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Abstract. The aim of this manuscript is to propose a new extension of the MULTIMOORA method

adapted for usage with a neutrosophic set. By using single valued neutrosophic sets, the MUL-

TIMOORA method can be more efficient for solving complex problems whose solving requires

assessment and prediction, i.e. those problems associated with inaccurate and unreliable data. The

suitability of the proposed approach is presented through an example.
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1. Introduction

The MULTIMOORA (Multi-Objective Optimization by a Ratio Analysis plus the Full

Multiplicative Form) was proposed by Brauers and Zavadskas (2010).

The ordinary MULTIMOORA method has been proposed for usage with crisp

numbers. In order to enable its use in solving a larger number of complex decision-

making problems, several extensions have been proposed, out of which only the most

prominent are mentioned: Brauers et al. (2011) proposed a fuzzy extension of the

MULTIMOORA method; Balezentis and Zeng (2013) proposed an interval-valued fuzzy

extension; Balezentis et al. (2014) proposed an intuitionistic fuzzy extension and Zavad-

skas et al. (2015) proposed an interval-valued intuitionistic extension of the MULTI-

MOORA method.

*Corresponding author.
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The MULTIMOORA method has been applied for the purpose of solving a wide range

of problems.

As some of the most cited, the studies that consider different problems in economics

(Brauers and Zavadskas, 2010, 2011; Brauers, 2010), personnel selection (Balezentis et

al., 2012a, 2012b), construction (Kracka et al., 2015), risk management (Liu et al., 2014a)

and waste treatment (Liu et al., 2014b) can be mentioned.

As some of the newest studies in which the MULTIMOORA method is used for solv-

ing various decision-making problems, the following ones can be mentioned: material

selection (Hafezalkotob and Hafezalkotob, 2016; Hafezalkotob et al., 2016) and the CNC

machine tool evaluation (Sahu et al., 2016).

A significant approach in solving complex decision-making problems was formed by

adapting the multiple criteria decision-making methods for the purpose of using fuzzy

numbers, proposed by Zadeh in the fuzzy set theory (Zadeh, 1965).

Based on the fuzzy set theory, some extensions are also proposed, such as: interval-

valued fuzzy sets (Turksen, 1986), intuitionistic fuzzy sets (Atanassov, 1986) and interval-

valued intuitionistic fuzzy sets (Atanassov and Gargov, 1989).

In addition to the membership function proposed in fuzzy sets, Atanassov (1986) intro-

duced the non-membership function that expresses non-membership to a set, thus having

created the basis for solving a much larger number of decision-making problems.

The intuitionistic fuzzy set is composed of membership (the so-called truth-

membership) TA(x) and non-membership (the so-called falsity-membership) FA(x),

which satisfies the conditions TA(x),FA(x) ∈ [0,1] and 0 6 TA(x) + FA(x)6 1. There-

fore, intuitionistic fuzzy sets are capable of operating with incomplete pieces of informa-

tion, but do not include intermediate and inconsistent information (Li et al., 2016).

In intuitionistic fuzzy sets, indeterminacy πA(x) is 1 − TA(x) − FA(x) by default.

Smarandache (1998, 1999) further extended intuitionistic fuzzy sets by proposing Neu-

trosophic, also introducing independent indeterminacy-membership.

Such a proposed neutrosophic set is composed of three independent membership

functions named the truth-membership TA(x), the falsity-membership FA(x) and the

indeterminacy-membership IA(x) functions.

Smarandache (1999) and Wang et al. (2010) further proposed a single valued neu-

trosophic set, by modifying the conditions TA(x), IA(x) and FA(x) ∈ [0,1] and 0 6

TA(x) + IA(x) + FA(x) 6 3, which are more suitable for solving scientific and engi-

neering problems (Li et al., 2016).

Compared with the fuzzy set and its extensions, the single valued neutrosophic set

can be identified as more flexible, for which reason an extension of the MULTIMOORA

method adapted for the purpose of using the single valued neutrosophic set is proposed in

this approach.

Therefore, the rest of this paper is organized as follows: in Section 2, some basic defi-

nitions related to the single valued neutrosophic set are given. In Section 3, the ordinary

MULTIMOORA method is presented, whereas in Section 4, the Single Valued Neutro-

sophic Extension of the MULTIMOORA method is proposed. In Section 5, an example is

considered with the aim to explain in detail the proposed methodology. The conclusions

are presented in the final section.
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2. The Single Valued Neutrosophic Set

Definition 1. (See Smarandache, 1999.) Let X be the universe of discourse, with a

generic element in X denoted by x . Then, the Neutrosophic Set (NS) A in X is as fol-

lows:

A =
{

x
〈

TA(x), IA(x),FA(x)
〉 ∣

∣x ∈ X
}

, (1)

where TA(x), IA(x) and FA(x) are the truth-membership function, the indeterminacy-

membership function and the falsity-membership function, respectively,

TA, IA,FA : X →]−0,1
+[ and −

0 6 TA(x) + IA(x) + FA(x)6 3
+.

Definition 2. (See Smarandache, 1999; Wang et al., 2010.) Let X be the universe of

discourse. The Single valued neutrosophic set (SVNS) A over X is an object having the

following form:

A =
{

x
〈

TA(x), IA(x),FA(x)
〉 ∣

∣x ∈ X
}

, (2)

where TA(x), IA(x) and FA(x) are the truth-membership function, the intermediacy-

membership function and the falsity-membership function, respectively,

TA, IA,FA : X → [0,1] and 0 6 TA(x) + IA(x) + FA(x)6 3.

Definition 3. (See Smarandache, 1999.) For an SVNS A in X, the triple 〈tA, iA, fA〉 is

called the single valued neutrosophic number (SVNN).

Definition 4. Let x1 = 〈t1, i1, f1〉 and x2 = 〈t2, i2, f2〉 be two SVNNs and λ > 0; then

the basic operations are defined as follows:

x1 + x2 = 〈t1 + t2 − t1t2, i1i2, f1f2〉, (3)

x1 · x2 = 〈t1t2, i1 + i2 − i1i2,f1 + f2 − f1f2〉, (4)

λx1 =
〈

1 − (1 − t1)
λ, iλ

1
, f λ

1

〉

, (5)

xλ
1

=
〈

tλ
1
,1 − (1 − i1)

λ,1 − (1 − f1)
λ
〉

. (6)

Definition 5. (See Sahin, 2014.) Let x = 〈tx , ix, fx〉 be an SVNN; then the score function

sx of x can be as follows:

sx = (1 + tx − 2ix − fx)/2, (7)

where sx ∈ [−1,1].
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Definition 6. Let x1 = 〈t1, i1, f1〉 and x2 = 〈t2, i2, f2〉 be two SVNNs. Then the maxi-

mum distance between x1 and x2 is as follows:

dmax(x1, x2) =

{

|t1 − t2|, x1, x2 ∈ �max,

|f1 − f2|, x1, x2 ∈ �min.
(8)

Definition 7. (See Sahin, 2014.) Let Aj = 〈tj , ij , fj 〉 be a collection of SVNSs and

W = (w1,w2, . . . ,wn)
T be an associated weighting vector. Then the Single Valued Neu-

trosophic Weighted Average (SVNWA) operator of Aj is as follows:

SVNWA(A1,A2, . . . ,An)

=

n
∑

j=1

wjAj =

(

1 −

n
∏

j=1

(1 − tj )
wj ,

n
∏

j=1

(ij )
wj ,

n
∏

j=1

(fj )
wj

)

. (9)

where: wj is the element j of the weighting vector, wj ∈ [0,1] and
∑n

j=1
wj = 1.

Definition 8. (See Sahin, 2014.) Let Aj = 〈tj , ij , fj 〉 be a collection of SVNSs and

W = (w1,w2, . . . ,wn)
T be an associated weighting vector. Then the Single Valued Neu-

trosophic Weighted Geometric (SVNWG) operator of Aj is as follows:

SVNWG(A1,A2, . . . ,An)

=

n
∏

j=1

(Aj )
wj =

(

n
∏

j=1

(tj )
wj ,1 −

n
∏

j=1

(1 − ij )
wj ,1 −

n
∏

j=1

(1 − fj )
wj

)

. (10)

where: wj is the element j of the weighting vector, wj ∈ [0,1] and
∑n

j=1
wj = 1.

3. The MULTIMOORA Method

The MULTIMOORA method consists of three approaches named as follows: the Ratio

System (RS) Approach, the Reference Point (RP) Approach and the Full Multiplicative

Form (FMF).

The considered alternatives are ranked based on all three approaches and the final

ranking order and the final decision is made based on the theory of dominance. In other

words, the alternative with the highest number of appearances in the first positions on all

ranking lists is the best-ranked alternative.

The ratio system approach. In this approach, the overall importance of the alternative i

can be calculated as follows:

yi = y+
i − y−

i , (11)
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with:

y+
i =

∑

j∈�max

wj rij , and (12)

y−
i =

∑

j∈�min

wj rij , (13)

rij =
xij

√

∑n
i=1

x2

ij

, (14)

where: yi denotes the overall importance of the alternative i , obtained on the basis of all

the criteria; y+
i and y−

i denote the overall importance of the alternative i , obtained on the

basis of the benefit and cost criteria, respectively; rij denotes the normalized performance

of the alternative i with respect to the criterion j ; xij denotes the performance of the

alternative i to the criterion j ; �max and �min denote the sets of the benefit cost criteria,

respectively; i = 1,2, . . . ,m; m is the number of the alternatives, j = 1,2, . . . , n; n is the

number of the criteria.

In this approach, the compared alternatives are ranked based on yi in descending order

and the alternative with the highest value of yi is considered to be the best-ranked.

The reference point approach. The optimization based on this approach can be shown as

follows:

dmax

i = max
j

(

wj

∣

∣r∗
j − rij

∣

∣

)

, (15)

where: dmax

i denotes the maximum distance of the alternative i to the reference point and

r∗
j denotes the coordinate j of the reference point as follows:

r∗
j =







max
i

rij , j ∈ �max,

min
i

rij , j ∈ �min.
(16)

In this approach, the compared alternatives are ranked based on dmax

i in ascending order

and the alternative with the lowest value of dmax

i is considered the best-ranked.

The full multiplicative form. In the FMF, the overall utility of the alternative i can be

determined in the following manner:

ui =
ai

bi

, (17)

with:

ai =
∏

j∈�max

wj rij , (18)
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bi =
∏

j∈�min

wj rij , (19)

where: ui denotes the overall utility of the alternative i , ai denotes the product of the

weighted performance ratings of the benefit criteria and bi denotes the product of the

weighted performance ratings of the cost criteria of the alternative i .

As in the RSA, the compared alternatives are ranked based on their ui in descending

order and the alternative with the highest value of ui is considered the best-ranked.

The final ranking of alternatives based on the MULTIMOORA method. As a result of

evaluation by applying the MULTIMOORA method, three ranking lists of the considered

alternatives are obtained. Based on Brauers and Zavadskas (2011), the final ranking order

of the alternatives is determined based on the theory of dominance.

4. An Extension of the MULTIMOORA Method Based on Single Valued

Neutrosophic Numbers

For an MCDM problem involving m alternatives and n criteria, whereby the performances

of the alternatives are expressed by using SVNS, the calculation procedure of the extended

MULTIMOORA method can be expressed as follows:

Step 1. Determine the ranking order of the alternatives based on the RS approach.

The ranking of the alternatives and the selection of the best one based on this ap-

proach in the proposed extension of the MULTIMOORA method can be expressed

through the following sub steps:

Step 1.1. Calculate Y+
i and Y−

i by using the SVNWA operator, as follows:

Y+
i =

(

1 −
∏

j∈�max

(1 − tj )
wj ,

∏

j∈�max

(ij )
wj ,

∏

j∈�max

(fj )
wj

)

, (20)

Y−
i =

(

1 −
∏

j∈�min

(1 − tj )
wj ,

∏

j∈�min

(ij )
wj ,

∏

j∈�min

(fj )
wj

)

, (21)

where: Y+
i and Y−

i denote the importance of the alternative i obtained based on the

benefit and cost criteria, respectively; Y+
i and Y−

i are SVNNs.

Step 1.2. Calculate y+
i and y−

i by using the Score Function, as follows:

y+
i = s

(

Y+
i

)

, (22)

y−
i = s

(

Y−
i

)

. (23)

Step 1.3. Calculate the overall importance for each alternative, as follows:

yi = y+
i − y−

i . (24)
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Step 1.4. Rank the alternatives and select the best one. The ranking of the alterna-

tives can be performed in the same way as in the RS approach of the ordinary

MULTIMOORA method.

Step 2. Determine the ranking order of the alternatives based on the RP approach.

The ranking of the alternatives and the selection of the best one, based on the RP

approach, can be expressed through the following substeps:

Step 2.1. Determine the reference point. In this approach, each coordinate of the refer-

ence point r∗ = {r∗
1
, r∗

2
, . . . , r∗

n } is an SVNN, r∗
j = 〈t∗j , i∗j , f ∗

j 〉, whose values are

determined as follows:

r∗
j =







〈

max
i

tij ,min
i

iij ,min
i

fij

〉

, j ∈ �max,
〈

min
i

tij ,min
i

iij ,max
i

fij

〉

, j ∈ �min,
(25)

where: r∗
j denotes the coordinate j of the reference point.

For the sake of simplicity, r∗
j could be determined as follows:

r∗
j =

{

〈1,0,0〉, j ∈ �max,

〈0,0,1〉, j ∈ �min.
(25a)

Step 2.2. Determine the maximum distance from each alternative to all the coordinates

of the reference point as follows:

dmax

ij = dmax

(

rij , r∗
j

)

wj , (26)

where dmax

ij denotes the maximum distance of the alternative i obtained based on

the criterion j determined by Eq. (8).

Step 2.3. Determine the maximum distance of each alternative, as follows:

dmax

i = max
j

dmax

ij . (27)

Step 2.4. Rank the alternatives and select the best one. At this step, the ranking of

the alternatives can be done in the same way as in the RPA of the ordinary

MULTIMOORA method.

Step 3. Determine the ranking order of the alternatives and select the best one based

on the FMF. The ranking of the alternatives and the selection of the best one can

be expressed through the following sub steps:

Step 3.1. Calculate Ai and Bi as follows:

Ai =

(

∏

j∈�max

(tj )
wj ,1 −

∏

j∈�max

(1 − ij )
wj ,1 −

∏

j∈�max

(1 − fj )
wj

)

, (28)

Bi =

(

∏

j∈�min

(tj )
wj ,1 −

∏

j∈�min

(1 − ij )
wj ,1 −

∏

j∈�min

(1 − fj )
wj

)

, (29)

where: Ai = 〈tAi, iAi , fAi〉 and Bi = 〈tBi , iBi , fBi〉 are SVNNs.
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Step 3.2. Calculate ai and bi by using the Score Function as follows:

ai = s(Ai), (30)

bi = s(Bi). (31)

Step 3.3. Determine the overall utility for each alternative as follows:

ui =
ai

bi

. (32)

Sep 3.4. Rank the alternatives and select the best one. The ranking of the alternatives

can be performed in the same way as in the FMF of the ordinary MULTIMOORA

method.

Step 4. Determine the final ranking order of the alternatives. The final ranking order

of the alternatives can be determined as in the case of the ordinary MULTIMOORA

method, i.e. based on the dominance theory.

5. A Numerical Example

In order to demonstrate the applicability and efficiency of the proposed approach, an ex-

ample has been adopted from Stanujkic et al. (2015). In order to briefly demonstrate the

advantages of the proposed methodology, this example has been slightly modified.

Suppose that a mining and smelting company has to build a new flotation plant, for

which reason an expert has been engaged to evaluate the three Comminution Circuit De-

signs (CCDs) listed below:

– A1, the CCDs based on the combined use of rod mills and ball mills;

– A2, the CCDs based on the use of ball mills; and

– A3, the CCDs based on the use of semi-autogenous mills.

For the purpose of conducting an evaluation, the following criteria have been chosen:

– C1, Grinding efficiency;

– C2, Economic efficiency;

– C3, Technological reliability;

– C4, Capital investment costs; and

– C5, Environmental impact.

The ratings obtained from the expert are shown in Table 1.

The ranking based on the RS approach. The ranking results and the ranking order of

the alternatives obtained based on the RS approach, i.e. by applying Eqs. (19) to (23), are

accounted for in Table 2.

The ranking based on the RPA. The ranking of the alternatives based on the RP approach

begins by determining the reference point, as it is shown in Table 3.
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Table 1

The ratings of the three generic CCDs obtained from an expert.

C1 C2 C3 C4 C5

A1 〈0.9,0.1,0.2〉 〈0.7,0.2,0.3〉 〈0.9,0.1,0.2〉 〈0.9,0.1,0.2〉 〈0.9,0.1,0.2〉

A2 〈0.8,0.1,0.3〉 〈0.8,0.1,0.3〉 〈0.8,0.1,0.3〉 〈0.9,0.1,0.2〉 〈0.8,0.1,0.3〉

A3 〈1.0,0.1,0.3〉 〈0.9,0.1,0.2〉 〈0.9,0.1,0.2〉 〈0.7,0.2,0.5〉 〈0.7,0.2,0.3〉

Table 2

The ranking orders of the alternatives obtained on the basis of the RS approach.

Y
+
i Y

−
i y

+
i y

−
i yi Rank

A1 〈0.73,0.25,0.38〉 〈0.55,0.45,0.57〉 0.425 0.045 0.380 2

A2 〈0.65,0.22,0.46〉 〈0.51,0.45,0.60〉 0.372 0.006 0.366 3

A3 〈1.0,0.22,0.39〉 〈0.34,0.57,0.73〉 0.583 −0.263 0.845 1

Table 3

The reference point.

C1 C2 C3 C4 C5

r∗
j

〈1.0,0.1,0.3〉 〈0.9,0.2,0.3〉 〈0.9,0.1,0.3〉 〈0.7,0.1,0.2〉 〈0.7,0.1,0.2〉

Table 4

The ranking order of the alternatives obtained based on the RP approach.

I II III IV V VI VII VI

r∗
1

r∗
2

r∗
3

r∗
4

r∗
5

dmax

i
Rank

A1 0.02 0.03 0.00 0.00 0.00 0.034 1

A2 0.05 0.02 0.02 0.00 0.01 0.048 2

A3 0.00 0.00 0.00 0.06 0.01 0.063 3

Table 5

The ranking order of the alternatives obtained based on the FMF.

Ai Bi ai bi ui Rank

A1 〈0.89,0.25,0.15〉 〈0.96,0.45,0.08〉 0.618 0.498 1.242 3

A2 〈0.86,0.22,0.21〉 〈0.95,0.45,0.09〉 0.605 0.481 1.258 2

A3 〈0.96,0.22,0.16〉 〈0.88,0.57,0.18〉 0.674 0.283 2.379 1

The maximum distances from each alternative to the coordinate j of the reference

point obtained by using Eq. (25) and the maximum distance of each alternative obtained

by using Eq. (26) are presented in Table 4. The ranking order of the alternatives is also

presented in Table 4.

The ranking based on the FMF. The ranking results and the ranking order of the alter-

natives obtained on the basis of the FMF approach, i.e. by applying Eqs. (27) to (31), are

demonstrated in Table 5.
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Table 6

The final ranking order of the alternatives according

to the MULTIMOORA method.

RS RP FMF Rank

A1 2 1 3 3

A2 3 2 2 2

A3 1 3 1 1

The final ranking order of the alternatives which summarizes the three different ranks

provided by the respective parts of the MULTIMOORA method is shown in Table 6.

As it can be seen from Table 6, all three approaches, integrated in the MULTIMOORA,

have resulted in different ranking orders, for which reason the final ranking order is deter-

mined based on the dominance theory.

6. Conclusion

The MULTIMOORA method has been proven in solving different decision-making prob-

lems. In order to enable its application in the solving of a larger number of complex

decision-making problems, numerous extensions have been proposed for the MULTI-

MOORA method.

Compared to crisp, fuzzy, interval-valued and intuitionistic fuzzy numbers, the neu-

trosophic set provides significantly greater flexibility, which can be conducive to solving

decision-making problems associated with uncertainty, estimations and predictions.

Therefore, an extension of the MULTIMOORA method enabling the use of single

valued neutrosophic numbers is proposed in this paper.

The usability and efficiency of the proposed extension is presented in the example of

the comminution circuit design selection.

Finally, it should be noted that the proposed extension of the MULTIMOORA method

can be used for solving a much larger number of complex decision-making problems.

A number of real-world decision making problems which have to be solved is based on

the data acquired from respondents can be identified as one of the areas where the proposed

extension of the MULTIMOORA method can reach its advantages.
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