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Abstract. Data involving spatial and/or temporal attributes are often represented at different lev-
els of granularity in different source schemata. In this work, a model of such multigranular data
is developed, which supports not only the usual order structure on granules, but also lattice-like
join and disjointness operators for relating such granules in much more complex ways. In addi-
tion, a model for multigranular thematic attributes, to which aggregation operators are applied, is
provided. Finally, the notion of a thematic multigranular comparison dependency, generalizing or-
dinary functional and order dependencies but specifically designed to model the kinds of functional
and order dependencies which arise in the multigranular context, and in particular incorporating
aggregation into the definition of the constraint, is developed.
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1. Introduction

The most important type of integrity constraint in both the theory and the practice
of relational database systems is undoubtedly the functional dependency, or FD for
short (Maier, 1983. Ch. 4). As a concrete example, consider the relational schema
Rsumb〈APlc,ATim,BBth〉, in which APlc represents places, ATim represents time, and BBth

represents a number of births. The FD {APlc,ATim} → BBth asserts that place and time
determine the number of births; if there are two tuples of the form 〈p, t, b〉 and 〈p, t, b′〉,
then b = b′.

The attributes of this schema have additional, multigranular properties. Places, for
example, may be at the level of cities (e.g. the Chilean city Concepción) as well as
at the level of national regions (e.g. Región VIII, in which Concepción lies). This
induces an ordering defined by spatial inclusion: Concepción ⊑ Región VIII. Simi-
larly, intervals of time have an ordering; if Q2Y2014 represents the second quarter of
year 2014, while Y2014 represents the entire year, then Q2Y2014 ⊑ Y2014. Thus, if
〈Concepción,Q2Y2014, nC〉 and 〈Región VIII,Y2014, nB〉 are two tuples in this rela-
tion, with nC and nB representing the number of births in each case, then it must be the

case that nC 6 nB . This is a manifestation of the order dependency {APlc,ATim}
6
→ BBth,

*Corresponding author.
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Part 1

APlc ATim BBth

Región I Q1Y2014 n1

Región II Q1Y2014 n2

. . . . . . . . .

Región XV Q1Y2014 n15

Part 2

APlc ATim BBth

Chile Q1Y2014 b1

Chile Q2Y2014 b2

Chile Q3Y2014 b3

Chile Q4Y2014 b4

Fig. 1. Two databases with the same schema

which asserts that for any two tuples 〈p1, t1, b1〉 and 〈p2, t2, b2〉, if p1 ⊑ p2 and t1 ⊑ t2,
then b1 6 b2 (Ginsburg and Hull, 1983; Ng, 2001; Szlichta et al., 2012).

For the most part, previous work on multigranular attributes has focused on such sub-
sumption (order) structure (Camossi et al., 2006; Rodríguez and Bravo, 2012; Bravo and
Rodríguez, 2014). There are, however, important kinds of constraints in the multigran-
ular context which cannot be represented solely via order dependencies. As a concrete
example, for APlc, it is also possible to assert that Chile is composed of exactly fifteen
nonoverlapping regions via a join-like rule of the following form:1

Chile =
⊔

⊥ {Región_R | I 6 R 6 XV }. (r-Chile)

The symbol
⊔

⊥ means that its arguments join disjointly; that any pair {Región_i,Región_j}
with i 6= j is disjoint; i.e. nonoverlapping spatially.2

To illustrate the particular issues which arise in the multigranular framework, consider
the two databases shown in Fig. 1. For convenience, it is shown in two parts, with the first
part containing tuples of Rsumb〈APlc,ATim,BBth〉 with values of APlc at the granularity
of regions, and the second with tuples with values of APlc at the granularity of countries.
The semantics implied by (r-Chile) require that the sum of the number of births over the
regions for Q1Y2014 agree with the value for all of Chile; that is, b1 =

∑

15

i=1
ni . The

main contribution of this paper is to provide a model of data granules which supports
rules such as (r-Chile) succinctly, including formulations of not only basic (often spatio-
temporal) attribute such as APlc and ATim, but also models of thematic attributes such as
BBth, including how they may be embellished with aggregation operators. Finally, a means
to employ these concepts in the expression of such integrity constraints is provided.

Multigranular data often arise when monogranular data from different sources, at dif-
ferent granularities, are to be combined. For example, Part 1 and Part 2 of the relation
of Fig. 1 might have come from distinct, monogranular sources. Thus, the issues consid-
ered here might be recast as a restricted form of a data integration problem (Lenzerini,
2002), in which all relations to be integrated are assumed to have the same structure; only

1Actually, there is no Región XIII; it is called Región RM; this detail is ignored here.
2Work such as Egenhofer and Franzosa (1991) (using topology) and Randell et al. (1992) (using a special

logic) includes enough structure to be able to formulate the notion of connectedness, so that touching without
sharing interior points may be distinguished from sharing interior points. In this work, there is no such topology
or logic, and so no way to distinguish these. Therefore, nonoverlapping here means simply that the regions do
not share points.
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the granularities may differ. There are many other important issues surrounding the prob-
lem of data integration, but in order to focus upon multigranular constraints, they are not
considered.

The work reported here is based upon the conference paper Hegner and Rodríguez
(2016). However, much, if not most, of the framework of that earlier paper has been re-
worked entirely. In particular, an approach to modelling granularity constraints (such as
(r-Chile)) which is allied much more to techniques of mathematical logic has been em-
ployed. In addition, the way in which aggregation is modelled has been much improved, to
allow ordinary aggregation operators rather than requiring ones specialized for the multi-
granular context.

2. Background Concepts and Notation

In this section, notation and terminology regarding mathematical and database-related
topics which are used throughout the paper are collected.

2.1. Special Notation

Some notation which is not completely standard or may not be known to all readers is
collected here. X ⊆f Y means that X is a finite subset of Y . 2X denotes the powerset of
X; i.e. the set of all subsets of X. The backslash symbol denotes set difference: S1 \ S2 =

{x ∈ S1 | x 6∈ S2}. For functional composition, (f ∘ g)(x) means f (g(x)). In other words,
in f ∘ g, application is right to left.

Z denotes the set of integers, N the set of natural numbers (nonnegative integers),
and R denotes the set of real numbers. Unless otherwise stated, intervals always consist
of integers. Thus, [x, y] denotes {z ∈ Z | x 6 z 6 y}. The clopen interval [x, y) is {z ∈

Z | x 6 z < y}. If another base set is used, it is shown explicitly; e.g. [x, y]R denotes
{z ∈ R | x 6 z 6 y}.

Given an equivalence relation ≡ on a set P and p ∈ P , [p]≡ denotes the equivalence
class of ≡ containing p. Furthermore,Blocks〈≡〉 denotes the set of all equivalence classes
(or blocks) of ≡. When the context is clear, [p]≡ may be shortened to just [p].

2.2. Order Structures

Familiarity with notions such as partial order and Boolean algebra, as covered in Davey
and Priestly (2002) are assumed; only terminologyand special notation are presented here.

A preorder is a pair P = (P,6P) in which P is a set and 6P is a relation which is
reflexive and transitive, but not necessarily symmetric. An equivalence relation ≡P may
be defined on P with x ≡P y equivalent if x 6P y 6P x . The pair [P] = (Blocks〈≡P〉,6P)

then becomes a partial order with [x] 6[P ] [y] if x 6P y .
A poset is upper bounded if it has the greatest element, denoted ⊤P , and lower bounded

if it has the least element, denoted ⊥P . An upper bounded poset P = (P,6P ,⊤P) and
a bounded poset P = (P,6P ,⊥P,⊤P) are defined in the obvious way. More generally,
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within a poset or preorder P, LUBP〈S〉 (resp. GLBP〈S〉) denotes the least upper bound

(resp. greatest lower bound) of the set S, when it exists.
A preorder has these properties precisely in the case that the associated poset of equiv-

alence classes has. In particular, an LUB or GLB may consist of a set of equivalent ele-
ments.

A Boolean algebra is denoted L = (L,∨L ,∧L,∁L,⊥L ,⊤L), with, in particular, ∁L

the complement operation. For join ∨L and meet ∧L , the larger versions
∨

L
and

∧

L

are used for these operations on sets. Thus, for example, for S = {x1, x2, . . . , xn} ⊆ L,
∨

L
S = x1 ∨L x2 ∨L . . . ∨L xn.

2.3. Multisets, and Functions

A multiset (or bag) is just like a set, except that a multiset may have several occurrences
(a finite number) of the same element. To distinguish them from ordinary sets, multisets

are written using multiset brackets; for example, *a, a, b, c, c, c+ denotes a multiset with
two occurrences of a, one of b, and three of c. Given a multiset X, SetOf〈X〉 denotes the
underlying set; e.g. SetOf〈*a, a, b, c, c, c+〉= {a, b, c}.

A multiset is represented as a set by tagging the elements with positive integers; for ex-
ample, *a, a, b, c, c, c+ is represented by {〈a,1〉, 〈a,2〉, 〈b,1〉, 〈c,1〉, 〈c,2〉, 〈c,3〉}. When
defining functions between multisets, it is generally necessary to use such tagged versions,
and properties are those of the underlying sets. Thus, to say that f : *a, a, b+ → *c, c, c+
is injective means that each of 〈a,1〉, 〈a,2〉, and 〈b,1〉 map to distinct element of
{〈c,1〉, 〈c,2〉, 〈c,3〉}. Note that there can be an injective function f : X → Y without any
injective function f ′ : SetOf〈X〉 → SetOf〈Y 〉.

For a more comprehensive treatment of multisets and function, see Girish and John
(2009).

2.4. Fields of Sets as Boolean Algebras

Call a set T a set of subsets if T ⊆ 2S for some set S with S ∈ T. In this case, it is called a
set of subsets over S. A set T of subsets (over S) is a field of sets (over S) if S ∈ T, ∅ ∈ T,
and it is closed under union, intersection, and complement. In other words, for S1, S2 ∈ T,
S1 ∪ S2, S1 ∩ S2, S \ S1 ∈ T as well.

If T is any set of subsets of S, it may be completed to a field of sets by adding a largest
set and ∅, and then closing it up under union, intersection, and complement. More pre-
cisely, define FClosure〈T〉 to be the smallest set of subsets of S with T ⊆ FClosure〈T〉,
S, ∅ ∈ FClosure〈T〉, and for any S1, S2 ∈ FClosure〈T〉, S1 ∪ S2, S1 ∩ S2, S \ S1 ∈

FClosure〈T〉 as well.
Given a set T of subsets over S, define FoSLat〈T〉 = (FClosure〈T〉, ∪, ∩, ∁T , ∅,

⋃

T), with ∁T the operator defined by X 7→ (
⋃

T) \ X. It is immediate that FoSLat〈T〉

is a Boolean algebra. What is remarkable is that the converse also holds.
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2.5. Representation of Boolean Algebras

Every Boolean algebra L is isomorphic to FoSLat〈T〉 for some set T of subsets. Further-
more, if L is finite, then T may be chosen so that T = 2

S for some finite set S.

Proof. Follows from Stone’s representation theorem for Boolean algebras (Davey and
Priestly, 2002, 11.4). �

3. The Formalism for Multigranular Attributes

One of the key features of the formalism for multigranular attributes presented in Heg-
ner and Rodríguez (2016), which sets it apart from earlier work such as Rodríguez and
Bravo (2012) and Bravo and Rodríguez (2014), is that it supports the representation of
(disjoint) join constraints, such as that illustrated in (r-Chile) of Section 1, in addition to
subsumption constraints. The approach taken in Hegner and Rodríguez (2016) is to work
directly and from the start with rules, such as (r-Chile). A structure which satisfies such
constraints, called an SBBP, is then introduced to model and support certain aspects of
these rules. While correct, this approach is in reverse of more conventional approaches
in mathematical logic, in which structures are introduced first and then the semantics of
constraints (rules here) are defined via satisfaction of structures. It has the further disad-
vantage of making comparison to related approaches, such as the partition model, more
difficult.

In this paper, a method of realizing what is basically the same semantics as presented
in Hegner and Rodríguez (2016), but with the more conventional approach of defining
structures first, and then the semantics of rules via satisfaction of such models, is pre-
sented. A comparison to the partition model (Spyratos, 1987; Cosmadakis et al., 1986;
Molnár, 2007) is also provided.

3.1. Granularity Schemata

In the classical relational model, the columns are labelled with attributes, with each at-
tribute A assigned a set of domain elements from which the values for A are taken. In the
granulated approach, each attribute carries the further structure of a partially ordered set
of granularities. The domain elements, called granules, also have a natural order structure
which is tied to that of the granularities. Since distinct attributes may nevertheless have
the same granules and granularities, it is convenient to encapsulate this information. This
is done in two steps. In Section 3.2, the necessary definition for the granularity structure
is made, while in Section 3.3, the structures for granules are introduced.

Formally, a granularity schema is an ordered pair S = (Glty〈S〉,GrAsgn〈S 〉) in
which Glty〈S〉 = (Glty〈S〉,6Glty〈S 〉,⊤Glty〈S 〉) is a granularity poset (to be defined in
Section 3.2) and GrAsgn〈S〉 = (Gnle〈S〉,5Gnle〈S〉) is a granule assignment for S
relative to Glty〈S〉 (to be defined in Section 3.3).

Associated with each granulated attribute A is a granularity schema name, de-
noted GA .
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3.2. Granularity Posets

A granularity poset is an upper-bounded poset P = (P,6P ,⊤P). The elements in P are
called the granularity identifiers or, less formally, just the granularities. As noted in Sec-
tion 3.1 above, with each granularity schema name S is associated a granularity poset,
denoted Glty〈S〉 = (Glty〈S〉,6Glty〈S 〉,⊤Glty〈S 〉).

The relation scheme Rsumb〈APlc,ATim,BBth〉 of Section 1 provides a context for ex-
amples. First of all, each of the three attributes has a coarsest granularity, which recap-
tures no information about the domain value: ⊤Glty〈GAPlc

〉 corresponds to all of Chile,
⊤Glty〈GATim

〉 lumps all time values into one, and ⊤Glty〈GBBth
〉 lumps all numbers into one.

The spatial attribute schema GAPlc
might have, in addition to ⊤Glty〈GAPlc

〉, Region, City,

and NatRegion (identifyingnatural, as opposed to political, regions) as granularities,with
City 6 Region 6 ⊤Glty〈GAPlc

〉 and NatRegion 6 ⊤Glty〈GAPlc
〉. It has no least granularity;

no granularity which is finer than both cities and natural regions is modelled.
The temporal attribute schema GATim

might have, in addition to ⊤Glty〈GATim
〉,

QuarterYr, MonthYr, and WeekYr as granularities, with MonthYr 6 QuarterYr and
WeekYr 6 ⊤Glty〈GATim

〉. Here QuarterYr represents a quarter of a given year; similarly

for MonthYr and WeekYr. ⊤Glty〈GATim
〉 lumps together all of time. Note that neither

WeekYr 6 MonthYr nor WeekYr 6 QuarterYr holds, since a single week may span
two months or two quarters. It has no least granularity since the overlap of a week and a
month need not correspond to any granularity.

Finally, for the attribute schema GBBth
, fix maxr ∈ N

+. For i ∈ [0,maxr], the gran-
ularity roundi identifies rounding to the nearest 10

i . In particular, round0 identifies no
rounding at all, and is thus the least element of Glty〈GBBth

〉; i.e. round0 = ⊥Glty〈GBBth
〉.

Thus ⊥Glty〈GBBth
〉 = round0 6 roundi 6 roundj 6 ⊤Glty〈GBBth

〉 for j < i .
To elaborate these examples, it is necessary to have a representation for granules as

well. This issue is substantially more complex, and is examined next.

3.3. Granule Assignment

A granule assignment for a granularity schema S extends the idea of a domain assign-
ment for an ordinary relational attribute. It provides a basic order on the granules, and,
in addition, it assigns a set of granules to each granularity in a way which respects this
preorder. The preorder structure induces equivalence relation on the granules, so that two
which will have the same underlying semantics (as defined by a granule structure — see
Section 3.5), may nevertheless have different names.

As noted in Section 3.1 above, with each granularity schema S is associated a granule
assignment GrAsgn〈S〉, relative to its granularity poset Glty〈S〉. Formally, this granule

assignment is an ordered pair GrAsgn〈S〉 = (Gnle〈S〉,5Gnle〈S〉) in which the follow-
ing three conditions hold.

(grasgn-i) Gnle〈S〉 = (Granules〈S 〉,⊑S ,⊤S ,⊥S ) is a bounded preorder, called the
granule preorder. Granules〈S〉 is called the set of granule identifiers or just gran-

ules. ⊤S is called the universal granule and ⊥S is called the empty granule. This
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preorder is required to have the further property that [⊥S]Gnle〈S〉 = {⊥S}; i.e. the
bottom granule ⊥S is only equivalent to itself.

Because it is used frequently, the set Granules〈S〉 \ {⊥S} has the special nota-
tion Granules6⊥〈S〉. Also, since no confusion can result, for any g ∈ Granules〈S〉,
[g]Gnle〈S〉 will be shortened to just [g]S .

(grasgn-ii) 5Gnle〈S〉 = {Granules〈S|G〉 | G ∈ Glty〈S〉} is a partition of Granules6⊥〈S〉

with the following two properties.
(grtognle-i) Granules〈S|⊤Glty〈S〉〉 = [⊤S]

S
.

(grtognle-ii) (∀G ∈ Glty〈S〉 \ {⊤Glty〈S〉})(∀g1, g2 ∈ Granules〈S|G〉)

((g1 6= g2) ⇒ ([g1]S 6= [g1]S)).
(grtognle-iii) (∀G ∈ Glty〈S〉 \ {⊤Glty〈S〉})(∀g1, g2 ∈ Granules〈S|G〉)

((g1 6= g2) ⇒ (GLBGnle〈S〉〈{g1, g2}〉 = ⊥S).
Granules〈S|G〉 is called the set of granules of granularity G.

(grasgn-iii) (∀G1,G2 ∈ Glty〈S〉)((G1 6 G2) ⇔

(∀g1 ∈ Granules〈S|G1〉)(∃g2 ∈ Granules〈S|G2〉)(g1 ⊑S g2)).

Equivalent granules in this preorder will map to the same underlying set, as defined in
Section 3.5, and so they are aliases of one another, of sorts.

(grtognle-i) of (grasgn-iii) stipulates that only ⊤S , together with any other granule
which is equivalent to it, are associated with the universal granule ⊤Glty〈S〉. This is the only
case in which two distinct, equivalent names may be associated with the same granularity.

(grtognle-ii) mandates that, with the exception of ⊤Glty〈S〉, equivalent granules may
not be associated with the same granularity.

(grtotnle-iii) ensures that any two distinct granules of the same granularity may be
defined so as not to overlap. However, by itself, it does not guarantee that they do not
overlap. Overlap is defined first with the concept of a structure in Section 3.5.

(grasgn-ii) implies in particular that each granule belongs to only one granularity. It is
convenient to have a function which identifies this association. To this end, define GltyS :

Granules 6⊥〈S〉 → Glty〈S〉 to be the function which sends g ∈ Granules 6⊥〈S〉 to the
unique G ∈ Glty〈S〉 for which g ∈ Granules〈S|G〉.

Continuing with the example context of 3.2, {Región_R | I 6R 6 XV } ⊆

Granules〈GAPlc
|Region〉 and {Concepción,Santiago,Los_Ángeles} ⊆

Granules〈GAPlc
|City〉. Furthermore, Concepción⊑GAPlc

Región VIII, Los_Ángeles

⊑GAPlc
Región VIII, and Santiago ⊑GAPlc

Región XIII. If {Concepción,Santiago,

Los_Ángeles} are the only granules of granularity City, then condition (grasgn-iii) is
substantiated for City 6Glty〈APlc 〉 Region by the fact that each of these three cities lies in
one of the fifteen regions.

If Chile is the entire modelling space, then {⊤GAPlc
,Chile} =

Granules〈GAPlc
|⊤Glty〈GAPlc

〉〉, with, of course, [⊤GAPlc
]
GAPlc

= [Chile]GAPlc
. For an-

other example of equivalence, suppose that there is an additional granularity County, and
that every city lies within a county; i.e. City 6Glty〈APlc 〉 County. In some cases, the ge-
ographic region of the city and the county may coincide; this is the case with the city
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of Concepción and the county of Concepción in Chile. Thus, [Concepción]GAPlc
=

[Concepción_county]GAPlc
with Concepción_condado denoting the county and Con-

cepción the city. Of course, these are not identical entities, because they may have, for
example, different administrative offices, but for the scope of the modelling developed
here, they have identical properties.

The set of granules need not be finite, even in practical examples. See Section 4.2 for
a detailed description of how the granules of an attribute schema such as GBBth

would be
modelled using an infinite set.

While a granule assignment assigns granules to granularities, and provides basic or-
der structure on the granules, it does not convey any other lattice-like information about
the granules, such as that embodied in (r-Chile). This task is addressed via an additional
construction, the granule structure, which is defined next.

3.4. Notational Convention

Throughout the rest of this section, unless stated specifically to the contrary, take
S = (Glty〈S〉,GrAsgn〈S 〉) to be a granulated attribute schema with Glty〈S〉 =

(Glty〈S〉,6Glty〈S 〉,⊤Glty〈S 〉) and GrAsgn〈S〉 = (Gnle〈S〉,5Gnle〈S〉).

3.5. Granule Structure

A granule structure starts with a universe, and then assigns a subset of that universe to
each granule. It is thus similar to the approach of Bravo and Rodríguez (2014). However,
because it is desired to recapture other constraints as well, particularly join rules such as
(r-Chile), it needs to be constructed with more in mind.

A granule structure for S is a pair σ = (Dom〈σ〉,GnletoDomσ) in which Dom〈σ〉 is
a (not necessarily finite) set, called the domain of σ , and GnletoDomσ : Granules〈S〉 →

2Dom〈σ〉 is a function, subject to the following conditions.
(grstr-i) (∀g1, g2 ∈ Granules〈S〉)((g1 ⊑S g2) ⇒

(GnletoDomσ(g1) ⊆ GnletoDomσ(g2))).
(grstr-ii) (∀G ∈ Glty〈S〉 \ {⊤Glty〈S〉})(∀g1, g2 ∈ Granules〈S|G〉)

((g1 6= g2) ⇒ (GnletoDomσ(g1) ∩ GnletoDomσ(g2) = ∅)).
(grstr-iii) (∀g1, g2 ∈ Granules〈S〉)((GnletoDomσ(g1) = GnletoDomσ(g2))

⇔ [g1]S = [g2]S).
The set of all granule structures for S is denoted GranStruct〈S〉.

(grstr-i) mandates that, with respect to the order⊑S, granule subsumption is modelled
as set inclusion.

(grstr-ii) mandates that, except for the top granularity ⊤Glty〈S〉 of Glty〈S〉, each pair
of distinct granules of the same granularity G be nonoverlapping.

(grstr-iii) asserts that exactly those granules which are equivalent map to the same
domain set.
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3.6. Motivation for Rule-Based Semantics

It is possible to use a single structure to define the semantics of each granulated at-
tribute schema. Indeed, for GAPlc

, a suitable domain might be σEarth = (Dom〈σEarth〉,

GnletoDomσEarth
) in which Dom〈σEarth〉 is the set of all coordinates on a sphere (repre-

senting the earth), with GnletoDomσEarth
the function which maps a place (qua granule)

to the set of coordinates on earth which it covers. Coordinates in the plane R2 might also
be used if the entire model is of a smaller region, such as a country. From the point of view
of embodying relevant information, it is a near-perfect model. The drawback is that it is
much too detailed for most use, and is enormous to store, access, and maintain. For most
applications, it is only necessary to know, for example, that the city Concepción lies in
Región_VII; the exact physical coordinates are unnecessary.

A simpler, yet structural, model is also an alternative, provided only very simple con-
straints are used. For example, the approach of Bravo and Rodríguez (2014) employs a
single structure, while representing constraints such as the subsumption embodied in the
granule preorder of (grasgn-i) and the pairwise disjointness embodied in (grstr-ii). How-
ever, to model more complex spatial operations, such as join, requires a much more com-
plete structure; complex enough to be burdened with many of the problems sketched for
σEarth above. Far preferable is to be able to write constraints, such as (r-Chile), without
detailed knowledge of the underlying geographic regions. It is sufficient to know that the
fifteen regions cover Chile without overlap; additional information about their exact coor-
dinates is not material to the model.

The solution forwarded here is to model the semantics as a set of rules, such as
(r-Chile), and then to define the semantics as the set of structures which satisfy all of
those rules. Thus, the semantics forwarded here is not defined by a single structure, but
rather as a a set of possibilities satisfying some set of constraints. In that way, detailed
knowledge of, for example, geographic regions, becomes unnecessary. This approach is
next developed in detail.

3.7. Granule Expressions and their Semantics

Granule expressions operate on lattice-like expressions involving granules (in
Granules〈S〉). Such an expression may be evaluated on a granule structure σ , return-
ing a subset of domain elements (i.e. a subset of Dom〈σ〉). The evaluation is the natural
one, with the lattice-like join operation

⊔

S
on granules associated with set union

⋃

on
subsets of Dom〈σ〉, and the lattice-like meet operation

d
S

on granules associated with
set intersection

⋂

on subsets of Dom〈σ〉.
Formally, the granule expressions over GrAsgn〈S〉 are defined as the smallest set

GrExpr〈S〉 which is closed under the following operations.
(grex-i) Granules〈S〉 ⊆ GrExpr〈S〉.
(grex-ii) If S ⊆f GrExpr〈S〉, then (

⊔

S
S) ∈ GrExpr〈S〉.

(grex-iii) If S ⊆f GrExpr〈S〉, then (
d

S
S) ∈ GrExpr〈S〉.

(grex-iv) If e1, e2 ∈ GrExpr〈S〉, then RelComplS〈e1, e2〉 ∈ GrExpr〈S〉.
RelCompl denotes relative complement; the semantics of RelComplS〈e1, e2〉 is the set
of all domain elements in GrExSemσ(e1) but not in GrExSemσ(e2).
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Relative to a granule structure σ = (Dom〈σ〉,GnletoDomσ) for S, the semantics of
the members of GrExpr〈S〉 are defined by the function GrExSemσ : GrExpr〈S〉 →

2Dom〈σ〉 which is given on elements as follows.
(semgrex-i) For g ∈ Granules〈S〉, GrExSemσ(g) = GnletoDomσ(g).
(semgrex-ii) For S ⊆f GrExpr〈S〉,

GrExSemσ((
⊔

S
S)) =

⋃

{GnletoDomσ(s) | s ∈ S}.
(semgrex-iii) For S ⊆f GrExpr〈S〉,

GrExSemσ((
d

S
S)) =

⋂

{GnletoDomσ(s) | s ∈ S}.
(semgrex-iv) For e1, e2 ∈ GrExpr〈S〉,

GrExSemσ(RelComplS〈e1, e2〉) = GrExSemσ(e1) \ GrExSemσ(e2).
In short, the semantics of a granule g is just the set of domain elements which form its
image under the mapping GnletoDomσ , while the semantics of join and meet expressions
are converted via set union and intersection, respectively.

3.8. Granule Rules as Constraints

Constraints which determine possible structures for a multigranular schema are speci-
fied by sentences called (granule) rules. These constraints are built from expressions
in GrExpr〈S〉. Formally, a simple granule rule is of the form e1 ⊑ e2, where e1, e2 ∈

GrExpr〈S〉. The set of all such rules is denoted SimpGrRules〈S〉.
A granule rule is any nonempty conjunction of simple granule rules. In other words,

a granule rule is of the form ϕ1∧ϕ2∧ . . .∧ϕk with {ϕi | i ∈ [1, k]} ⊆ SimpGrRules〈S〉.
This may also be written

∧

{ϕi | i ∈ [1, k]}, with
∧

denoting logical conjunction. The set
of all granule rules for S is denoted GrRules〈S〉.

For e1, e2 ∈ GrExpr〈S〉, e1 = e2 is an abbreviation for (e1 ⊑S e2)∧(e2 ⊑S e1).
Without loss of generality, it will furthermore be assumed that distinct, equivalent

granules are never used together in the same rule.
The semantics for rules follow, at least in spirit, those of traditional mathematical logic

(Monk, 1976). Formally, a granule structure σ ∈ GranStruct〈S〉 is a model of the rule
ϕ ∈ GrRules〈S〉, written ϕ |HS σ , if the appropriate condition below is met.

(rulemod-i) If ϕ is of the form e1 ⊑ e2, then σ is a model of ϕ precisely in the case that
GrExSemσ(e1) ⊆ GrExSemσ(e2) holds.

(rulemod-ii) If ϕ is a conjunction of the form
∧

{ϕi | i ∈ [1, k]}, then σ is a model of ϕ

precisely in the case that it is a model of each ϕi for i ∈ [1, k].

The set of all models of the rule ϕ is denoted ModelsS〈ϕ〉. If 8 is a set of rules,
ModelsS〈8〉 denotes

⋂

{ModelsS〈ϕ〉 | ϕ ∈ 8}. If σ is a model of ϕ (resp. 8), then
ϕ |HS σ (resp. 8 |HS σ ) may also be written.

ϕ (resp. 8) is S-satisfiable if it admits a model; i.e. if ModelsS〈ϕ〉 (resp.
ModelsS〈8〉) is nonempty.

The S-closure (or just closure if the context is clear) of 8 ⊆ GrRules〈S〉, denoted
8+, is {ϕ ∈ GrRules〈S〉 | ModelsS〈8〉 ⊆ ModelsS〈ϕ〉}.
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3.9. Built-in Rules

There are certain rules which are enforced by the very definition of a structure, and so
must hold in every model of a consistent set 8 ⊆ GrRules〈S〉. Define the built-in rules

of S, denoted BuiltInRules〈S〉, by the following.

(bir-i) For g1, g2 ∈ Granules〈S〉, if g1 ⊑S g2, then (g1 ⊑S g2) ∈ BuiltInRules〈S〉.
(bir-ii) For g1, g2 ∈ Granules〈S〉, if there is a G ∈ Glty〈S〉 and g′

1
, g′

2
∈ Granules〈S|G〉

with g1 ⊑S g′
1

and g2 ⊑S g′
2
, then (

d
S

{g1, g2} = ⊥S) ∈ BuiltInRules〈S〉.

That these rules are satisfied by every model follows immediately from (grstr-i) and
(grstr-ii) of Section 3.5.

Additional elementary-subsumption and basic-disjointness rules may of course be
added to the constraints of S. However, additional such rules may also be excluded via a
closed-world assumption; see Section 3.20 below.

The built-in rules are instances of basic rules, as defined below.

3.10. Basic Rules

Although it is theoretically appealing to work with a very general class of rules, such as
GrRules〈S〉, this generality may prove to be unrealistic to implement fully. It is there-
fore useful to identify a smaller set of constraints which are more manageable while still
possessing enough expressive power. To this end, the basic rules are introduced.

Define the primitive basic rules over S as those fitting one of the following two types.

(pbrule-i) A basic subsumption rule is of the form g ⊑S

⊔

S
S, for {g} ∪ S ⊆

Granules6⊥〈S〉.
(pbrule-ii) A basic disjointness rule is of the form

d
S

{g1, g2} = ⊥S for g1, g2 ∈

Granules6⊥〈S〉 and [g1]S 6= [g2]S .

There are three further kinds of rules which, while definable in terms of the primitive
basic rules, are so fundamental in usage that they deserve their own names and represen-
tations.

(xbrule-i) An elemental subsumption rule is of the form g1 ⊑S g2 with g1, g2 ∈

Granules6⊥〈S〉. Its definition in terms of primitive rules is g1 ⊑S

⊔

S
{g2}, so it is

a special case of a basic subsumption rule. A basic subsumption rule which is not
elemental is called a complex subsumption rule.

(xbrule-ii) A basic join rule is of the form g =
⊔

S
S, for {g} ∪ S ⊆ Granules 6⊥〈S〉. Its

definition in terms of primitive rules and elemental subsumption rules is
(g ⊑S

⊔

S
S)∧(

∧

{gi ⊑S g | gi ∈ S}).

It is easy to verify that both of these definitions respect the semantics defined in Sec-
tions 3.7 and 3.8.

In order to define the third type of extended basic rule, a further definition is useful.
Given S ⊆ Granules〈A〉, define

PWDisjntS〈S〉 =
∧

{
d

S
{g1, g2} = ⊥S | (g1, g2 ∈ S) and (g1, g2 6∈ GnleEqS)}

to be the granule rule which asserts that every pair g1, g2 ⊆ S of elements in S which
are not granule equivalent are disjoint, in the sense that their meet is ⊥S . (In the above



56 S.J. Hegner, M.A. Rodríguez

formula, “
∧

” denotes logical conjunction on a set.) If PWDisjntS〈S〉 holds, then it is
said that S is pairwise disjoint (in S). Now, the last type of extended basic rule may be
defined.

(xbrule-iii) A basic disjoint-join rule is written as g =
⊔

⊥
S

S, for {g} ∪ S ⊆

Granules6⊥〈S〉. Its definition in terms of basic join rules and
PWDisjnt is (g =

⊔

S
S)∧PWDisjntS〈S〉.

The collection of all rules defined by (pbrule-i)–(pbrule-ii) and (xbrule-i)–(xbrule-iii) is
called the basic rules over S, and is denoted BaRules〈S〉.

These basic rules have the semantics provided in Section 3.8.
The obvious question of when a set of rules admits a model must be addressed. The

answer is not trivial, and depends upon whether there is a Boolean algebra in which the
rules hold.

3.11. GrAsgn〈S〉-Algebras

In order to characterize the satisfiability of a set 8 of rules (as defined in Section 3.8, it
is convenient to work with Boolean algebras whose elements include equivalence classes
of granules. The rules are then tested by evaluating them within that algebra.

Using the notation from Section 2.1 concerning equivalence relations, for ≡Gnle〈S〉

and g ∈ Granules〈S〉, [g]S denotes the equivalence class of g, and Blocks〈≡Gnle〈S〉〉

denotes the set of blocks of Gnle〈S〉.
Define a GrAsgn〈S〉-algebra to be a Boolean algebra L = (L,∨L ,∧L ,∁L,⊥L ,

⊤L) with the following properties:
(gralat-i) Blocks〈≡Gnle〈S〉〉 ⊆ L.
(gralat-ii) ⊥L = [⊥S]

S
.

(gralat-iii) ⊤L = [⊤S]
S

.
Thus, some of the elements of a GrAsgn〈S〉-algebra L are (equivalence classes of) gran-
ules, but not all of them. In effect, the granules are embedded in L.

3.12. Evaluating Expressions and Rules in GrAsgn〈S〉-Algebras

Let L = (L,∨L ,∧L ,∁L,⊥L,⊤L) be a GrAsgn〈S〉-algebra. For ǫ ∈ GrExpr〈S〉, the
evaluation of ǫ in L, denoted Eval〈ǫ :L〉, is defined as follows.

(evalexpr-i) If ǫ ∈ Granules〈S〉, then Eval〈ǫ :L〉 = [ǫ]S .
(evalexpr-ii) If ǫ is of the form (

⊔

S
S), then Eval〈ǫ :L〉 =

∨

L
{Eval〈s :L〉 | s ∈ S}.

(evalexpr-iii) If ǫ is of the form (
d

S
S), then Eval〈ǫ :L〉 =

∧

L
{Eval〈s :L〉 | s ∈ S}.

(evalexpr-iv) If ǫ is of the form RelCompl〈e1, e2〉, then Eval〈ǫ :L〉 = Eval〈e1 :L〉 \

Eval〈e2 :L〉.

The Boolean-algebra models of ϕ ∈ GrRules〈S〉, written BAlgModelsS〈ϕ〉, are
those GrAsgn〈S〉-algebras which satisfy the applicable condition below.

(evalrule-i) If ϕ is of the form e1 = e2, then L ∈ BAlgModelsS〈ϕ〉 if
Eval〈e1 :L〉 = Eval〈e2 :L〉.
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(evalrule-ii) If ϕ is of the form e1 ⊑ e2, then L ∈ BAlgModelsS〈ϕ〉 if
Eval〈e1 :L〉 6L Eval〈e2 :L〉.

For 8 ⊆ GrRules〈S〉, BAlgModelsS〈8〉 is defined to be
⋂

{BAlgModelsS〈ϕ〉 | ϕ ∈ 8}.

3.13. Existence of a Model

For 8 ⊆ GrRules〈S〉, ModelsS〈8〉 is nonempty iff BAlgModelsS〈8〉 has that prop-
erty. In other words, 8 is S-satisfiable iff there is a GrAsgn〈S〉-algebra in which every
rule in 8 holds.

Proof. Assume that 8 is S-satisfiable. Let σ = (Dom〈σ〉,GnletoDomσ) be a gran-
ule structure for GrAsgn〈S〉, and let T = {GnletoDomσ(g) | g ∈ Granules〈S〉}. As
sketched in Section 2.4, FoSLat〈T〉 = (FClosure〈T〉, ∪, ∩, ∁T , ∅,

⋃

T) is a Boolean
algebra. Just by construction, FoSLat〈T〉 ∈ BAlgModelsS〈8〉.

Conversely, let L = (L,∨L ,∧L ,∁L,⊥L,⊤L) ∈ BAlgModelsS〈8〉. In view of
Section 2.5, there is a set T′ of subsets with the property that FoSLat〈T′〉 =

(FClosure∅〈T′〉,∪,∩,∁T′ ,∅,
⋃

T′) is isomorphic to L. Let ι : L → FClosure∅〈T
′〉

be the function which underlies this isomorphism. To complete the proof and obtain a
granule structure σ ′ = (Dom〈σ ′〉,GnletoDomσ ′) ∈ ModelsS〈8〉, it suffices to choose
Dom〈σ ′〉 =

⋃

T′ and define GnletoDomσ ′ on elements by g 7→ ι([g]S). �

3.14. Guaranteeing Consistency of Sets of Rules

The conditions identified in Section 3.13 may seem difficult to verify, thus limiting the
practicality of the approach. For abstract specifications of constraint sets this is indeed
the case; the question of whether a set of constraints is satisfiable is NP-hard; see Heg-
ner (1994) for details. For more restrictive classes of constraints, such as the basic rules
introduced in Section 3.10, more efficient algorithms for testing consistency are being
developed and will appear in a forthcoming paper.

However, in many practical modelling situations, satisfiability is guaranteed, because
a structure which satisfies the constraints underlies the granularity schema itself. For
the granularity schema GAPlc

of Sections 3.2 and 3.3, the physical structure σEarth =

(Dom〈σEarth〉,GnletoDomσEarth
), as defined in Section 3.6 exists, even though it is not

part of the full model. The fact that it exists, and that the rules are based upon it, is enough
to guarantee that the rules are satisfiable.

3.15. Armstrong Models

It is useful to be able to make closed-world assumptions (CWA) on rules; that is to take as
false all which cannot be proven true (see Section 3.20 below). It has long been recognized
that such an assumption can easily lead to contradictions (Reiter, 1978; Example 8); to
show that this cannot happen with rules as defined here, the notion of an Armstrong model
is central.
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For a class C of constraints, an Armstrong model for a set 8 ⊆ C is one which sat-
isfies all sentences in 8+, but no others in C . Armstrong models were first studied for
functional dependencies in Armstrong (1974) and later for other types of dependencies;
for an overview, see Fagin (1982a). However, the notion may be formulated in a very
general context, independent of any particular concept of database dependency (Fagin,
1982b).

For C = GrRules〈S〉, the setting of interest here, M ∈ GranStruct〈S〉 is an Arm-

strong model (with respect to GrRules〈S〉) for a set 8 ⊆ GrRules〈S〉 if for any 9 ∈

GrRules〈S〉, M ∈ Mod(9) iff 9 ⊆ 8+.
The next theorem is proven in Fagin (1982b). It is copied almost verbatim, with only

minor notational changes, as parts (a) and (b) of Theorem 3.1 of that paper.

3.16. Faithfulness and Armstrong Models

Let S be a set of sentences. The following properties of S are equivalent.

(a) Existence of a faithful operator. There is an operator ⊞ that maps nonempty fam-
ilies of models into models, such that if ϕ is a sentence in S and {Ri | i ∈ I } is a
nonempty family of models, then ϕ holds for ⊞{Ri | i ∈ I } if and only if holds for
each Ri .

(b) Existence of Armstrong models. Whenever 9 is a consistent subset of S and 9+ is
the set of sentences in S that are logical consequences of 9 , then there is a model
(an “Armstrong model”) that obeys 9+ and no other sentences in S .

3.17. A Faithful Operator for Granule Structures

In order to apply Section 3.16 to the context of granule rules, it is necessary to identify a
suitable faithful operator. To this end, let S = {σi = (Dom〈σi〉,GnletoDomσi ) | i ∈ I } ⊆

GranStruct〈S〉 be a nonempty set of structures, and assume, without loss of gener-
ality, that Dom〈σi〉 ∩ Dom〈σj 〉 = ∅ for all i, j ∈ I with i 6= j .3 Define the product

of S to be the structure ⊞〈S〉 = (Dom〈⊞〈S〉〉,GnletoDom⊞〈S〉) with Dom〈⊞〈S〉〉 =
⋃

{Dom〈σi 〉 | i ∈ I } with GnletoDom⊞〈S〉 : Granules〈S〉 → 2
⋃

{Dom〈σi 〉 | i∈I } defined
on elements by g 7→

⋃

{GnletoDomσi (g) | i ∈ I }. Let Products〈GranStruct〈S〉〉 de-
note the collection of all such products.

3.18. Armstrong Models for Sets of Granule Rules

Every consistent subset 8 ⊆ GrRules〈S〉 has an Armstrong model (with respect to
GrRules〈S〉).

Proof. It suffices to show that the product operator defined in Section 3.17 is faithful, and
then to apply 3.16. Let S = {σi = (Dom〈σi〉,GnletoDomσi ) | i ∈ I } ⊆ GranStruct〈S〉

3This restriction may be relaxed by working with disjoint union instead of ordinary union; the details are
left to the reader.
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be a nonempty set of structures satisfying Dom〈σi 〉 ∩ Dom〈σj 〉 = ∅ for all i, j ∈ I with
i 6= j . For a rule of the form e1 ⊑S e2 for e1, e2 ∈ GrExpr〈S〉, if GnletoDomσi (e1) ⊆

GnletoDomσi (e2) holds for all i ∈ I , then
⋃

{GnletoDomσi (g) | i ∈ I } ⊆
⋃

{GnletoDomσi (s) | i ∈ I and s ∈ S}. On the other hand, if GnletoDomσi (e1) ⊆

GnletoDomσi (e2) fails to hold for some i ∈ I , then
⋃

{GnletoDomσi (g) | i ∈ I } ⊆
⋃

{GnletoDomσi (s) | i ∈ I and s ∈ S} cannot hold, since GnletoDomσi ∩GnletoDomσj

= ∅ for i 6= j . Thus, ⊞ is faithful for constraints of the form e1 ⊑S e2, as required. The
extension to rules of the form

∧

{ϕi | i ∈ [1, k]}, with ϕj of the form (ej1 ⊑S ej2), is a
simple extension of the above. The details are omitted. �

3.19. Negation of Rules

In order to develop a proper theory of closed-world semantics (see Section 3.20 below),
it is necessary to work with negations of rules. The semantics are the natural one exten-
sion of (rulemod-i)–(rulemod-ii) of 3.8. Given ϕ ∈ GrRules〈S〉, σ ∈ GranStruct〈S〉

is a model of ¬(ϕ) simply means that ϕ does not hold in σ ; so ModelsS〈¬ϕ〉 =

{σ ∈ GranStruct〈S〉 | σ 6∈ ModelsS〈ϕ〉}. Following standard mathematical conven-
tions, e1 6= e2 and e1 6⊑S e2 are shorthand for ¬(e1 = e2) and ¬(e1 ⊑S e2), respectively.
Given 8 ⊆ GrRules〈S〉 and ϕ ∈ GrRules〈S〉, observe that 8 |HS ¬(ϕ) means that ϕ

never holds when 8 holds; i.e. that 8 ∪ {ϕ} is unsatisfiable.

3.20. Closed-World Assumptions

The use of sets of rules to specify the semantics of a granulated attribute schema pro-
vides great flexibility; constraints may be specified without the need to identify and rep-
resent a specific (and typically very detailed) structure, such as spatial coordinates for ge-
ographic regions. Nevertheless, it is useful to require that some basic information always
be complete. This is accomplished via closed-world assumptions (CWAs) (Reiter, 1978;
Clark, 1978), in which certain (or all) statements (here, rules) which cannot be proven true
are taken to be false.

A CWA pair for S is an ordered pair 〈8,9〉 ⊆ GrRules〈S〉 × GrRules〈S〉. In the
CWA closure of 〈8,9〉, every rule in 9 which is not a consequence of 8 is taken to be
false. Formally, define this closure to be CWAS〈8,9〉 = 8∪{¬ϕ | ϕ ∈ 9 and 8 6|HS ϕ}.
In general, a CWA may lead to contradictions (Reiter, 1978; Example 8). However, this
cannot happen in the context of granule rules, thanks to the existence of Armstrong mod-
els. Indeed, any Armstrong model of 8, as guaranteed by 3.18, must also satisfy all sen-
tences in CWAS〈8,9〉.

Given a CWA pair 〈8,9〉, a rule ϕ ∈ GrRules〈S〉 is resolvable from CWAS〈8,9〉

if either CWAS〈8,9〉 |HS ϕ or else CWAS〈8,9〉 |HS ¬ϕ. In other words, ϕ is re-
solvable if its truth value may be determined under from 8 with the CWA on 9 . A set
� ⊆ GrRules〈S〉 is resolvable from CWAS〈8,9〉 if every ϕ ∈ � has that property.

As a specific example for CWAS〈8,9〉, let 9 be the set consisting of all elemental
subsumption rules and all basic disjointness rules (see Section 3.10). The resulting CWA
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then enforces that all such rules which are not in (BuiltInRules〈S〉∪8)+ are taken to be
false. In particular, if 8 adds no new elementary subsumption or basic disjointness rules,
then this CWA enforces that the only such rules are those in BuiltInRules〈S〉.

3.21. Constrained Granulated Attribute Schemata

A constrained granularity schema is a four-tuple (Glty〈S〉,GrAsgn〈S〉,Constr〈S〉,

cwa〈S〉) in which (Glty〈S〉,GrAsgn〈S 〉) is a granulated attribute schema, with
Constr〈S〉,cwa〈S〉 ⊆ GrRules〈S〉. For these last two sets, Constr〈S〉 is the main set
of constraints governing the schema, with 〈Constr〈S〉,cwa〈S〉〉 the CWA pair which
governs the schema. Thus, cwa〈S〉 is the set of constraints which are taken to be false,
under the CWA, if they do not follow from Constr(S).

CWAConstr〈S〉 is shorthand for CWAS〈Constr〈S〉,cwa〈S〉〉.
As a slight abuse of notation, S will be used to denote this constrained granularity

schema (as well as the unconstrained one (Glty〈S〉,GrAsgn〈S 〉)).
If � ⊆ GrRules〈S〉 is resolvable from 〈Constr〈S〉,cwa〈S〉〉, say that � is resolv-

able within S.

3.22. Comparison to Previous Work on Multigranular Attributes

Bravo and Rodríguez (2014) use an approach based upon structures, similar in some ways
to that described in Section 3.5. However, in that work, only basic subsumption rules
(constraints corresponding to those of (brule-i) of Section 3.10) are considered. In that
more limited case, a single structure as a model suffices, since knowing the complete
ordering is reasonable. In Hegner and Rodríguez (2016), join constraints (including the
disjoint variety) similar to those described in (brule-ii) and (brule-iii) of Section 3.10 are
modelled. In contrast to the approach taken here, in that work rules are defined first, and
consistency is defined later, in a less than completely rigorous fashion. The approach taken
here is the more natural one, paralleling the approach taken in mathematical logic, with
all steps spelled out carefully.

3.23. Comparison to the Partition Model

In the partition model for the representation of attributes, as described in Spyratos (1987)
and Molnár (2007), there is a single base set, with the granules (there called domain ele-
ments) of each attribute modelled as a partition on that common base set. As is the case
with the model presented here, each granule is modelled as a block of the partition. The
relationship between values of different attributes is then recaptured via intersection of
the blocks which represent them. Thus, there is a significant connection between the two
models. However, to use this approach, it would be necessary to require that for every gran-
ularity G and for every structure σ , every element x ∈ Dom〈σ〉 lie in GnletoDomσ(g)

for some g ∈ Granules〈S|G〉. For granularities whose granules do not join to the top
granule, this would be an unnecessary condition, requiring the introduction of artificial
granules. For example, consider the granularity City for a multigranular attribute which
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models all of Chile. Most of the land of Chile does not lie within any city. Thus, if the
domain Dom〈σChile〉 is all of Chile, then most of the elements of Dom〈σChile〉 will not lie
in any granule of the granularity City. This can be repaired, to achieve a total partition of
Dom〈σChile〉, by introducing a special granule NoCity , and putting all surface points not
lying within a city in that granule. However, that is an awkward solution, if for no other
reason than NoCity is not a city, despite lying in the granularity City. It introduces other
complications as well.

To address this issue, define a partial partition of a set X to be a set P consisting of
nonempty disjoint subsets of X. In other words, a partial partition consists of some, but
not necessarily all, of the blocks of an ordinary partition. It is easy to see from (grstr-ii) of
Section 3.5 that for a structure σ , each granularity induces a partial partition on Dom〈σ〉.
Thus, the approach presented here is related to the partition model in that it provides a
model of granules based upon partial partitions.

4. Thematic Attributes and Aggregation

As mentioned in Section 1, granular attributes may be classified as basic (often spatio-
temporal) and thematic, which record values and upon which aggregation is applied. For
example, in the schema Rsumb〈APlc,ATim,BBth〉, APlc and ATim are basic, while BBth is
thematic. While thematic attributes often have a simpler granular structure than their basic
counterparts, they must also be embellished with sufficient structure to allow aggregation
operators to be applied to their granules. In this section, the special aspects of thematic
attributes is developed.

4.1. Complete Subset Attribute Schemata

A complete subset attribute schema over a set S is a unified attribute schema S =

(Glty〈S〉,GrAsgn〈S 〉) with the following properties.

(csas-i) Glty〈S〉 has a least (finest) granularity, called the base granularity and denoted
BaseGlty〈S〉. All other granularities, including ⊤Glty〈S〉, are called grouping gran-

ularities; the set of all such granularities is denoted GrpGlty〈S〉.
(csas-ii) Granules〈S|BaseGlty〈S〉〉 = S.
(csas-iii) For each G ∈ GrpGlty〈S〉 and each g ∈ Granules〈S|G〉, g is of the form

〈G,v〉 with v ∈ 2S \ ∅. In the pair 〈G,v〉, G is called the granularity tag and
v is called the value. As a convenient notation, define TagS(〈G,v〉) = G and
ValS(〈G,v〉) = v. For granularity G ∈ GrpGlty〈S〉, as a slight abuse of notation,
Val(G) is used to denote {Val(g) | g ∈ Granules〈S|G〉}.

(csas-iv) For each G ∈ GrpGlty〈S〉, Val(G) forms a partition of BaseGlty〈S〉. In par-
ticular, Granules〈S |⊤Glty〈S 〉〉 = {〈⊤Glty〈S 〉, S〉}.

(csas-v) The granule preorder Gnle〈S〉 = (Granules〈S〉,⊑S,⊤S ,⊥S ) is defined
by g1 ⊑S g2 iff either Tag(g1) = BaseGlty〈S〉, Tag(g2) ∈ GrpGlty〈S〉, and
Val(g1) ∈ Val(g2); or else Tag(g1),Tag(g2) ∈ GrpGlty〈S〉 with Val(g1) ⊆

Val(g2).
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Some special notation for things which are used frequently is in order. First of all, since
the set S is not mentioned explicitly in the pair S = (Glty〈S 〉,GrAsgn〈S〉), it is useful
to have a notation to recover it. To this end, define the set of base granules of S to be
BaseGranules〈S〉 = Granules〈S|BaseGlty〈S〉〉. On the other hand, define the set of
group granules of S to be GrpGranules〈S〉 =

⋃

{Granules〈S|G〉 | G ∈ GrpGlty〈S〉}.
It is important to note that the values of granules in GrpGlty〈S〉 are sets of elements

from BaseGlty〈S〉. It is necessary to maintain this distinction in order to facilitate the
application of this concept to aggregation (see 4.12). It is nevertheless useful to introduce
a notation which unifies them. To this end, for g ∈ Granules〈S〉, define g̃ to be Val(g)

if g ∈ GrpGlty〈S〉, {g} if g ∈ BaseGlty〈S〉, and ∅ if g = ⊥S . In other words, the trans-
formation g 7→ g̃ maps each base granule to a singleton set containing that granule, each
group granule to its value, and ⊥S to ∅. Thus, {g̃ | g ∈ Granules 6⊥〈S〉} consists, uni-
formly, of subsets of BaseGlty〈S〉. With this notation, (csas-v) is expressed more com-
pactly as g1 ⊑S g2 iff g̃1 ⊆ g̃2 .

The standard structure StdStr〈S〉 for S has Dom〈StdStr〈S〉〉 = BaseGlty〈S〉 with
GnletoDomStdStr〈S〉 defined by g 7→ g̃ for all g ∈ Granules6⊥〈S〉. It is easy to verify
that StdStr〈S〉 forms a structure for S in the sense defined in Section 3.5.

For subset attribute schemata, the standard structure is always used to define the se-
mantics. The standard constraint set for StdStr〈S〉 is {ϕ ∈ BaRules〈S〉 | StdStr〈S〉 ∈

Mod(ϕ)}, and is denoted StdConstr〈S〉. The standard constrained granulated attribute

schema (or just standard schema) of S is as defined in Section 3.21, with Constr(S) =

StdConstr〈S〉. In particular, for g1, g2 ∈ Granules〈S〉, g1 ⊑S g2 iff g1 ⊑S g2 iff
g̃1 ⊆ g̃2.

In the case of a complete subset attribute schema S, for any G ∈ GrpGlty〈S〉,
{GnletoDomσ(g) | g ∈ Granules〈S|G〉} forms a full (and not just partial) partition of
Dom〈σ〉 (compare to Section 3.23).

4.2. Examples

For m ∈ N, let RndSchm
Z denote the subset attribute schema with BaseGlty〈RndSchm

Z 〉

denoted GranZ, BaseGranules〈RndSchm
Z 〉 = Granules〈RndSchm

Z |GranZ〉 = Z, and
for each i with 1 6 i 6 m, the granularity roundi has
Granules〈RndSchm

Z
|roundi〉 = {〈roundi, [10

i ·(j −0.5),10
i ·(j +0.5))〉 | 1 6 j 6 m};

it identifies rounding to the nearest 10
i . [n1, n2) represents the clopen interval {x ∈

Z | n1 6 x < n2}. To illustrate less formally, the values of round2 consist of clopen inter-
vals of the form [ℓ − 50, ℓ + 50) for ℓ a multiple of 100. GranZ is also denoted round0,
since it recaptures rounding to the nearest 10

0 = 1; i.e. no rounding at all. In addition,
there is the top granularity ⊤Glty〈RndSchm

Z
〉, which is also denoted round∞, since it rounds

every integer to the same value, thus preserving no information; its sole granule has as its
value the entire set Z.

It is important to observe that the granules of GranZ = round0 are actual numbers;
that is, elements of Z. On the other hand, elements of roundi for i > 0 have values which
are sets of integers; for g ∈ Granules〈RndSchm

Z
|roundi〉, Val(g) consists of all integers
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which round (for i significant digits) to the same values. This distinction is necessary in
order to allow the modelling of aggregation operators (see Section 4.12) to be as natural
as possible.

The ordering on grouping granules is defined by subset inclusion of their values. For
example, 〈round1, [375,385)〉 ⊑ 〈round2, [350,450)〉, with [350,450] representing all
integers which round to 400, when the rounding is to two significant digits. Similarly,
[375,385) represents all integers which round to 380, when rounding is to the nearest
10. When one of the granules is an integer (i.e. a base granule) and not a set of integers,
the ordering is defined by membership; e.g. 400 ⊑ 〈round2, [350,450)〉. It is critical to
observe that this ordering does not embody the usual ordering of integers; 300 ⊑ 400 does
not hold in this model. Indeed,

d
RndSchm

Z

{300,400} = ⊥S , since both numbers belong to
the same granularity. Rather, 300 6 400 is recaptured by the thematic ordering, discussed
in Section 4.5 below.

A similar construction applies in the case that the base set is the natural numbersN, in-
stead of the integersZ, to yield the subset attribute schema RndSchm

N . The grouping gran-
ules are just those for RndSchm

Z , intersected with N; i.e. discarding the negative numbers.
Note in particular that the clopen interval [−10

i,10
i) ∈ ValRndSchm

Z
(roundi) is truncated

to [0,10
i) ∈ ValRndSchm

N
(roundi). All clopen intervals in Granules〈RndSchm

Z
|roundi〉

containing only nonnegative numbers are retained in Granules〈RndSchm
N

|roundi〉,
while those containing only negative numbers are discarded.

The attribute BBth, Section 1, and elaborated further at the end of Section 3.1, provides
a concrete application, with GBBth

= RndSchm
N

for a suitable choice of m.
These ideas may also be extended to obtain RndSchm

R
over the real numbers, although

in that case the least granularity is not round0. The details are left to the reader.

4.3. Uniqueness of Subsuming Granules

Let S be any multigranular attribute schema (not necessarily a subset schema). Given
g1, g2, g

′
2

∈ Granules〈S〉 with g1 ⊑S g2, g1 ⊑S g′
2
, and G2 ∈ Glty〈S〉 with g2, g

′
2

∈

Granules〈S|G2〉, it must be the case that g2 = g′
2
.

Proof. Let g1, g2, g
′
2

and G2 be as stated. By (grstr-i), if g1 6= g2, then
d

S
{g2, g

′
2
} = ⊥S .

However, g1 ⊑S

d
S
{g2, g

′
2
}, whence it must be the case that g2 = g′

2
. �

4.4. Coarsening

The concepts in this paragraph apply to any multigranular attribute schema S; not just
those which are subset schemata.

In order to support the management of source data at differing granularities,
it is often necessary to reduce them to a common granularity. The operation of
coarsening, which transforms a granule to a one at a coarser granularity, is cen-
tral to this idea. Formally, for G1,G2 ∈ Glty〈S〉, the function CoarsenSG1G2 :

Granules〈S|G1〉 → Granules〈S|G2〉 is defined on g1 ∈ Granules〈S|G1〉 iff there
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is a g2 ∈ Granules〈S|G2〉 with g1 ⊑S g2. In view of 4.3, this g2 is unique whenever it

exists. In this case g2 = CoarsenSG1G2(g1). In general, CoarsenSG1G2 is a partial

function; it is total precisely in the case that G1 6Glty〈σ〉 G2 (use (grstr-iii) of Section 3.5).

Closely related is the partial function Map : Granules6⊥〈S〉 × Glty〈S〉 →

Granules 6⊥〈S〉 (Bravo and Rodríguez, 2014) defined on elements by (G,g) 7→

CoarsenSGltyS(g)G(g).

In the spatial context of APlc, the city of Concepción lies in Region VIII of Chile.

This would be represented by the coarsening CoarsenGAPlc
CityRegion(Concepción) =

Región_VIII . Similarly, in the temporal context of ATim, quarter 1 of year 2014 lies with

2014; this would be represented by the coarsening

CoarsenGATim
QuarterYrYear(Q1Y2014) = 2014.

In this work, coarsening is used primarily on the granules of complete subset attribute

schema. For example, in the context of Section 4.2,

CoarsenGBBth
round1round2(〈round1, [375,385)〉)= 〈round2, [350,450)〉 and

CoarsenGBBth
round0round1(376) =〈round1, [375,385)〉.

4.5. Thematic Attributes and Orderings

Following common usage in geographic information systems (Bonham-Carter, 1995),

a thematic attribute is used to record values associated with aggregatingnon-thematic (e.g.

spatial or temporal) attributes. The attribute BBth and its associated granularity schema

GBBth
form a typical example.

In this work, the underlying schemata of such attributes are modelled as subset attribute

schemata with the further property that the granules of the least granularity are endowed

with an additional order, called the thematic order. In the example of Section 4.2 above, in

which BaseGranules〈GBBth
〉 = Z, this order is the usual total order on the integers. This

is quite distinct from the ordinary granule ordering; indeed for any granulated attribute

schema S, two granules of the same granularity are never related via either ⊑S or ⊑S .

LetS be a subset attribute schema and let6
S

be a partial order on BaseGranules〈S〉.

Extend this order to all of Granules〈S〉 by defining g1 6
+
S

g2 to hold iff (∀x ∈ g̃1)(∀y ∈

g̃2)(x 6
S

y). Then, define an attribute schema with thematic order to be a triple

S = (Glty〈S〉,GrAsgn〈S 〉,6
S

) in which (Glty〈S〉,GrAsgn〈S〉) is a unified subset

attribute schema and6
S

is a partial order on BaseGlty〈S〉 with the property that for each
G ∈ GrpGlty〈S〉, the function CoarsenS〈BaseGlty〈S〉2G〉 : Granules〈S|G〉 →

Granules〈S|BaseGlty〈S〉〉 is order embedding (Davey and Priestly, 2002; 1.34(ii)).

In other words, the following condition must hold.

(tho-i) (∀G ∈ Glty〈S〉)

(∀(g1, g2) ∈ Granules〈S|BaseGlty〈S〉〉 × Granules〈S|BaseGlty〈S〉〉,

(g1 6S
g2

iff CoarsenS〈BaseGlty〈S〉2G〉(g1)6
+
S

CoarsenS〈BaseGlty〈S〉2G〉(g2)).
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4.6. Convex Subsets of Posets

Let P = (P,6P) be a poset. A subset Q ⊆ P is said to be convex in P (Davey and Priestly,
2002; Exer. 2.28) if for any x, y ∈ Q and z ∈ P , if x 6 z 6 y , then z ∈ Q.

For sets of numbers, such as N, Z, and R, the convex sets are just intervals.

4.7. Convexity Implies Thematic Order

Let S = (Glty〈S〉,GrAsgn〈S 〉) be a unified subset attribute schema, and let 6
S

be
a partial order on Granules〈S|BaseGlty〈S〉〉. If every element of GrpGranules〈S〉

is convex, then S = (Glty〈S 〉,GrAsgn〈S〉,6
S

) is an attribute schema with thematic
order.

Proof. Straightforward verification. �

4.8. Example

Using Section 4.7, it is clear that RndSchm
Z

= (Glty〈RndSchm
Z

〉,GrAsgn〈RndSchm
Z

〉,6),
with 6 the usual numerical ordering on Z, is an attribute schema with thematic order for
any natural number m.

4.9. Notational Convention

Throughout the rest of this section, unless stated specifically to the contrary, take S =

(Glty〈S〉,GrAsgn〈S 〉,6
S

) to be an attribute schema with thematic order, as defined in
Section 4.5.

4.10. Granular Refinement for Thematic Attributes

Refinement is a sort of inverse to coarsening. The idea is to take a compound granule
g ∈ GrpGranules〈S〉 and map it to a base granule g′ ∈ BaseGranules〈S〉 with the
property that g′ ∈ g. For example, if g̃ is the clopen interval [350,450), it might be mapped
to g′ = 400. This example is explored more thoroughly in Section 4.11 below.

Formally, a refinement family for S is a set
{RefineS〈G3BaseGlty〈S〉〉 : Granules〈S|G〉 → Granules〈S|BaseGlty〈S〉〉|G ∈

Glty〈S〉} of functions with the following properties.

(ref-i) For all G ∈ Glty〈S〉,
CoarsenS〈BaseGlty〈S〉2G〉 ∘ RefineS〈G3BaseGlty〈S〉〉 = 1Granules〈S|G〉,

where 1Granules〈S|G〉 is the identity function on Granules〈S|G〉. In other words,
Refine

S
〈G3BaseGlty〈S〉〉 is a left inverse of CoarsenS〈BaseGlty〈S〉2G〉.

(ref-ii) For all G1,G2 ∈ Glty〈S〉 with G1 6Glty〈S〉 G2,
CoarsenS〈G12G2〉 =

CoarsenS〈BaseGlty〈S〉2G2〉 ∘ Refine
S

〈G13BaseGlty〈S〉〉.
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For G1,G2 ∈ Glty〈S〉 with G1 6Glty〈S〉 G2, and a refinement family as just defined, define
RefineS〈G23G1〉 = CoarsenS〈BaseGlty〈S〉2G1〉 ∘ RefineS〈G23BaseGlty〈S〉〉.

Observe that RefineS〈BaseGlty〈S〉3BaseGlty〈S〉〉 must be the identity function
on BaseGranules〈S〉, so that this definition reduces to that given by the refinement fam-
ily for G1 = BaseGlty〈S〉.

4.11. Example

Continue with the schema RndSchm
Z

introduced in Section 4.2 and discussed further in
Section 4.8. The natural refinement operator sends a clopen interval to its midpoint. For
example, 〈round2, [350,450)〉 ∈ Granules〈RndSchm

Z |round2〉 is mapped to 400.
Formally, for a clopen interval [ℓ,h), define MidPt〈[ℓ,h)〉 to be just (ℓ + h)/2. Then,

for each G ∈ Glty〈RndSchm
Z

〉 \ {BaseGlty〈RndSchm
Z 〉}, define

Refinemid
RndSchm

Z

〈G3GranZ〉 on granule values to be just MidPt restricted to the appli-

cable intervals. Define Refinemid
RndSchm

Z

〈BaseGlty〈RndSchm
Z 〉3BaseGlty〈RndSchm

Z 〉〉

to be the identity on Z. It is then easy to verify that {Refinemid
RndSchm

Z

〈G3GranZ〉 | G ∈

Granules〈S〉} is a refinement family for RndSchm
Z . It is the most natural one, since it

sends a rounded number, represented as an interval [ℓ,h), as the number (ℓ+h)/2 which
represents the rounding.

However, other choices are possible. Instead of the midpoint, the function LowPt de-
fined on elements by [ℓ,h) 7→ ℓ could also be used. This is a form of rounding down. It
is not as useful in practice because it generally results in larger overall errors than does
rounding to midpoint.

4.12. Aggregation Operators

Data in a multigranular context are often statistical in nature. As such, thematic values
corresponding to coarser spatial or temporal regions may be aggregations of those for
finer ones. Therefore, a general formulation of an aggregation operator is central to any
effort to model data integration in such a context.

Let P = (P,6P) be any poset. An aggregation operator on P is a function
⊕

:

MultisetsOf〈P 〉 → P such that the following two properties hold.
Unary idempotence: For any x ∈ P ,

⊕

{x} = x .
Group associativity: For any finite multiset S ⊆ P and any multi-partition

*Si | i ∈ I+ of S,
⊕ *⊕(Si) | i ∈ I+ =

⊕

S.
These properties only identify that which is necessary for an operator of the form

⊕

:

MultisetsOf〈P 〉 → P to “make sense” as an aggregation operator. They do not character-
ize quality or identify desirable properties in any way. For a discussion of the latter, see
Calvo et al. (2002) and Lenz and Thalheim (2009).

There are two additional properties which enhance an aggregation operator, but which
are not required in all situations.

Monotonicity: For any finite multisets S1, S2 ⊆ P , if there is an injective multifunction
h : S1 → S2 such that (∀g ∈ S1)(g 6P h(g)), then

⊕

S1 6P

⊕

S2.
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Duplicate invariance: For any finite multiset S ⊆ P ,
⊕

S =
⊕

SetOf〈S〉.
If ⊕ has the monotonicity (resp. duplicate invariance) property, then it is said to be mono-

tonic (resp. duplicate invariant).
On the natural numbers N, summation

∑

is an aggregation operator which is unary
idempotent and group associative (as are all aggregation operators as defined here), as
well as monotonic, but not duplicate invariant.

On the integersZ, summation
∑

is still an aggregation operator, but it is neither mono-
tonic nor duplicate invariant. An example of an attribute which would use such an operator
would be NetBirths, that is, Births–Deaths.

On both N and Z, max is an aggregation operator which is both monotonic and dupli-
cate invariant.

To obtain an example of an aggregation operator which is duplicate invariant but not
monotonic, consider the real numbers R with the aggregation operator which takes a set
S ⊆R and returns the number which is closest to zero. If there is a tie between a negative
number and a positive one, choose the positive one.

The operator min has the same properties as max, if the order used is > instead of 6.
Operations which do not respect group associativity, such as averaging, are not aggre-

gation operators in the sense defined here.

4.13. Aggregation Operators and Thematic Orderings

An aggregation operator on a thematic attribute schemaS is just an aggregation operator,
in the sense of Section 4.12, on the poset (BaseGranules〈S〉,6

S
).

Data from different sources may be delivered with values for the thematic attributes
provided in different granularities (e.g. with different degrees of rounding). Therefore,
it is desirable to allow aggregation on multisets consisting not only of elements in
BaseGranules〈S〉, but on all members of Granules 6⊥〈S〉, and furthermore on mixes
of elements of differing granularities. If S has a refinement family; in particular, if
the thematic order 6

S
is convex, and a refinement operator RefineS〈·3·〉 is provided,

this is accomplished quite effortlessly. Specifically, for S ⊆ Granules6⊥〈S〉 and
⊕

an
aggregation operator on BaseGranules〈S〉, extend

⊕

to all of Granules6⊥〈S〉 via
⊕

S =
⊕

{RefineS〈GltyS(g)3BaseGlty〈S〉〉(g) | g ∈ S}.

The idea is best illustrated by example. In the context of RndSch3

N, suppose data from
different sources provide the following set of values {126, [3420,3429), [2200,2300)}.
The first value is from round0, the second from round1, and the third from round2. Sup-
pose further that these numbers are aggregated using the summation operator

∑

. The
result is

∑

H Refinemid
RndSch3

N

〈round03round0〉(1264),

Refinemid

RndSch3

N

〈round13round0〉(〈round1, [3305,3315)〉),

Refinemid

RndSch3

N

〈round23round0〉(〈round2, [2250,2350)〉)I
=
∑

*1264,3310,2300+= 6874.
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If it is subsequently desired to provide a value rounded to the nearest 100; i.e. a value in
Granules〈RndSch3

N
|round2〉, this value may be obtained by coarsening the sum:

Coarsen
RndSch3

N

〈round02round2〉(6874) = 〈round2, [6850,6950)〉,

which amounts to saying that 6874 is rounded to 6900. Note that
6900 = Refinemid

RndSch3

N

〈round03round2〉(〈round2, [6850,6950)〉.

In practice, one may say that the granule 〈round2, [6850,6950)〉 “is” 6900, although
technically speaking, it is a representation of numbers which round to 6900. The granule
〈round2, [6850,6950)〉 is not the same as the granule 6900 ∈ Granules〈RndSch3

N
|round0〉,

even though they have the same “value” of 6900.

5. Constraints for Data Integrity

5.1. Attributewise Specification of Classical Order Dependencies

The dependencies which are developed in this paper are presented in an attributewise

fashion, in the sense that all attributes on the left-hand side (LHS), save for one, are held
constant. To illustrate, the idea is first sketched within the context of order dependencies
(Ginsburg and Hull, 1983; Ng, 2001; Szlichta et al., 2012), which generalize functional
dependencies (FDs) to a framework which includes order. The domain of each attribute

A is endowed with a partial order 6A , with the order dependency (OD) A1A2 . . .Ak
6
→ B

holding iff for any two tuples t1, t2 with the property that whenever t1[Ai] 6Ai
t2[Ai] for

1 6 i 6 k, then t1[B] 6B t2[B] as well. If, for each attribute A, 6A is taken to be the trivial
order in which x 6A y iff x = y , then ordinary FDs are recovered.

Now, for i ∈ [1, k], define Si = {A1,A2, . . . ,Ak} \ {Ai}, and call two tuples t1, t2 Si -
equivalent if t1[Si] = t2[Si]. Choosing S as above, the attributewise dependency defined

by Si on the OD A1A2 . . .Ak
6
→ B , denoted A1 . . .Ai−1AiAi+1 . . .Ak

6
→ B is defined to

hold precisely in the case that for any two Si -equivalent tuples t1, t2, if t1[Ai] 6Ai
t2[Ai],

then t1[B] 6B t2[B]. In other words, all attributes save for Ai are held constant; only Ai

is allowed to vary.
For the dependencies developed in this paper, such an attributewise representation is

essential. This will be explained in more detail in 5.10, after these dependencies have been
developed fully.

Before presenting the dependencies themselves, it is necessary to identify the relational
framework which they constrain.

5.2. Multigranular Relation Schemes

Let U be a set of granulated attributes. Assume that to each A ∈ U is associated a con-
strained granulated attribute schema (Glty〈GA 〉,GrAsgn〈GA 〉,Constr〈GA 〉,cwa〈GA 〉),
as described in Section 3.21.

Extending the classical definition (Maier, 1983; 1.2), for k ∈ N
+, a (k-ary) multi-

granular relation scheme over U is an expression of the form R〈α〉, where α =
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〈A1,A2, . . . ,Ak〉 ∈ Uk . The symbol R is called the relation name, and the list α is called
an attribute vector.

A data tuple for the attribute vector α = 〈A1,A2, . . . ,Ak〉 is a k-tuple t ∈

Granules〈GA1
〉 × Granules〈GA2

〉 × . . . × Granules〈GAk 〉. The set of all data tuples
for α is denoted Tuples〈α〉. A database for the schema R〈α〉 is a set M ⊆ Tuples〈α〉.
The set of all databases for R〈α〉 is denoted DB(R〈α〉).

5.3. The Context

Throughout this section, unless stated specifically to the contrary, take
S = (Glty〈S 〉,GrAsgn〈S〉,Constr〈S 〉,cwa〈S〉) to be a constrained granulated at-
tribute schema (see Section 3.21).

Likewise, take U to be a finite set of granulated attributes, with a constrained gran-
ulated attribute schema (Glty〈GA 〉,GrAsgn〈GA 〉,Constr〈GA 〉,cwa〈GA 〉) associated
with each A ∈ U.

The names in U include at least those of the form Ai and B , with the association of
a schema to the name as described in Section 5.2. It will further be assumed that B is a
thematic attribute, with thematic order 6

GB
, as described in Section 4.5, and that ⊕ is an

aggregation operator for GB as defined in Section 4.13.

5.4. Set Coarsening

Define the function CoarsenSetMUBS : 2Granules 6⊥〈S〉 → 2Glty〈S〉 to be that which
maps S ⊆ Granules 6⊥〈S〉 to the minimal elements (under 6Glty〈S〉) in the set

{G ∈ Glty〈S〉 | (∀g ∈ S)(CoarsenS〈GltyS(g)2G〉(g)) is defined}.
In words, it returns the minimal granularities to which all elements of S coarsen. Since
Glty〈S〉 has a greatest element ⊤Glty〈GA 〉, this set of minimal granularities can never be
empty.

This operation will be applied only to granules of thematic attributes. In all examples
of this paper (in Section 4), the associated granularity poset has LUBs. However, the for-
malism allows for the case in which there are several MUBs (minimal upper bounds) of
given set S ⊆ Granules〈S〉.

5.5. The TMCD

The dependencies developed in this section are called thematic multigranular com-

parison dependencies, or TMCDs. Each one is specified in attributewise fashion, with
the value of only one attribute on the LHS allowed to vary. The general notation is

A1A2 . . .Ai−1AiAi+1 . . .Ak

[

] 〈β : η〉−→〈B,⊕〉, in which the Ai ’s are (ordinary)multigran-
ular attributes, B is a thematic attribute, and ⊕ is an aggregation operator on B . The de-
pendencies are classified according to the two parameters β ∈ {

⊔

⊥ ,
⊔

} (the join type) and
η ∈ {⊑,=,⊒} (the order type). Thus, their are six fundamental variants. There is also a
third possibility, β = 1, but it is a special case of β =

⊔

⊥ , and not a fundamentally different
case. It will be discussed later.
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In a TCMD, it is not in general a single value for Ai (as in the case of FDs and ODs),

but rather a set of values which match some join rule, which determine the value of B

of a second tuple. The formula which defines the semantics of this TMCD is shown be-

low, for a multigranular relation scheme R〈α〉 whose attribute vector α contains at least

{A1,A2, . . . ,Ak,B}.

(∀t1 ∈ Tuples〈α〉)(∀T2 ⊆f Tuples〈α〉)

(∀G ∈ CoarsenSetMUBGB
〈{t1.B} ∪ {t .B | t ∈ T2}〉)

((

R〈t1〉 ∧

(

∧

t2∈T2

R〈t2〉

)

∧

(

∧

t2 ∈ T2

j ∈ [1, k] \ {i}

(t1.Aj = t2.Aj )

)

∧

(

t1.Ai

[

⊑GAi
=

⊒GAi

]

⊔

?

t2∈T2

SAi

t2.Ai

))

⇒

(

CoarsenGB
〈GltyGB

(t1.B)2G〉(t1.B)

[

6
GB
=

>
GB

]

CoarsenGB
〈BaseGlty〈GB 〉2G〉

(

⊕

t2∈T2

Refine
GB

〈GltyGB
(t2.B)3BaseGlty〈GB〉〉(t1.B)

)))

.

The two parameters are incorporated in this representation. First of all,
⊔

? represents the

choice of β , and thus may be either
⊔

⊥ or
⊔

. Second, the two stacks of symbols,

[

⊑GAi=
⊒SiA

]

and

[

6
GB
=

>
GB

]

, represent the choices for η. The same row must be chosen for each; for ex-

ample, if ⊑GAi
is chosen in the first stack, then 6

GB
must be chosen from the second.

For a particular choice of t1 and T2, the match rule is t1.Ai ⊛
⊔

?

t2∈T2

GAi

t2.Ai , with ⊛ the

appropriate choice in {⊑GAi
,=,⊒GAi

}. This match rule must be in Constr〈GAi 〉
+ for the

TMCD to apply. For example, for a TCMD of type 〈
⊔

⊥ : =〉, the match rule for t1 and T2

is t1.Ai =
⊔

⊥

t2∈T2

t2.Ai . If it is in Constr〈GAi 〉
+, and if the values for the other Aj attributes

are constant; i.e. if t1.Aj = t2.Aj = t ′
2
.Aj for all t2, t

′
2
∈ T2 and all j ∈ [1, k] \ {i}, then the

aggregation t1.b =
⊕

t2∈T2

t2.B on B must hold, after suitable coarsening is applied. Table 1

summarizes these conditions.
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Table 1
Properties of TMCDs; see Sections 5.7 and 5.9 for clarification of remarks.

Type Match rule Aggregation Remarks
(w/o coarsening)

〈
⊔

⊥ : =〉 t1.Ai =
⊔

⊥

t2∈T2

t2.Ai t1.B =
⊕

t2∈T2

t1.B

〈
⊔

⊥ : ⊑〉 t1.Ai ⊑GAi

⊔

⊥

t2∈T2

t2.Ai t1.B 6
GB

⊕

t2∈T2

t2.B Typically monotonic

〈
⊔

⊥ : ⊒〉 t1.Ai ⊒GAi

⊔

⊥

t2∈T2

t2.Ai t1.B >
GB

⊕

t2∈T2

t2.B Typically monotonic

〈
⊔

: =〉 t1.Ai =
⊔

t2∈T2

t2.Ai t1.B =
⊕

t2∈T2

t1.B Typically
duplicate invariant

〈
⊔

: ⊑〉 t1.Ai ⊑GAi

⊔

t2∈T2

t2.Ai t1.B 6
GB

⊕

t2∈T2

t2.B Typically monotonic
+ duplicate invariant

〈
⊔

: ⊒〉 t1.Ai ⊒GAi

⊔

t2∈T2

t2.Ai t1.B >
GB

⊕

t2∈T2

t2.B Typically monotonic
+ duplicate invariant

〈1 : =〉 t1.Ai = t2.Ai t1.B = t2.B Special case of
〈
⊔

⊥ : =〉

〈1 : ⊑〉 t1.Ai ⊑GAi
t2.Ai t1.B 6

GB
t2.B Special case of

〈
⊔

⊥ : ⊑〉

〈1 : ⊒〉 t1.Ai ⊒GAi
t2.Ai t1.B >

GB
t2.B Special case of

〈
⊔

⊥ : ⊒ 〉

5.6. Example

First consider the schema Rsumb〈APlc,ATim,BBth〉, governed by the TMCD APlcATim

[

]

〈
⊔

: =〉−→〈BBth,
∑

〉, with
∑

denoting the summation operator. The aggregation is over
places (APlc), for fixed periods of time (ATim). Think of using (r-Chile) from Section 1 as
the match rule, for the fixed time interval Q1Y2014, with the tuples in T1 coming from
Part 1 of Fig. 1, and t2 coming from Part 2. The rule captures formally that which was
described informally in Section 1, that the number of births during Q1Y2014 in all of
Chile is the sum of those in the fifteen regions, after accounting for rounding.

The granularity G of the formula of Section 5.5 is chosen to make sure that all results
are compared at the same granularity. The formalism does not require that G be unique,
but in most practical examples, such as the rounding attribute schema RndSchm

N
presented

in Section 4.2, it will be. Returning to the concrete example, suppose that the birth data
in Part 1 of Fig. 1 are rounded to the nearest 20, while the data in Part 2 are rounded to
the nearest 50. It would be unrealistic to expect a sum of numbers, each rounded to the
nearest 20, to agree with a summary which has been rounded to the nearest 50. To make
the comparison more realistic, each is rounded to the finest rounding which is coarser than
both; in this case, 100. (This assumes that rounding to 20, 50, and 100 are all supported
by the thematic schema GBBth

.)
Now consider the schema Rmaxp〈APlc,ATim,BPop〉, with APlc and ATim as in

Rsumb〈APlc,ATim,BBth〉, but BPop an attribute which records the maximum population

of a geographic region during a given period of time. The applicable TMCD APlcATim

[

]

〈
⊔

⊥ : =〉−→〈BPop,max〉 in which max is the aggregation operator on N which selects the
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maximum value. Here the fact that the join may not be disjoint does not matter, since
the aggregation operator max is duplicate invariant. For a further discussion of this, see
Section 5.9 below.

5.7. TMCDs Without Aggregation

The choice of β = 1 represents the case of β =
⊔

⊥ in which only one element is aggre-
gated. Since it is a very fundamental special case which occurs frequently in practice,
it deserves special attention. The resulting formula is shown below for a multigranular
relation scheme R〈α〉 whose attribute vector α contains at least {A1,A2, . . . ,Ak,B}.

(∀t1, t2 ∈ Tuples〈α〉)(∀G ∈ CoarsenSetMUBGB
〈{t1,B, t2.B}〉)

(

R〈t1〉 ∧ R〈t2〉 ∧

(

t1.Ai

[

⊑SAi=
⊒SAi

]

t2.Ai

)

⇒

(

CoarsenGB
〈BaseGlty〈GB〉2G〉(t1.B)

[

6
GB
=

>
GB

]

CoarsenGB
〈GltyGB

(t2.B)2G〉(t2.B)

))

.

For the case of equality; e.g. APlcATim

[

] 〈1 : =〉−→BBth, it is nothing more than the at-
tributewise FD APlcATim → BBth, modulo coarsening. If all values for BBth are of the
same granularity, it is exactly the attributewise FD. For the case of subsumption; e.g.

APlcATim

[

] 〈1 : ⊑〉−→BBth, it is the order dependency APlcATim
6
→ BBth, again modulo

coarsening. For APlcATim

[

] 〈1 : ⊒〉−→BBth, it is, modulo coarsening, APlcATim
>
→ BBth.

Thus, the ordinary FDs and ODs which underlie the more complex TMCDs are repre-
sentable in this framework.

Although inference of TMCDs is not a focus of this paper, it is nevertheless worthwhile
to point out a few of the simplest ones.

5.8. Implications of TMCDs

Under the notation of 5.3, the following implications hold, with |H denoting semantic
entailment on TMCDS.

A
1
A

2
. . .Ai−1

AiAi+1
. . .Ak

[

] 〈
⊔

: η〉−→〈B,⊕〉

|H A1A2 . . .Ai−1AiAi+1 . . .Ak

[

] 〈
⊔

⊥ : η〉−→〈B,⊕〉

|H A1A2 . . .Ai−1AiAi+1 . . .Ak

[

] 〈1 : η〉−→〈B,⊕〉,

{A
1
A

2
. . .Ai−1

AiAi+1
. . .Ak

[

] 〈
⊔

? : ⊑〉−→〈B,⊕〉,
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A1A2 . . .Ai−1AiAi+1 . . .Ak

[

] 〈
⊔

? : ⊒〉−→〈B,⊕〉}

|H A
1
A

2
. . .Ai−1

AiAi+1
. . .Ak

[

] 〈
⊔

? : =〉−→〈B,⊕〉,

A1A2 . . .Ai−1AiAi+1 . . .Ak

[

] 〈1 : ⊑〉−→〈B,⊕〉

|H A1A2 . . .Ai−1AiAi+1 . . .Ak

[

] 〈1 : =〉−→〈B,⊕〉.

Proof. All are very basic verifications. �

5.9. TMCDs and Properties of the Aggregation Operator

Given a TMCD A1A2 . . .Ai−1AiAi+1 . . .Ak

[

] 〈β : η〉−→〈B,⊕〉, consider the following re-
quirements.

(cond-mn) For η ∈ {⊑,⊒}, ⊕ must be monotonic.
(cond-di) For β =

⊔

, ⊕ must be duplicate invariant.
In a practical sense, these statements are always true. However, it is possible to construct
pathological examples in which they fail. A full treatment of this subject is beyond the
scope and space limitations of this paper. Therefore, the above statements are to be taken
only as real-world design guidelines, not mathematically established results.

This is not a limitation of the framework, since in practice it is clear which aggregation
operators apply in a given framework.

5.10. Discarding Attributewise Specification

In the case that the same thematic order and aggregation operator is used with respect to all
attributes on the LHS of a TMCD, it is tempting to consider discarding the attributewise
specification, and combine all into one big dependency, which might be represented as

A1A2 . . .Ak

[

] 〈β : η〉−→B , for a multigranular relation scheme R〈α〉 whose attribute vector
α contains at least {A1,A2, . . . ,Ak,B}.

(∀t1 ∈ Tuples〈α〉)(∀T2 ⊆f Tuples〈α〉)

(∀G ∈ CoarsenSetMUBGB
〈{t1.B} ∪ {t .B | t ∈ T2}〉)

((

R〈t1〉 ∧

(

∧

t2∈T2

R〈t2〉

)

∧

(

∧

i∈[1,k]

(

t1.Ai

[

⊑SAi=
⊒SAi

]

⊔

?

t2∈T2

SAi

t2.Ai

)))

⇒

(

CoarsenGB
〈GltyGB

(t2.B)2G〉(t2.B)

[

6
GB
=

>
GB

]

CoarsenGB
〈BaseGlty〈GB 〉2G〉

(

⊕

t1∈T1

Refine
GB

〈GltyGB
(t2.B)3BaseGlty〈GB〉〉(t1.B)

)))

.
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From a theoretical point of view, this definition is fine. However, without suitable
adaptation, it does not recapture what would normally be expected of such a de-
pendency. To illustrate, work within the context of Rsumb〈APlc,ATim,BBth〉, with the
rules p =

⊔

⊥
GAPlc

{p1,p2} =
⊔

⊥
GAPlc

{p3,p4} holding in Constr〈 GAPlc
〉 and the rules

t =
⊔

⊥
A2

{s1, s2} =
⊔

⊥
A2

{s3, s4} holding in Constr〈GATim
〉. Now, suppose that T1 =

{〈p1, s1, b1〉, 〈p2, s2, b2〉}, and t2 = 〈p, s, b〉 in the above formula. Assume further that
all values for attribute BBth are at the same granularity G, so no coarsening is necessary.
Then the above rule mandates that b1 + b2 = b. However, this is not realistic modelling.
b1 is the number of births in region p1 during time s1, while b2 is the number of births
in region p2 during time interval s2. To get the total number of births in region p during
time interval t , it would be necessary to find and add tuples of the form 〈p1, s2, b3〉 and
〈p2, s1, b4〉. Then, and only then, would b1 + b2 + b3 + b4 = b hold. In other words, there
must be a tuple which captures every (place, time) point of an appropriate “rectangle” in
order to get the correct total number of births.

Unfortunately, things can become even more complex. Suppose instead that t1 =

〈p, s, b〉 and T2 = {〈p1, s1, b1〉, 〈p2, s1, b2〉, 〈p3, s2, b3〉, 〈p4, s2, b4〉}. It is easy to see
that b1 + b2 + b3 + b4 = b must hold here as well. In other words, different decom-
positions of p may be used for different corresponding values of attribute ATim. From
a formal point of view, the most elegant solution is to regard A1A2 . . .Ak as a com-
bined domain, and replace (t1.Ai =

∧k
i=1

⊔

⊥

t2∈T2

SAi

t2.Ai) with something of the form

(t1.A1A2 . . .Ak =
⊔

⊥

t2∈T2

SAi

t2.A1A2 . . .Ak).

However, it seems that to implement something so complex efficiently would be almost
impossible. Thus, it seems that attributewise specification is a necessity.

5.11. Comparison to CFDs

In contrast to the CFDs (conditional functional dependencies) of Bravo and Rodríguez
(2014), the TMCDs developed here are specifically oriented towards data integration.
CFDs are designed to recapture dependencies which hold only for certain granularities,
with no support for aggregation or tolerance. TMCDs, on the other hand, are designed
to support these latter two concepts. The overlap of CFDs and TCMDs is therefore min-
imal; they address complementary issues in the context of constraints for multigranular
schemata.

5.12. Tolerant Agreement

If the data of different granularities come from different sources, there may be dis-
crepancies which cannot be accounted for entirely from rounding. Rather than having
a TMCD reject such data as failing to satisfy the basic integration constraint, a more
tolerant approach might be employed. In Hegner and Rodríguez (2016; 2.13), a coars-

ening tolerance, in the spirit of a tolerance relation (Zeeman, 1962; Arbib, 1967;
Peters and Wasilewski, 2012) is part of every TMCD. There may, however, be other forms
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of tolerant agreement which may be more appropriate in a given situation, particularly
ones which provide a degree, rather than an absolute, measure. Examples include ap-
proaches using statistical or fuzzy tools. Consequently, in this work, no fixed notion of
tolerant agreement is formulated. Rather, the intent is that the TMCD framework may be
expanded to include such features, as necessary.

6. Relationship to Other Work

The notion of granularity appears in different contexts of data management. Granularity
defines the units that quantitatively measure data with respect to the dimensions of the
domain they represent. In Bettini et al. (1997), temporal granularity is formalized as a
mapping function from a domain of indexes to the time domain. Each portion of the time
domain corresponding to the mapping is referred as a temporal granule, which cannot
overlap with any other granule of the same granularity. In a similar way, Wang and Liu
(2004) define spatial granularity as a mapping function from a domain of indexes to por-
tions of a space, called spatial granules. Later, the works in Camossi et al. (2006) defined a
spatio-temporal granule as a tuple (s, t), meaning that at the time index t , the spatial index
s is valid. In a similar way, the work in Belussi et al. (2009) assigns to each spatio-temporal
granule a sequence of spatial granules, one for each granule in the temporal granulari-
ties. Based on the concept of spatial and temporal granules and granularities, the work
in Camossi et al. (2006), Bertino et al. (2005) proposes a multigranular object-oriented
framework that supports conversion operators between granules related by inclusion and
provides a language where users can specify a particular conversion for moving from one
to another granularity.

Data warehouses (DWs) and OLAP cubes are multigranular systems where conver-
sion operators are fixed along a dimension. DWs support large datasets in query process-
ing because they store pre-computed sub-aggregate measures associated with granules.
OLAP cubes allow navigation through different levels of aggregate information of a data
warehouse. In this context, Lenz and Thalheim (2005) provide a formal and functional
definition of data cube that specifies a hierarchically ordered dimension that forms a lat-
tice. In their work, they assume well-defined hierarchic dimensions, which impose that
granules, what they call groupings, form a partition, that is, they are pairwise disjoint and
form a cover.

Classical data warehouses assume data stored at the finest level of detail and where
each value (granule) at this level can be mapped onto a value at a coarser level of a di-
mension. However, recent works highlight the need of storing data at different gran-
ularities (Iftikhar, 2012; Iftikhar and Pedersen, 2010) and handling complex data ob-
jects (Boukraâ et al., 2010). A multigranular model was introduced in Bravo and Ro-
dríguez (2014) and then refined in Hegner and Rodríguez (2016). The model in Hegner
and Rodríguez (2016) is a formalization in terms of a partial set structure enhanced with
rules to express conditions on the underline domain. In particular, it defines join rules that
may or may not represent partitions of the space. In this work, integrity constraints define
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valid states over aggregation operators. These constraints relate, but differ from previous
types of constraints applied in the context of data cubes. In particular, in Wijsen and Ng
(1999), roll-up dependencies assert that certain thematic values (such as tax rates) must be
invariant under roll-up. However, these constraints do not address thematic values which
vary with granularity, or which involve aggregation.

7. Conclusions and Further Directions

A comprehensive model of multigranular attributes, as well as their use in defining multi-
granular relational schemata, has been developed. This includes not only basic attributes
(typically spatio-temporal), but also thematic attributes and how they integrate with ag-
gregation operators. In contrast to previous work, this approach recaptures not only the or-
der structure of granules at distinct granularities, but also lattice-like operations on them.
This supports the definition of integrity constraints, called TMCDs, which can express
constraints which require the thematic value of one tuple be the same as the aggregation
of the thematic values of several other tuples.

There are several avenues for further study.

Effective implementation: The ideas developed in this paper will only prove useful if
they can be implemented effectively. An immediate task is to develop a prototype
implementation for granular attributes, and relations, and then to apply them to test-
ing satisfaction of TMCDs.

Algorithms for testing rule satisfiability: Although it has been argued in Sec-
tion 3.14 that rules which arise from natural modelling situations will be satisfiable,
it would nevertheless be advantageous to have effective algorithms for testing a set
of rules for consistency. Work is currently underway to develop and implement a
satisfaction algorithm for the basic rules of Section 3.10.

Query language: The work here proposes only constraints. An accompanying query
language which takes into account the special needs of the multigranular framework
must also be developed.
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Hegner to Concepción, during which many of the ideas reported here were developed,
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