems.

failure time distributions (Amari, 2012). Also, this distribution has an important applica-
tion for modelling the distribution of the TTF of a component, subjected to shocks whose
arrivals follow a homogeneous Poisson process with intensity lambda. If the component
is subjected to partial damage or degradation by each shock and fails completely at the
k-th shock, the distribution of the time to failure of the component is given by the Gamma
distribution (Modarres et al., 2009).

In the proposed approach, the steady-state availability of each subsystem in the series-
parallel system is evaluated with an individual meta-model. The design of experiment,
simulation, and the stepwise regression are used to build meta-models for calculating an
approximation of the steady-state availability of each subsystem. In other words, steady-
state availability of each subsystem is the response of the experiments and redundancy
levels are the factors of them. Besides cost objective function, created meta-models are
considered in the mathematical model using a max–min approach. The augmented ε-
constraint method is utilized for obtaining the Pareto (near-Pareto) optimal solutions to
this problem.

The rest of this paper is organized as follows. In Section 2, we show the general and
max–min formulations of the RAP for the series-parallel systems. In Section 3, we de-
scribe the proposed approach in detail. In Section 4, we use an illustrative example to
represent the performance of the proposed approach. The conclusions are discussed in
Section 5.

2. Preliminaries

2.1. Redundancy Allocation Problem (RAP) Formulation

We consider the design of a system formed by a predefined number of subsystems in se-
ries (s), which may have several components in parallel as shown in Fig. 1. The objectives
of this RAP are maximizing the system steady-state availability (A) and minimizing the
system cost (C). There are mi (i = 1,2, . . . , s) component types (choices) with different
parameters for each subsystem. The TTF and TTR of each component could have any dis-
tribution such as the Gamma, Normal, Weibull, etc. Each subsystem may have a minimum
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number of allowed components (ni,min). Moreover, the system is constrained by a maxi-
mum value of weight (Wmax). Based on this problem, we can define two formulations: the
general and the max–min formulation. We first present the general formulation in the fol-
lowing because of the vast application of it. However, the max–min formulation presented
in the next subsection is used in the process of the proposed approach. The max–min for-
mulation enables us to design the experiments of each subsystem individually, and this
may lead to a reduction in the number of experiments.

2.1.1. The General Mathematical Formulation

The general mathematical modelling for the RAP in a repairable system can be shown as
follows:

MaxAs =

s
∏

i=1

(

1 −

mi
∏

j=1

(1 − Aij )
xij

)

=

s
∏

i=1

Ai, (1a)

MinCs =

s
∑

i=1

mi
∑

j=1

cijxij , (1b)

Ws =

s
∑

i=1

mi
∑

j=1

wijxij , (1c)

Ws 6 Wmax, (1d)

mi
∑

j=1

xij = ni , ∀i, (1e)

ni > ni,min, ∀i. (1f)

2.1.2. Max–Min Problem Formulation

A series system fails if any of its components fail; therefore, improving the availability of
the least available component will readily impact on system availability. Although system
availability is not directly maximized in this formulation, the resulting solutions lead to
high system availability (Ramirez-Marquez et al., 2004).

Max z, (2a)

MinCs =

s
∑

i=1

mi
∑

j=1

cijxij , (2b)

Ai > z, ∀i, (2c)

Ws =

s
∑

i=1

mi
∑

j=1

wijxij , (2d)

Ws 6 Wmax, (2e)
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mi
∑

j=1

xij = ni , ∀i, (2f)

ni > ni,min, ∀i. (2g)

2.1.3. Notation
i Subsystem index,
j Component type (choice) index,
s Number of subsystems,
As System steady-state availability,
Cs System cost,
Ws System weight,
Aij Steady-state availability of j th component for subsystem i,
Ai Steady-state availability for subsystem i,
xij Quantity of j th component for subsystem i,
cij Cost of j th component for subsystem i,
wij Weight of j th component for subsystem i,
Wmax Maximum value of weight,
mi Number of available components choice for subsystem i,
ni Number of components used in subsystem i,
ni,min Lower bound for ni .

2.2. ε-Constraint Method

ε-constraint method is one of the most famous and efficient approaches in comparison with

traditional weighting approaches. It has too many advantages in the case of having one
main objective function in the multi-objective decision-making problems. There are two
major kinds of this method, traditional and augmented. Although the augmented method

is used in the process of the proposed approach, we also present the traditional method in
this section to introduce the basics of the augmented method.

2.2.1. Traditional ε-Constraint Method

Consider a multi-objective optimization problem with maximization objectives:

Max
{

f1(X),f2(X), . . . , fp(X)
}

,

s.t. X ∈ S,
(3)

where fi(X) is the ith objective function, p is the number of objective functions, S is
the solution space, and X is the solution vector. With the traditional ε-constraint method,
one objective is optimized and the other objectives are added into constraint space for
guaranteeing that basic requirements are satisfied. As a result, the aforementioned model



86 M. Keshavarz Ghorabaee et al.

can be re-established as follows:

Maxfp(X),

s.t. f1(X) > ε1,

f2(X) > ε2,

...

fp−1(X) > εp−1,

X ∈ S,

(4)

where ε1, ε2, . . . , εp−1 are the satisfaction levels which stipulate the minimum require-
ments on the constrained objectives. Solutions can be obtained by parametrical variations
of satisfaction levels ε1, ε2, . . . , εp−1 in the right-hand side of constraints (Deb, 2001).
Mavrotas (2009) showed that the results of this method are usually not efficient. In order
to circumvent the defect of the traditional ε-constraint method, he proposed the augmented
ε-constraint method.

2.2.2. Augmented ε-Constraint Method

The augmented ε-constraint method transforms inequality constraints of constrained ob-
jectives into equality constraints by introducing non-negative slack variables or surplus
variables and then augments the objective function with the weighted sum of these slack
or surplus variables (Mavrotas, 2009). The above model can be reformulated as the fol-
lowing:

Maxfp(X) + δ

(

s1

r1

+
s2

r2

+ · · · +
sp−1

rp−1

)

,

s.t. f1(X) − s1 = ε1,

f2(X) − s2 = ε2,

...

fp−1(X) − sp−1 = εp−1,

X ∈ S and si ∈ R+, i ∈ [1,p − 1],

(5)

where δ is an adequately small number usually between 10
−3 and 10

−6 and ri , i ∈

[1,p − 1], is the range of the ith objective.

3. The Proposed Approach

In this section, we propose an approach to deal with RAP in a repairable series-parallel
system with s subsystems. The framework of using the proposed approach is depicted in
Fig. 2.



A New Approach for Solving Bi-Objective Redundancy Allocation Problem Using DOE 87

  

ε
-c

o
n

st
ra

in
t 

m
et

h
o
d

 
D

O
E

 &
 S

im
u

la
ti

o
n

 

Determining the parameters and variables of the problem 

according to the requirements of the system 

Estimation of the range of variables (factors) 

Designing the experiments with respect to the number of 

subsystems using central composite design (CCD) 

Simulation of each experiment and obtaining the 

responses (steady-state availability) of the subsystems 

Using the stepwise regression to build the meta-models 

according to responses and input variables (factors) 

Reformulating the problem using the max-min approach 

and ε-constraint method with respect to the meta-models 

Obtaining the solutions of the problem (configurations of 

the system) by varying the ε values 

Simulation of the obtained solutions and get the steady-

state availability of the system in each solution 

Check the standard deviations of the simulation results 

and the tradeoff between the values of the objectives  

Fig. 2. The framework for using the proposed approach.

3.1. Design of Experiments (DOE)

The Design of Experiments (DOE) was developed in the early 1920s by Sir Ronald Fisher
at the Rothamsted Agricultural Field Research Station in London, England. His initial ex-
periments were concerned with determining the effect of various fertilizers on different
plots of land (Roy, 2001). Since then DOE has been widely accepted and applied in biolog-
ical and agricultural fields. Several successful applications of DOE have been presented
by many US and European manufacturers over the last years (Antony, 2003).

In performing a design experiment, we intentionally make changes to the input process
or variables (factors) in order to observe corresponding changes in the output (response).
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In this study, we consider the redundancy levels as the factors and the steady-state avail-
ability of each subsystem as the response of the experiments.

3.1.1. Estimate the Range of the Factors

For the design of experiments, we need the range of the factors. In this problem, we have
not any information about lower and upper bound of the factors (xij ). Therefore, we must
estimate these values for experimental design. To deal with this issue, we propose a heuris-
tic way based on right-hand side (RHS) and technological coefficients of the weight con-
straint. Let xL and xU denote the approximated lower bound and upper bound of factors
(xij ), respectively. The following equations are used for estimating xL and xU :

xL =

⌊

ni,min − 2

mini(mi)

⌋

+ 1, (6)

xU =

{

2
⌊

ω
2

⌋

+ 1 if xL is odd,

2
⌊

ω
2

+ 1
⌋

if xL is even,
(7)

where

ω =
Wmax

(

∑s
i=1

∑mi
j=1

wij
∑s

i=1
mi

)

ni,mins

. (8)

In the experimental layout, xL and xU are replaced by −1 and 1 (coded values), respec-
tively. It should be noted that the average of xL and xU is the central point and replaced
by zero (midrange). In other words, the actual values of the factors are in the range of xL

to xU whereas, the coded values of the factors are in the range of −1 to 1. Let x ′
ij denote

the coded value of xij (actual value). The coded values and actual values of the factors
can be converted to each other by the following equation:

x ′
ij =

xij − xU+xL

2

xU−xL

2

. (9)

3.1.2. Central Composite Design (CCD)

The most popular response surface design is the central composite design. It is useful for
building a second-ordermodel for the response variable without needing to use a complete
three-level factorial experiment (Leksakul and Limcharoen, 2014). It combines a two-level
fractional factorial and two other kinds of points (Lin et al., 2012):

– Centre points, for which all the factor values are at the zero (or midrange) value. This
point is often replicated in order to improve the precision of the experiment;

– Axial (or star) points, for which all but one factor are set at zero (midrange) and that
one factor is set at outer (axial) values.
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A central composite design is usually utilized for Badkar et al. (2012):

– Efficiently estimate first- and second-order terms;
– Model a response variable with curvature by adding a centre and axial points to a

previously-done factorial design.

Face centred design is a type of central composite design. In this design, the axial points
are at the centre of each face of the factorial space, and the design requires three levels of
each factor (Ghoreishi, 2006). We use this type of central composite design for designing
experiments in this study. The design of experiments for each subsystem is performed
individually; therefore, the total number of experiments is easily reduced. According to
this approach, we must build a meta-model for each subsystem.

3.2. Simulation

Simulation is the imitation of the operation of a real-world process or system over time
(Banks et al., 2010). Simulation can be used to show the eventual real effects of alterna-
tive conditions and courses of action. Simulation is also used when the real system cannot
be engaged, because it may not be accessible, or it may be dangerous or unacceptable to
engage, or it is being designed but not yet built, or it may simply not exist (Sokolowski
and Banks, 2011). The aim of the RAP is designing a system with high level of reliability
or availability. In this paper, we consider a repairable system that TTF and TTR of com-
ponents can follow any distribution (such as the Gamma, Normal, Weibull, etc.). In this
situation, we cannot use an analytical method to obtain the steady-state availability of the
system. Therefore, simulation is utilized for computing steady-state availability. We have
a simulation response for each experiment in any subsystem design. These responses are
used to build a meta-model for each subsystem.

3.3. Stepwise Regression to Build Meta-Models

Stepwise regression is a type of multiple linear regressions that can select the best-fitted
combination of independent variables with forward-adding and backward-deleting vari-
ables (Ralston and Wilf, 1960). Stepwise regression is used when there is little theory to
guide the selection of terms in a model, and the modeller wants to use whatever seems to
provide a good fit (Draper and Smith, 1981). The stepping procedure begins as an initial
model definition, with a stepped forward addition of a variable to the previous model. The
critical F -value is then used to check the eligibility of the added variable. With a new
variable added, the previous variables in the model may lose their predictive ability. Thus,
stepping criteria are used to check the significance of all the included variables. If the
variable is insignificant, then the backward method is used to delete it. Forward-adding
and backward-deleting are repeated until no variable is added or removed. The stepping
procedure is eliminated when the optimized model is established (Chen et al., 2013). We
perform stepwise regression to build a meta-model for each subsystem. In this research,
the considered p-value threshold for both forward and backward direction of stepwise re-
gression is 0.25. Subsequently, Âi stands for the steady-state availability meta-model of
the ith subsystem.
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3.4. Reformulating the Problem and Obtaining the Solutions

The meta-models of each subsystem (Âi), the augmented ε-constraint method and the
max–min formulation are used to reformulate the considered redundancy allocation prob-
lem. The new formulation of the problem is shown as follows:

Max z + δ

(

sc

rc

)

, (10a)

Cs =

s
∑

i=1

mi
∑

j=1

cijxij , (10b)

Cs + sc = ε, (10c)

Âi > z, ∀i, (10d)

Ws =

s
∑

i=1

mi
∑

j=1

wijxij , (10e)

Ws 6 Wmax, (10f)

mi
∑

j=1

xij = ni , ∀i, (10g)

ni > ni,min, ∀i, (10h)

where s is the surplus variable, rc is the range of Cs (system cost) and ε is the satisfaction
level. We have to vary the satisfaction level (ε) to find the Pareto (near-Pareto) optimal
solutions. Following equation is utilized for varying ε value:

ε = CL + αrc, (11)

where CL is the lower bound of system cost (Cs ) and α is a real number that can be
changed in the range of 0 to 1.

This mathematical formulation is not applicable to obtain the steady-state availability
of the system because the meta-models of subsystems (Âi) are not limited to the range
[0,1]. However, solving this mathematical model yields the configuration of the system
and the redundancy levels that maximize the steady-state availability and minimize the
cost of the system.

4. Illustrative Example

We use an example of redundancy allocation problems in repairable systems to demon-
strate the performance of the proposed approach. The example is a series-parallel system
that is designed with 5 subsystems. For each subsystem there are two, three or four com-
ponent choices (types). TTF and TTR of each component follow a 2-parameter Gamma
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Table 1
Distribution parameters of components for given example.

Subsystem Choice 1 (j = 1) Choice 2 (j = 2) Choice 3 (j = 3) Choice 4 (j = 4)

(i) αij β
f
ij

βr
ij

αij β
f
ij

βr
ij

αij β
f
ij

βr
ij

αij β
f
ij

βr
ij

1 2.2 0.00639 0.00173 1.3 0.01233 0.00323 1.7 0.00517 0.00074 1 0.0105 0.00508
2 1.9 0.00575 0.00151 1.1 0.01111 0.00156 – – – – – –
3 1.13 0.01103 0.00222 1.35 0.01262 0.00281 1.75 0.00531 0.00135 – – –
4 1.47 0.01365 0.00318 1.55 0.01057 0.00249 1.68 0.00554 0.00131 – – –
5 2.3 0.00644 0.00163 1.12 0.01278 0.00296 – – – – – –

Table 2
Costs and weights of components for given example.

Subsystem Choice 1 (j = 1) Choice 2 (j = 2) Choice 3 (j = 3) Choice 4 (j = 4)

(i) cij wij cij wij cij wij cij wij

1 100 11 79 7 58 7 90 5
2 93 25 95 10 – – – –
3 65 8 42 9 69 10 – –
4 41 9 28 10 53 13 – –
5 92 8 83 7 – – – –

distribution with shape parameter α and scale parameter β (the mean of distribution is
α/β). The distribution parameters of the components are provided in Table 1, and com-
ponents’ cost and weight are provided in Table 2. We use an equivalent shape parameter
for both TTF and TTR of any component. In Table 1, βf denotes the scale parameter of
TTF and βr refers to the scale parameter of TTR. A minimum number of components
within a subsystem i (ni,min) is 3 for all subsystems. Maximization of the system steady-
state availability and minimization of the system cost are the objectives of the example,
and the maximum allowed system weight is 500.

4.1. DOE and Simulation

As mentioned in previous sections, we have to estimate a lower and an upper bound for
factors (xij ). The Eqs. (6), (7), and (8) are used for estimation of xL and xU . The results
are shown as follows:

ω =
500

(

139

14

)

× 3 × 5
= 3.3573, (12)

xL =

⌊

3 − 2

2

⌋

+ 1 = 1, (13)

xU = 2

⌊

3.3573

2

⌋

+ 1 = 3. (14)
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Table 3
Design of experiments and simulation responses for subsystem 1.

Experiment Factors Response

number x′
11

x′
12

x′
13

x′
14

A1

1 −1 −1 1 1 0.8837
2 0 0 0 −1 0.7978
3 −1 1 −1 −1 0.7854
4 −1 0 0 0 0.8298
5 1 1 −1 1 0.9423
6 1 1 −1 −1 0.8694
7 0 0 0 0 0.8745
8 −1 1 −1 1 0.9009
9 1 −1 −1 −1 0.7797

10 0 0 1 0 0.8904
11 −1 −1 −1 −1 0.6480
12 −1 1 1 −1 0.8253
13 0 0 −1 0 0.8475
14 0 0 0 0 0.8797
15 −1 −1 −1 1 0.8183
16 −1 −1 1 −1 0.7222
17 1 0 0 0 0.9118
18 0 0 0 1 0.9090
19 1 1 1 1 0.9516
20 1 −1 1 −1 0.8067
21 1 1 1 −1 0.8861
22 −1 1 1 1 0.9291
23 0 −1 0 0 0.8264
24 1 −1 −1 1 0.8973
25 0 1 0 0 0.8920
26 1 −1 1 1 0.9129

According to Eq. (9), we can represent the relation between the coded variable and actual
variable:

x ′
ij =

xij − 3+1

2

3−1

2

xij − 2. (15)

Next, a face centred design is used to design the experiments of each subsystem. The
response of each experiment (steady-state availability of subsystem) is obtained by sim-
ulation. We use Enterprise Dynamics 7 (Falcon version) software to simulate each sub-
system experiments. The detailed information of the simulation with this software is not
presented because the simulation step of the proposed approach could be performed by
any simulation software. The design of experiments (with coded factors) and the responses
of experiments for each subsystem are shown in Tables 3 to 7. It should be noted that the
responses shown in these tables are calculated by averaging the responses of simulation
in 10 runs. As can be seen in these tables, using lower bound (x ′

ij = −1) for all factors
leads to the lowest response (steady-state availability of subsystem). On the other hand, the
highest steady-state availability of subsystem is the result of using upper levels (x ′

ij = 1)
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Table 4
Design of experiments and simulation responses for subsystem 2.

Experiment Factors Response

number x′
21

x′
22

A2

1 −1 −1 0.3074
2 −1 0 0.4005
3 1 0 0.6304
4 1 1 0.6800
5 1 −1 0.5672
6 0 0 0.5204
7 0 −1 0.4499
8 −1 1 0.4717
9 0 1 0.5858

10 0 0 0.5123

Table 5
Design of experiments and simulation responses for subsystem 3.

Experiment Factors Response

number x′
31

x′
32

x′
33

A3

1 0 0 −1 0.6370
2 −1 1 −1 0.6333
3 0 1 0 0.7655
4 1 1 −1 0.7337
5 0 0 0 0.7146
6 1 0 0 0.7361
7 1 −1 −1 0.6301
8 1 −1 1 0.7602
9 −1 −1 −1 0.4479

10 0 0 0 0.6915
11 0 0 1 0.7606
12 −1 −1 1 0.6790
13 1 1 1 0.8395
14 −1 1 1 0.7594
15 −1 0 0 0.6459
16 0 −1 0 0.6340

for all factors. This relation between the levels of factors and the response shows the good
performance of estimation, DOE, and simulation.

4.2. Stepwise Regression and Building Meta-Models

According to results of the previous step, we can use the stepwise regression to build
each subsystem’s meta-model. Analysis of variance for the fitted model of the response of
subsystem 1 is shown in Table 8. If the p-value of a statistical model is smaller than sig-
nificance level (α = 0.05), it can be concluded that the model is significant at the α level.
We can see that the p-value of the statistical model of subsystem 1 has a very small value
(less than 0.0001). It can be considered as evidence that the statistical model is significant.
The p-value for the Lack of Fit test is greater than 0.05 and represents an insignificant
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Table 6
Design of experiments and simulation responses for subsystem 4.

Experiment Factors Response

number x′
41

x′
42

x′
43

A4

1 0 0 0 0.7220
2 1 −1 1 0.7767
3 −1 −1 −1 0.4761
4 0 0 −1 0.6589
5 −1 1 −1 0.6761
6 0 1 0 0.7703
7 1 1 −1 0.7811
8 0 0 0 0.6870
9 1 0 0 0.7641

10 1 −1 −1 0.6640
11 1 1 1 0.8458
12 −1 1 1 0.7568
13 0 0 1 0.7747
14 −1 −1 1 0.6387
15 −1 0 0 0.6608
16 0 −1 0 0.6733

Table 7
Design of experiments and simulation responses for subsystem 5.

Experiment Factors Response

number x′
51

x′
52

A5

1 1 0 0.6554
2 1 1 0.7240
3 1 −1 0.5932
4 −1 1 0.5562
5 0 1 0.6665
6 0 0 0.5943
7 0 −1 0.5010
8 −1 −1 0.3333
9 −1 0 0.4797

10 0 0 0.5674

Table 8
Analysis of variance for fitted model of subsystem 1.

Source DF Sum of squares Mean square F Ratio p-value

Model 12 0.12123 0.01010 230.184 < 0.0001

Lack of fit 12 0.00055 0.00004 3.4335 0.4007

Error 13 0.00057 0.00004
C. Total 25 0.12180

RSquare = 0.9953

lack of fit. RSquare estimates the proportion of variation in the response that can be at-
tributed to the model rather than to random error. It can be seen in Table 8 that RSquare
of the fitted model is close to 1 (RSquare = 0.9953). An RSquare closer to 1 indicates a
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Table 9
Analysis of variance for fitted model of subsystem 2.

Source DF Sum of squares Mean square F Ratio p-value

Model 4 0.11045 0.02761 937.5039 < 0.0001

Lack Of Fit 4 0.00011 0.00002 0.8835 0.6527

Error 5 0.00014 0.00002
C. Total 9 0.11060

RSquare = 0.9986

Table 10
Analysis of variance for fitted model of subsystem 3.

Source DF Sum of squares Mean square F Ratio p-value

Model 7 0.11907 0.01701 79.097 <.0001

Lack Of Fit 7 0.00145 0.00020 0.7728 0.7073

Error 8 0.00172 0.00021
C. Total 15 0.12079

RSquare = 0.9857

Table 11
Analysis of variance for fitted model of subsystem 4.

Source DF Sum of squares Mean square F Ratio p-value

Model 7 0.10900 0.01557 64.9566 < 0.0001

Lack Of Fit 7 0.00130 0.00018 0.3065 0.8862

Error 8 0.00191 0.00024
C. Total 15 0.11092

RSquare = 0.9827

Table 12
Analysis of variance for fitted model of subsystem 5.

Source DF Sum of squares Mean square F Ratio p-value

Model 4 0.10925 0.02731 110.56 < 0.0001

Lack Of Fit 4 0.00087 0.00021 0.6042 0.7323

Error 5 0.00123 0.00024
C. Total 9 0.11049

RSquare = 0. 9888

better fit. Tables 9 to 12 show the analysis of variance for fitted models of subsystems 2
to 5, respectively. As can be seen in these tables, all the p-values of the statistical models
are less than 0.0001, all the p-values of the Lack of Fit tests are greater than 0.05 and all
the RSquares are greater than 0.95. With respect to these results, it can be said that all
statistical models are significant and well fitted in the α significance level.

The meta-model parameter estimations considering the main effects of factors, interac-
tions between them and 2nd power of them, are shown in Tables 13 to 17 for subsystems
1 to 5, respectively. If the p-value of an estimate of a term (coefficient) is smaller than
α level, we can say that this coefficient is significant in the considered significance level.
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Table 13
The estimates of subsystem 1 meta-model.

Term Estimate Std error t Ratio p-value

Intercept 0.87134 0.00251 346.52 < 0.0001

x′
11

0.03417 0.00156 21.88 < 0.0001

x′
12

0.03816 0.00156 24.44 < 0.0001

x′
13

0.01773 0.00156 11.36 < 0.0001

x′
14

0.05692 0.00156 36.46 < 0.0001

x′
11

x′
12

−0.00724 0.00165 −4.37 0.0008

x′
11

x′
13

−0.00870 0.00165 −5.25 0.0002

x′
12

x′
13

−0.00550 0.00165 −3.32 0.0055

x′
11

x′
14

−0.01181 0.00165 −7.13 < 0.0001

x′
12

x′
14

−0.01237 0.00165 −7.47 < 0.0001

x′
13

x′
14

−0.00246 0.00165 −1.49 0.1609

x′
12

x′
12

−0.00922 0.00365 −2.52 0.0257

x′
14

x′
14

−0.01503 0.00365 −4.11 0.0012

Table 14
The estimates of subsystem 2 meta-model.

Term Estimate Std error t Ratio p-value

Intercept 0.51714 0.00271 190.57 <.0001

x′
21

0.11635 0.00221 52.51 <.0001

x′
22

0.06883 0.00221 31.07 <.0001

x′
21

x′
22

−0.01286 0.00271 −4.74 0.0052

x′
21

x′
21

−0.00757 0.00350 −2.16 0.0831

Table 15
The estimates of subsystem 3 meta-model.

Term Estimate Std error t Ratio p-value

Intercept 0.70059 0.00598 117.02 < 0.0001

x′
31

0.05340 0.00463 11.52 < 0.0001

x′
32

0.05801 0.00463 12.51 < 0.0001

x′
33

0.07167 0.00463 15.46 < 0.0001

x′
31

x′
32

−0.01035 0.00518 −2 0.0809

x′
31

x′
33

−0.01515 0.00518 −2.92 0.0192

x′
32

x′
33

−0.01617 0.00518 −3.12 0.0143

x′
31

x′
31

−0.01404 0.00757 −1.85 0.1008

As can be seen in these tables, most of the estimates of terms (coefficients) have p-values
which are smaller than α = 0.05. Therefore, the obtained meta-models have significant
coefficients in the considered α level. Moreover, the low values of standard errors (Std Er-
ror < 0.01) in these tables show the small confidence intervals of coefficients and high
accuracy of estimates of terms.

With respect to Eq. (15) and Tables 13 to 17, we can represent the meta-model of each
subsystem in actual (non-coded) variables as follows:
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Table 16
The estimates of subsystem 4 meta-model.

Term Estimate Std error t Ratio p-value

x′
41

0.06232 0.00489 12.73 < 0.0001

x′
42

0.06014 0.00489 12.28 < 0.0001

x′
43

0.05364 0.00489 10.96 < 0.0001

x′
41

x′
42

−0.01650 0.00547 −3.01 0.0167

x′
41

x′
43

−0.00823 0.00547 −1.5 0.1713

x′
42

x′
43

−0.01623 0.00547 −2.97 0.018

x′
41

x′
41

−0.01031 0.00799 −1.29 0.2331

Table 17
The estimates of subsystem 5 meta-model.

Term Estimate Std error t Ratio p-value

Intercept 0.58234 0.00786 74.1 < 0.0001

x′
51

0.10056 0.00642 15.67 < 0.0001

x′
52

0.08653 0.00642 13.48 < 0.0001

x′
51

x′
52

−0.02305 0.00786 −2.93 0.0325

x′
51

x′
51

−0.02531 0.01015 −2.49 0.0548

Â1 = 0.87134 + 0.03417(x11 − 2) + 0.03816(x12 − 2) + 0.01773(x13 − 2)

+ 0.05692(x14 − 2) − 0.00724(x11 − 2)(x12 − 2)

− 0.00870(x11 − 2)(x13 − 2) − 0.00550(x12 − 2)(x13 − 2)

− 0.01181(x11 − 2)(x14 − 2) − 0.01237(x12 − 2)(x14 − 2)

− 0.00246(x13 − 2)(x14 − 2) − 0.00922(x12 − 2)2 − 0.01503(x14 − 2)2,

(16)

Â2 = 0.51714 + 0.11635(x21 − 2) + 0.06883(x22 − 2)

− 0.01286(x21 − 2)(x22 − 2) − 0.00757(x21 − 2)2, (17)

Â3 = 0.70059 + 0.05340(x31 − 2) + 0.05801(x32 − 2) + 0.07167(x33 − 2)

− 0.01035(x31 − 2)(x32 − 2) − 0.01515(x31 − 2)(x33 − 2)

− 0.01617(x32 − 2)(x33 − 2) − 0.01404(x31 − 2)2, (18)

Â4 = 0.71439 + 0.06232(x41 − 2) + 0.06013(x42 − 2) + 0.05364(x43 − 2)

− 0.01650(x41 − 2)(x42 − 2) − 0.00823(x41 − 2)(x43 − 2)

− 0.01623(x42 − 2)(x43 − 2) − 0.01031(x41 − 2)2, (19)

Â5 = 0.58234 + 0.10055(x51 − 2) + 0.08653(x52 − 2)

− 0.02305(x51 − 2)(x52 − 2) − 0.02531(x51 − 2)2. (20)



98 M. Keshavarz Ghorabaee et al.

4.3. Using ε-Constraint Method to Solve the Model

We utilize the formulation that has been presented based on the augmented ε-constraint
method and the max–min approach for solving the problem. The mathematical formula-
tion of the example is shown as follows:

Max z + δ

(

sc

rc

)

, (21a)

Cs = 100x11 + 79x12 + 58x13 + 90x14 + 93x21 + 95x22 + 65x31

+ 42x32 + 69x33 + 41x41 + 28x42 + 53x43 + 92x51 + 83x52, (21b)

Cs + sc = ε, (21c)

Âi > z, i = 1,2,3,4,5, (21d)

Ws = 11x11 + 7x12 + 7x13 + 5x14 + 25x21 + 10x22 + 8x31 + 9x32

+ 10x33 + 9x41 + 10x42 + 13x43 + 8x51 + 7x52, (21e)

Ws 6 500, (21f)

x11 + x12 + x13 + x14 > 3, (21g)

x21 + x22 > 3, (21h)

x31 + x32 + x33 > 3, (21i)

x41 + x42 + x43 > 3, (21j)

x51 + x52 > 3, (21k)

where Âi is the meta-model of ith subsystem. We have rc = 5022, CL = 912 and δ =

10
−5. Therefore, the equation for varying ε is obtained as follows:

ε = 912 + 5022α. (22)

By varying the value of α we can alter ε in the specified range. The above mathematical
model has been solved with different values of α. We have used the global solver of LINGO
14 software for solving this model. The solutions (configurations) that resulted from this
approach and the corresponding system costs are presented in Table 18.

As previously mentioned, we cannot obtain the steady-state availability of the system
by solving the mathematical model. For verifying the validity of solutions, we simulate
each solution 10 times. The average steady-state availability for each solution that obtained
from 10 runs of simulation is given in Table 19. To show the stability of simulation, the
standard deviation, minimum, and maximum of each solution are also shown in this table.
According to this table, the standard deviation of responses of all solutions is smaller than
0.05. Therefore, we can say that the results of our simulation have a good stability. With
respect to the average values of these simulation responses and the cost to each solution
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Table 18
Solutions of the mathematical model.

α Actual variables Cost of

x11 x12 x13 x14 x21 x22 x31 x32 x33 x41 x42 x43 x51 x52 the system

0 0 0 3 0 3 0 0 3 0 0 3 0 0 3 912

0.02 0 1 2 0 3 0 0 4 0 0 4 0 0 3 1003

0.04 0 0 2 1 3 0 0 4 0 0 4 0 3 0 1041

0.06 0 0 2 1 4 0 0 4 0 1 3 0 0 4 1203

0.08 0 2 1 0 4 0 0 5 0 1 4 0 0 4 1283

0.1 0 2 1 0 4 0 0 5 0 0 6 0 4 0 1334

0.12 0 3 0 0 5 0 0 6 0 0 6 0 4 0 1490

0.14 0 3 0 0 5 0 0 6 0 0 7 0 5 0 1610

0.16 0 3 0 0 5 0 0 7 0 1 6 0 5 0 1665

0.18 0 0 0 3 5 1 0 7 0 2 5 0 5 0 1806

0.2 0 0 0 3 6 0 0 7 0 0 8 0 5 1 1889

0.22 0 0 0 4 6 0 0 7 0 0 8 0 6 0 1988

0.24 0 0 0 4 6 0 0 8 0 0 9 0 6 0 2058

0.26 0 0 0 4 7 0 0 8 0 1 8 0 6 0 2164

0.28 0 0 0 4 7 0 0 9 0 1 8 0 7 0 2298

0.30–0.32 0 0 0 5 7 0 0 9 0 1 9 0 7 0 2416

0.34 0 0 0 5 8 0 0 10 0 0 11 0 7 0 2566

0.36 0 0 1 5 8 0 0 10 0 0 11 0 8 0 2716

0.38 0 0 0 6 8 0 0 10 0 3 8 0 8 0 2787

0.4 0 0 0 6 8 0 0 0 7 0 12 0 8 0 2839

0.42 0 0 0 6 9 0 0 0 7 6 5 0 8 0 2982

0.44 0 0 0 7 9 0 0 0 7 6 5 0 8 0 3072

0.46–0.54 0 1 2 6 8 0 0 0 7 3 8 0 8 1 3128

0.56–0.60 0 7 0 0 0 13 0 0 7 1 0 8 0 9 3483

0.62–64 0 0 1 7 0 14 0 0 8 8 5 0 9 0 3866

0.66 0 0 0 7 0 15 0 0 8 1 0 9 0 10 3955

0.68 0 0 0 9 0 15 2 11 0 0 0 8 9 0 4079

0.70 0 10 0 0 0 15 0 0 9 0 0 8 10 0 4180

0.72 0 0 0 8 0 15 1 0 9 0 0 9 10 0 4228

0.74 0 0 0 8 0 15 1 0 9 0 0 9 0 13 4387

0.76 0 0 1 11 0 15 1 0 9 0 0 9 9 0 4464

0.78 1 1 1 10 0 15 0 0 9 12 0 0 0 11 4588

0.80–1 0 0 0 14 0 15 0 0 8 0 0 8 11 0 4673

(last column of Table 18), we can obtain an approximation of the Pareto (near-Pareto)
optimal frontier as shown in Fig. 3. To represent the obtained frontier more accurately,
the minimum and maximum values of steady-state availability of the system in each so-
lution are shown, in addition to the average points. As can be seen in Fig. 3, there is a
trade-off between the steady-state availability and the cost of the system and none of the
obtained points (solutions) are dominated by the other points. This result shows the fact
that the obtained frontier is close to Pareto optimal frontier and also represents the good
performance of the proposed approach.

The decision-maker can choose one of the obtained solutions of this approach based
on the Pareto (near-Pareto) optimal frontier and her/his subjective evaluations. It is ob-
vious that desirable thing in solving a RAP is obtaining the optimal configuration of the
system, but not necessarily the value of the steady-state availability of the system. How-
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Table 19
The average, standard deviation, minimum and maximum of steady-state availability

of the system obtained by simulation according to each solution.

α Average Standard deviation Minimum Maximum

0 0.0157 0.0004 0.0150 0.0164
0.02 0.0374 0.0004 0.0367 0.0380
0.04 0.0393 0.0004 0.0386 0.0398
0.06 0.0525 0.0011 0.0508 0.0541
0.08 0.0629 0.0008 0.0618 0.0640
0.1 0.0745 0.0007 0.0733 0.0756
0.12 0.1043 0.0038 0.0982 0.1082
0.14 0.1237 0.0061 0.1133 0.1353
0.16 0.1387 0.0048 0.1299 0.1453
0.18 0.2074 0.0015 0.2055 0.2089
0.2 0.2393 0.0024 0.2344 0.2420
0.22 0.2726 0.0056 0.2612 0.2798
0.24 0.2872 0.0036 0.2827 0.2940
0.26 0.3322 0.0081 0.3216 0.3484
0.28 0.3807 0.0091 0.3676 0.3930
0.3–0.32 0.4128 0.0077 0.4038 0.4288
0.34 0.4504 0.0095 0.4319 0.4611
0.36 0.4833 0.0121 0.4658 0.5053
0.38 0.5016 0.0086 0.4838 0.5112
0.4 0.5059 0.0105 0.4896 0.5273
0.42 0.5107 0.0097 0.4939 0.5244
0.44 0.5302 0.0083 0.5203 0.5418
0.46–0.54 0.5870 0.0127 0.5708 0.6090
0.56–0.60 0.6343 0.0053 0.6279 0.6448
0.62–64 0.7928 0.0125 0.7719 0.8121
0.66 0.8166 0.0090 0.8005 0.8307
0.68 0.8457 0.0091 0.8298 0.8605
0.70 0.8683 0.0109 0.8507 0.8830
0.72 0.8852 0.0095 0.8704 0.8977
0.74 0.9003 0.0076 0.8862 0.9113
0.76 0.9126 0.0091 0.8983 0.9255
0.78 0.9337 0.0102 0.9145 0.9472
0.80–1 0.9481 0.0086 0.9355 0.9623

ever, using a logarithmic transformation of the response (steady-state availability) before
building meta-models is suggested for the future researches. The use of a logarithmic
transformation function can lead to building more accurate meta-models from responses,
which are limited within the range [0,1]. Then a back-transformation function can be used
after solving the model to obtain the approximate values of steady-state availability.

5. Conclusion

We have proposed a methodology for solving a bi-objective RAP in a series-parallel re-
pairable system. Maximization of steady-state availability and minimization of cost has
been assumed as the objectives of the problem. The TTF and TTR of the components of
the system can follow any distribution (such as Gamma, Normal, Weibull, etc.). In the pro-
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Fig. 3. The Pareto (near-Pareto) optimal frontier.

posed methodology, DOE, simulation and the stepwise regression have been used to build
meta-models for finding the approximations of steady-state availability of subsystems in
the series-parallel system. Obtained meta-models together with the cost function of the
system have been utilized for modelling the problem according to a max–min approach.
We have developed an augmented ε-constraint method for reformulating and solving the
model. An illustrative example has been explained to show the performance of the pro-
posed approach. In the example, the TTF and TTR of components follow the Gamma
distribution. All meta-models of this example are statistically significant and have accept-
able (close to 1) values of RSquare. We can also see a trade-off between the steady-state
availability and the cost of the system in the obtained Pareto (near-Pareto) optimal frontier.
Regarding these two facts, we can say that the proposed approach has a good performance.
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