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Abstract. Similarity searching has become widely available in many on-line archives of multime-

dia data. Users accessing such systems look for data items similar to their specific query object and

typically refine results by re-running the search with a query from the results. We study this issue

and propose a mechanism of approximate kNN query evaluation that incorporates statistics of ac-

cessing index data partitions. Apart from the distance between database objects, it also considers the

prior query answers to prioritize index partitions containing frequently retrieved data, so evaluating

repetitive similar queries more efficiently. We verify this concept in a number of experiments.

Key words: kNN query, approximate search, query popularity, index structure, metric space.

1. Introduction

Content-based retrieval systems have become often applied to complement traditional re-

trieval systems. For example, photo stocks then provide a user with visually similar images

to a given one. If he or she is not satisfied with the result, they may browse the database by

issuing a new query by clicking on a previously returned image. This procedure exhibits

the property that many queries processed by the system are alike, so search algorithms

may optimize such repeated queries to save computational resources.

In general, the query efficiency is typically supported by various indexing structures,

storage layouts and disk caching/buffering techniques. So the number of disk I/Os needed

to answer a query is greatly reduced. However, handling more complex and unstructured

data requires extracting so-called descriptors as surrogate information used to organize

and query the data. The descriptors typically form high-dimensional spaces or even dis-

tance spaces where no implicit coordinate system is defined (Samet, 2006). The prob-

lem of dimensionality curse then often appears (Böhm et al., 2001). This typically leads

to visiting many data partitions by an indexing mechanism due to high overlaps among

them, whereas the useful information is obtained from few of them. Efficiency is then

improved by further filtering constraints and optimized node-splitting strategies in the in-

dexing structures (Skopal et al., 2005; Ciaccia et al., 1997) or by sacrificing precision
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in query results (approximate querying) (Amato et al., 2003; Houle and Sakuma, 2005;

Houle and Nett, 2015).

In this paper, we further study the issue of evaluating repeated queries and apply a gen-

eral technique to prioritize data partitions during query evaluation. This technique exploits

queries executed previously to gather necessary statistics, so the so-called popularity of

data partitions can be established and applied to prioritize access to the partitions. We

have proposed this technique in Antol and Dohnal (2016) and applied it to precise kNN

queries. Here, we elaborate on this concept more and reveal a connection between algo-

rithm parameters and data-set properties. Our findings are confirmed by experiments on

two different data-sets (CoPhIR, Batko et al., 2009 and Profiset, Budikova et al., 2011).

Additionally, we applied our concept to evaluation of approximate kNN queries. The con-

cept of popularity is commonly used in information retrieval for post-processing (ranking)

the candidate set retrieved from an index. We rather make popularity inherent part of the

search algorithm by warping the original distances, so it is applied during the searching

itself.

The paper is structured as follows. In the next section, we summarize related work.

Indexing and querying principles are concisely given in Section 3. Inefficiency in perfor-

mance of current indexes is presented in Section 4. The application of Inverted Cache

Index to approximate kNN query evaluation is described in Section 5 and its performance

in Section 6. Contributions of this paper and possible future extensions are summarized

in Section 7.

2. Related Work

The wide area of indexing structures for metric space is surveyed in Zezula et al. (2005),

Chávez et al. (2001). To process large data-sets, indexing structures are designed as disk-

oriented. Their data partitioning principles are typically based on (i) hierarchical clus-

tering (e.g. M-tree, Ciaccia et al., 1997), where each subtree is covered by a preselected

data object (pivot) and a covering radius; (ii) Voronoi partitioning (e.g. M-index, Novak

et al., 2011, PPP-Codes, Novak and Zezula, 2014), where subtrees are formed by assign-

ing objects to the closest pivot recursively; and (iii) precomputed distances (e.g. Linear

AESA, Vilar, 1995), where no explicit structure is built, but rather distances among data

objects are stored in a matrix.

Optimizations of query-evaluation algorithms are based on extending a hierarchical

structure with additional precomputed distances to strengthen filtering capabilities, e.g.

M∗-tree (Skopal and Hoksza, 2007), cutting local pivots (Oliveira et al., 2015); or on

exploiting large number of pivots in a very compact and reusable way, e.g. permutation

prefix index (Esuli, 2012). These techniques, however, do not analyse the stored data and

accesses to data partitions, but rather constrain the data partitions as much as possible.

Another way to make query evaluation much cheaper is to trade accuracy, i.e.

to apply approximate searching. Existing approaches use early-termination or relaxed-

branching strategies to stop searching prematurely, e.g. when the query result does im-

prove marginally. A recent approach called spatial approximation sample hierarchy (Houle
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and Sakuma, 2005) builds an approximated near-neighbour graph and does not exploit tri-

angle inequality at all. We remind the reader that triangle inequality as a property of metric

space is largely used to filter out irrelevant data partitions/objects. It was later improved

and combined with cover trees to design Rank Cover Tree (Houle and Nett, 2015).

Distance-Cache (Skopal et al., 2012) is a main-memory structure that collects infor-

mation from previous querying. It caches some distances computed between metric ob-

jects to help forming tighter lower- and upper-bounds on distances between newly arriving

queries and database objects. In this respect, it is applicable to any metric indexing struc-

ture, which is a resemblance with our approach.

With the advance of content-based retrieval, there are approaches to optimize a stream

of kNN queries. Snake table (Barrios et al., 2014) is a dynamically-built structure for op-

timizing all queries corresponding to one user session. It remembers results of all queries

processed so far and constructs a linear AESA to evaluate next queries more efficiently.

There are also approaches that intercept a collection of queries in regular intervals and

by grouping the queries by their similarity, the evaluation of some of them can be done

simultaneously. This is also partly done in the Snake table. A pure caching strategy of

similarity queries was proposed in Falchi et al. (2009). On the other hand, a combination

of query cache and index structure was proposed in Brisaboa et al. (2015). Its idea lies

in reusing as much work spent in scanning the cache as possible in traversing an index

structure. This is certainly advantageous if the query is not present in the cache. In princi-

ple, the list of clusters technique (Sadit Tellez and Chávez, 2012) is built using the query

objects only, which is analogous to the Snake table.

The Inverted Cache Index was recently proposed in Antol and Dohnal (2016). It takes

into account previously processed queries too, which is similar to some approaches pre-

sented above. However, such information is exploited to increment so-called “popularity”

of data partitions only. In this respect, no query object or answer is stored/cached there.

This paper builds on this idea, proposes a parameter setting tight closely to the data-set

indexed, and verifies it in approximate kNN query evaluation.

3. Indexing and Querying Metric Spaces

We assume data is modelled in a metric space, so indexing techniques exploit properties

of metric space to create a structure able to evaluate similarity queries efficiently.

3.1. Metric Space and Similarity Queries

A metric space M is defined as a pair (D, d) of a domain D representing data objects and

a pair-wise distance function d :D×D 7→R that satisfies:

∀x, y ∈D, d(x, y)> 0 non-negativity,

∀x, y ∈D, d(x, y)= d(y, x) symmetry,

∀x, y ∈D, x = y⇔ d(x, y)= 0 identity, and

∀x, y, z ∈D, d(x, z)6 d(x, y)+ d(y, z) triangle inequality.
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Fig. 1. Partitioning principle of M-tree.

The distance function is used to measure similarity between two objects. The shorter

the distance is, the more similar the objects are. Consequently, a similarity query can

be defined. There are many types of similarity queries (Deepak and Prasad, 2015) but

the range and k-nearest neighbour queries are the most important ones. The range query

R(q, r) specifies all database objects within the distance of r from the query object

q ∈ D. In particular, R(q, r) = {o|o ∈ X, d(q, o) 6 r}, where X ⊂ D is the database

to search in. In this paper, we primarily focus on k-nearest neighbour query since it is

more convenient for users. The user wants to retrieve k most similar objects to q without

the need to know details about the distance function d . Formally, kNN(q) = A, where

|A| = k ∧ ∀o ∈A, p ∈X−A, d(q, o)6 d(q,p).

3.2. Indexing and Query Evaluation

To organize a database to answer similarity queries efficiently, many indexing structures

have been proposed (Zezula et al., 2005). Their principles are twofold: (i) recursively ap-

plied data partitioning/clustering defined by a preselected data object called pivot and a

distance threshold, and (ii) effective object filtering using lower-bounds on distance be-

tween a database object and a query object. These principles have been firstly surveyed

in Chávez et al. (2001).

In this paper, we use the traditional index M-tree (Ciaccia et al., 1997) and a recent

technique M-index (Novak et al., 2011). Both of these structures create an internal hierar-

chy of nodes that partition the data space into many buckets – an elementary object stor-

age. Please refer to Figs. 1 and 2 for principles of their organization. M-tree organizes data

objects in compact clusters created in the bottom-up fashion, where each cluster is repre-

sented by a pair (p, rc) – a pivot and a covering radius, i.e. distance from the pivot to the

farthest object in the cluster. On the other hand, M-index applies Voronoi-like partition-

ing using a predefined set of pivots in the top-down way. In this case, clusters are formed
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Fig. 2. Partitioning principle of M-index.

by objects that have the cluster’s pivot as the closest one. On next levels, the objects are

reclustered using the other pivots, i.e. eliminating the pivot that formed the current cluster.

Buckets of both structures store objects in leaf nodes, as is exampled in the illustration.

So we use the terms leaf node and bucket interchangeably.

A kNN-query evaluation algorithm constructs a priority queue of nodes to access and

gradually improves a set of candidate objects forming the final query answer when the

algorithm finishes. The priority is defined in terms of a lower bound on distance between

the node and the query object. So a probability of node to contain relevant data objects is

estimated this way. In detail, the algorithm starts with inserting the root node of hierarchy.

Then it repeatedly pulls the head of priority queue until the queue is empty. The algorithm

terminates immediately, when the pulled head’s lower bound is greater than the distance

of current kth neighbour to the query object. If the pulled element represents a leaf node,

its corresponding bucket is accessed and all data objects stored there are checked against

the query, so query’s answer is updated. If it is a non-leaf node, all its children are inserted

into the queue with correct lower bounds estimated. M-tree defines the lower bound for a

node (p, rc) and a query object q as the distance d(q,p)− rc, where rc is the covering

radius forming a ball around the pivot p. For further details, we refer the reader to the

cited papers where additional M-tree’s node filtering principles as well as the M-index’s

approach, which is elaborate too, are described.

4. Effectiveness of Indexing and Approximate Searching

Interactivity of similarity queries is the main driving force to make content-based infor-

mation retrieval widely used (Lew et al., 2006). In the era of Big Data, near real-time exe-

cution of similarity queries over massive data collections is even more important, because

it allows various analytic tasks to be implemented (Beecks et al., 2011). In this section, we

present motivating arguments based on experience with a real-life content-based retrieval

system.
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(a) CoPhIR (b) Profiset

Fig. 3. Distribution of top-1000 unique queries ordered by their appearances.

4.1. Query Statistics

We gathered statistics of querying from two demonstration applications.2 The first one

organizes the well-known CoPhIR data-set (Batko et al., 2009) consisting of 100 million

images using global MPEG-7 descriptors. Whereas the second application searches in the

Profiset collection (Budikova et al., 2011) that consists of 20 million high-quality images

with rich and systematic annotations using descriptors from deep convolutional neural

networks (Caffe descriptors) (Jia et al., 2014).

Figure 3 shows absolute frequencies of individual top-1000 queries that were executed

during the applications’ life time. The demo on CoPhIR was launched in Nov. 2008, while

the demo on Profiset was made public in June 2015. These power-law like distributions

are attributed to the way of presenting an initial search to a new website visitor. In CoPhIR

demo, the users are initially provided with a similarity search to a query image randomly

picked from a set of 105 preselected images, so there is a high frequency of such queries. In

Profiset demo, the initial page contains 30 query images randomly selected from the whole

data-set, so any repetition is caused by bookmarking or sharing popular images. There are

few such queries only. Figure 4 depicts density of distances among the top-1000 queries,

so the reader may observe there are very similar query objects as well as distinct ones in

CoPhIR. This proves that the users were also browsing the data collection as was described

above. This phenomenon is almost negligible in Profiset, i.e. some similar queries are

present but not many. For reference, we also include distance density of the whole data-

sets depicted as solid curves in Fig. 4. To sum up, these two query sets form different

conditions for our proposal to cope with.

4.2. Indexing Structure Performance

The major drawback of indexing structures in metric spaces is the high amount of overlaps

among index substructures (data partitions), which is also supported by not very precise

estimation of lower bounds on distances between data objects and a query object. So the

2http://disa.fi.muni.cz/prototype-applications/image-search/.
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(a) CoPhIR (b) Profiset

Fig. 4. Density of distances among top-1000 query objects (dashed curve) and overall density of the data-set

(solid curve).

(a) M-tree 200 (b) M-index 200

(c) M-tree 2000 (d) M-index 2000

Fig. 5. Percentage of fully completed queries of 30NN for increasing number of accessed buckets on CoPhIR.

kNN-query evaluation algorithm often accesses a large portion of indexing structure’s

buckets to obtain precise answer to a query.

The selected indexing structure representatives were populated with 1 million data

objects from the CoPhIR data-set and 30NN queries for the top-1000 query objects were

evaluated. In Fig. 5, we present the percentage of fully completed queries while constrain-

ing the number of accessed buckets. We have tested two configurations for both M-tree

and M-index – the capacity of buckets was constrained to 200 and 2,000 objects to have

bushier and more compact structures. Table 1 summarizes information about them. To
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Table 1

Structure details of tested indexing techniques.

Indexing Data-set bckt cap. Total Avg bckt Hierarchy Internal

structure (objs) bckts occup. height node cap.

M-tree 200 CoPhIR 200 11 571 43.2% 4 50

M-tree 2000 CoPhIR 2 000 1 124 44.5% 3 100

M-tree 2000 Profiset 2 000 2 634 19.0% 3 100

M-index 200 CoPhIR 200 62 049 8.1% 8 N/D

M-index 2000 CoPhIR 2 000 10 943 4.6% 8 N/D

M-index 2000 Profiset 2 000 20 222 2.5% 6 N/D

this end, M-index’s building algorithm was initialized with 128 and 512 pivots picked at

random from the data-set and the maximum depth of M-index’s internal hierarchy was

limited to 8 and 6 for CoPhIR and Profiset, respectively. From the statistics, we can see

that M-tree can adapt to data distribution better than M-index and does not create very low

occupied buckets, so M-tree is a more compact data structure. However, the kNN evalua-

tion algorithm of M-index can access promising data partitions early, so curve depicting

percentage of fully completed queries is increasing more steeply.

The other aspect of indexing structures to study is efficiency, i.e. how many data parti-

tions are accessed to complete a 30NN query. In Fig. 6, we present the number of visits of

individual buckets for M-tree and M-index structures after evaluating all top-1000 queries

on CoPhIR and Profiset. In particular, we depict visited buckets for precise and approxi-

mate 30NN query evaluation with “O” and “X”, respectively. The curve denoted with “+”

corresponds to the buckets that contained at least one data object returned in the precise

answer. Thus, it forms the minimal requirements to evaluate the queries. The approximate

evaluation was terminated after visiting 303 buckets of M-tree (27.5%) and 254 buckets

of M-index (2.3%) for CoPhIR, and 1 714 buckets of M-tree (65.9%) and 779 buckets of

M-index (3.8%) for Profiset data-set. These thresholds were selected to correspond to the

number of visited buckets that contains complete answer of 70% queries. The average pre-

cision of approximate queries is 97.5%, for both M-tree and M-index. From the figure, we

can see very large inefficiency in navigating to buckets containing relevant data and termi-

nating the search when precise answer is found, i.e. very loose estimated lower bounds on

distance between the query object and a data partition. Even though approximate evalua-

tion provides large performance boost, there is still a large number of buckets that do not

need to be accessed at all (more than 90%). Once again, the advantage of M-index over

M-tree is in navigating to relevant buckets earlier.

5. Popularity-Based Approximate Query Evaluation

In this section, we describe a technique for prioritizing nodes of indexing hierarchies to

locate relevant data objects earlier during kNN query evaluation. This technique is based

on accumulating frequencies of accessing individual data partitions to re-order its prior-

ity queue during a query evaluation. We call this technique Inverted Cache Index (ICI).
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(a) M-tree 2000, CoPhIR (b) M-index 2000, CoPhIR

(c) M-tree 2000, Profiset (d) M-index 2000, Profiset

Fig. 6. Absolute frequency of visiting a bucket after evaluation of all queries on CoPhIR and Profiset data-sets. The x-axis displays buckets sorted by frequency descendingly,

so different curves imply different ordering. The y-axis is in log scale.
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It does not record the queries processed so far, but rather the number of times a given

partition/bucket (or even data object) contributed to the final result of such queries. This

technique was originally proposed in Antol and Dohnal (2016). In this article, we further

study its properties and parameter settings and, more importantly, apply it to approximate

kNN queries.

ICI requires any underlaying indexing structure to be extended with one counter per

bucket. This counter accumulates the number of times the bucket contributed to the fi-

nal query answer. If an indexing structure is hierarchical, this is applied also in internal

“nodes”. In particular, we apply the variant called object ratio (Antol and Dohnal, 2016).

This ICI counter is then used to stretch/extend the original metric distance between the

bucket’s or node’s representative (p – pivot) and a query (q) as follows:

dICI =
d(q,p) ·

(( d(q,p)
dnorm

)pwr
+ 1

)

logbase(ICI + base)
(1)

where dICI denotes the modified distance and dnorm is the normalization distance. The

parameter base is fixed to 10 and the parameter pwr is set to 2 for M-tree and 5 for M-index,

which is recommended in Antol and Dohnal (2016). The normalization distance controls

the point where the “attraction” force turns into the “repulsive” force to push irrelevant

data partitions away. It may be set to any value up to the maximum distance of the data-set,

which is 10 in CoPhIR and 200 in Profiset.

Since approximate query evaluation allows some imprecision in the final answer, we

do not take the whole answer to update ICI counters. In particular, we focus on a portion

of the closest objects only, corresponding to the expected result precision. The amount of

them is a parameter of Algorithm 1 as well as the maximum number of visited buckets.

6. Experiments

In this section, we provide an extensive experimental comparison of ICI-optimized pre-

cise and approximate kNN query evaluation with standard (non-ICI) algorithms. Two

different data-sets are used through the experiments. First, a 1-million-object subset of

CoPhIR data-set is used. Each object is formed by five MPEG-7 global descriptors (282

dimensional vector in total) and the distance function is a weighted sum of L1 and L2

metrics (Batko et al., 2009). Second, a 1-million-object subset of Profimedia data-set is

picked (Budikova et al., 2011). Here, Caffe descriptors (4 096 dimensional vectors) are

used (Jia et al., 2014). The metric is Euclidean distance.

6.1. Different Query Ordering Strategies

The first group of experiments focuses on determining the best setting of dICI distance

measure. We used M-tree with leaf node capacity fixed to 200 only and the other param-

eters fixed to log base 10 and to power of 2. We studied the progress of fully completed

queries at particular number of accessed nodes (buckets). The results are depicted in Fig. 7,

where the following approaches were compared:
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Algorithm 1 Approximate kNN query evaluation with ICI.

Input: a query Q = k-NN(q); an indexing structure hierarchy root; maximum visited

buckets bktmax; expected query precision precexp ∈ [0;1).

Output: List of objects satisfying the query in Q.res.

Q.res←∅ {init query result}

PQ←{(root,0)} {init priority queue with root and zero as the lower bound}

bktread← 0 {clear counter of visited buckets}

while PQ is not empty and bktread < bktmax do

e← PQ.poll {get the first element from the priority queue}

if Q.res[k].distance > e.lowerBound then

break {terminate if e cannot contain objects closer than kth neighbour}

end if

for all a ∈ e.children {check all children nodes} do

if a is leaf then

update Q with a.objects; increment bktread

break if bktread > bktmax {early termination}

else

n.lowerBound← get estimate of lower-bound on distance between a and Q

{e.g. M-tree’s original alg. uses (d(Q.q, a.pivot)− a.radius) here}

n.distICI← apply dICI on original distance between node’s pivot and Q.q

n.children← set of children of a

insert n into PQ

end if

end for

sort PQ by dICI of each PQ’s element

end while

for all o ∈Q.res {increment ICI of bucket and its all parental nodes} do

increment ICI of o.leaf and its parents

break if objects checked = |Q.res| · precexp

end for

return Q.res

original – M-tree’s algorithm for precise kNN evaluation (search queue ordered by lower-

bound distance = (d(q,pivot)− rcovering);

qdg – the proposed ICI-ordered queue, where ICI counter is updated for unique queries

only;

qdg-freq – the same as “qdg”, but incrementing ICI counters for all processed queries

(including repeated queries).

The results show that the concept of ICI is valid as the percentage of completed queries

rises faster than the original queue ordering based on lower bounds on distance. So the

ordering that exploits the real distance between the query object and a pivot (node’s rep-

resentative) describes distribution of data objects in a node better, which is in compliance



12 M. Antol, V. Dohnal

Fig. 7. Percentage of fully completed queries for standard M-tree’s priority queue ordering and ICI-based or-

dering.

with the angle property defined by Pramanik et al. for node filtering (Pramanik et al.,

1999). The best results are exhibited by the ICI strategy with counters advanced for every

query executed, i.e. including repeated queries. We will examine this strategy thoroughly

in the following sections.

6.2. Precise kNN Evaluation

The second group of experiments focuses on precise kNN evaluation and impact of ICI in

M-tree’s and M-index’s algorithms. We tested M-tree and M-index with capacity of buck-

ets set to 2000 on both data collections. The test protocol is to take all queries processed

by a demo application in a longer period of time and to separate it into training (adapting)

and testing sub-sets.

For CoPhIR, we used traffic in the year of 2009 for counting the popularity and queries

processed in January, 2010 for performance verification. They consisted of 993 and 1000

query objects, respectively. About 10% queries are in both the sub-sets in common and

the remaining 90% are unique. For Profiset, the training set contained traffic from June,

2015 to February, 2016, whereas the testing one consisted of 6-week traffic following the

training period. All tests were performed to evaluate precise 30NN queries.

Figure 8 depicts the total percentage of completed queries while the evaluation pro-

gresses in terms of accessed buckets. We can observe that ICI can optimize performance

substantially for M-tree, because M-tree visits large portion of all buckets to complete all

queries (up to 80%). M-index is much more efficient in the lookup of relevant data parti-

tions (about 30% of all buckets) and ICI-base ordering becomes better when at least 85%

queries get completed on CoPhIR. Tables 2 and 3 list exact numbers of performance. We

can conclude that ICI-optimized queue ordering is able to make more than 20% perfor-

mance gain for 95% queries completed.

6.3. Evolution of Performance on Monthly Basis

In the previous trials, the period of gathering ICI statistics was long and we focused on

viability of it only. Here, we study the performance while sliding the training and testing
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(a) M-tree 2000, CoPhIR (b) M-index 2000, CoPhIR

(c) M-tree 2000, Profiset (d) M-index 2000, Profiset

Fig. 8. Influence of ICI on precise 30NN query evaluation.
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Table 2

Improvement in query costs of precise 30NN for CoPhIR.

CoPhIR 50% queries completed 95% queries completed

Indexing Log-pwr Orig. nodes Nodes Total Orig. nodes Nodes Total

structure setup needed needed improvement needed needed improvement

M-tree 10-2 201 153 23.9% 588 495 15.8%

M-tree 10-5 201 149 25.9% 588 476 19%

M-index 10-2 89 125 −40.45% 1495 1009 32.5%

M-index 10-5 89 130 −20.2% 1495 948 36.6%

Table 3

Improvement in query costs of precise 30NN for Profiset.

Profiset 50% queries completed 95% queries completed

Indexing Log-pwr Orig. nodes Nodes Total Orig. nodes Nodes Total

structure setup needed needed improvement needed needed improvement

M-tree 10-2 1521 339 77.7% 2145 1401 34.7%

M-tree 10-5 1521 416 72.6% 2145 1652 23%

M-index 10-2 349 275 21.2% 3346 2460 26.5%

M-index 10-5 349 253 27.5% 3346 2656 20.6%

periods month by month. Since the Profiset demo application has been set up recently, we

conduct this experiment on CoPhIR data-set only. Precise kNN queries are tested again, so

the consistency of ICI’s impact through series of consequent time frames can be compared.

This also corresponds to the scenario closer to possible future applications, where the

statistics should be rolled over periodically.

For every run of experiments depicted in Fig. 9, three-month traffic was used as a train-

ing data-set. The testing phase on the following-month traffic is executed on two versions

of query evaluation algorithm: the original precise kNN and precise kNN with ICI-based

ordering. Graphs in the figure depict results of experiments for the thresholds of 50, 80

and 95% queries completed, i.e. the average number of buckets needed to answer 50, 80

and 95% queries completely. The experiments are repeated through 13 consecutive time

frames, covering more than a year of traffic. Every two consecutive months shared only

7% queries on average. In Table 4, there are numbers of training and testing queries in

individual time periods and their overlap.

Conducted experiments show us considerably uniform improvement achieved by ICI

over the original algorithm for precise kNN query. All experiments on M-tree display

improvement in query answering greater than 10%. Average improvement for threshold of

95% completed queries is 19.4%. As for M-index, similar results are obtained considering

the same threshold: average improvement of 19.2%. M-index’s original kNN algorithm

performs better for highly concentrated queries (answer is distributed in few buckets) –

M-index completed 50% queries by visiting up to 89 buckets, which is less than 1% of all

buckets. However, the other queries can be optimized by ICI ordering, where the overall

improvement varies around 10–15%.



P
o
p
u
la

rity-B
a
sed

R
a
n
kin

g
fo

r
F
a
st

A
p
p
ro

xim
a
te

kN
N

S
ea

rch
1
5

(a) M-tree 2000, absolute values (b) M-tree 2000, relative improvement

(c) M-index 2000, absolute values (d) M-index 2000, relative improvement

Fig. 9. Results of experiments on 13 consecutive months on CoPhIR. The green stripe emphasizes the improvement of ICI.
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Table 4

Amount of queries for every training and testing period with the percentage of mutually same queries.

Testing time span

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Number of testing queries

12,144 8,279 12,887 7,392 6,173 4,592 2,359 4,346 4,423 4,444 3,065 8,520

Number of training queries

62,994 75,138 80,650 33,310 28,558 26,452 18,157 13,124 11,297 11,128 13,213 11,932

Percentage of testing queries contained in the training ones

26.68 18.28 14.57 14.09 9.32 12.46 16.08 7.21 17.32 7.52 8.67 10.12

6.4. Approximate kNN Evaluation

One of the challenges associated with the usage of ICI is tuning its parameters as presented

in Eq. (1) in Section 5, namely: dnorm, pwr and base.

To make our method widely applicable, experiments in this section use values of these

parameters derived from statistics of queries, indexing structures and data-sets. As was

already mentioned, the parameter dnorm plays the role of a vanishing point, where two

data items should become irrelevant or dissimilar. Here, we set its value to the average

distance between a pair of objects in the data-set, which is 2.526 for CoPhIR and 85.84

for Profiset.

The parameter pwr specifies the relative impact of ICI in comparison with the original

distance. In particular, it must be interpreted in two ways: (i) if a data object or partition is

closer than dnorm, the higher the value of pwr is, the greater the influence of ICI is; (ii) if

a data object is further than dnorm, the higher the value of pwr is, the smaller the influence

of ICI is. The strength of pwr can be correlated to the data-set dimensionality – emphasis

on ICI or distance should be and is deduced from the intrinsic dimensionality (iDim) of

data (Chávez et al., 2001). For CoPhIR and Profiset data-sets, the value of iDim is 15 and

27, respectively.

Similarly to dnorm, base serves mainly a normalization purpose: to reduce logarith-

mically the impact of nodes and objects with overly-high values of ICI. As the value of

ICI corresponds to the number of queries processed, we deduce the value of base from

the average number of queries (or average value of ICI) per bucket. Due to the behaviour

of logarithmic function, some values are impractical or disallowed, so we should be con-

strained: base ∈ [5;15]. The values of base used here are:

• 15 for M-tree 2000 on CoPhIR (130 000 queries/1124 buckets = 115);

• 12 for M-index 2000 on CoPhIR (130 000 queries/10 943 buckets = 12);

• 5 for M-tree 2000 on Profiset (4059 queries/2634 buckets = 1.54);

• 5 for M-index 2000 on Profiset (4059 queries/20222 buckets = 0.20).

To verify such setting, we conducted a group of experiments on CoPhIR and Profiset

for approximate kNN query evaluation. The results are presented in Fig. 10. We picked

nine thresholds on the number of accessed buckets that correspond to the requirements of
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Fig. 10. Approximate kNN for varying limit on accessed buckets.
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Table 5

Improvement in query costs for kNN precision 90% and 95%.

First precision > 90% First precision > 95%

Structure, Original ICI buckets Speedup Original ICI buckets Speedup

data-set buckets needed needed buckets needed needed

M-tree, CoPhIR 141 107 24% 250 170 32%

M-index, CoPhIR 89 80 10% 180 140 22%

M-tree, Profiset 1200 <800 >30% 1400 <800 >40%

M-index, Profiset 200 160 20% 420 350 17%

Table 6

Improvement in precision for different amount of visited buckets.

First threshold > 90% First threshold > 95%

Structure, Original ICI Improvement Original ICI Improvement

data-set precision precision precision precision

M-tree, CoPhIR 90.3% 93.8% 3.5% 97.5% 98.7% 1.2%

M-index, CoPhIR 90.7% 92.6% 1.9% 97.5% 98.0% 0.5%

M-tree, Profiset 93.1% 99.8% 6.7% 96.8% 99.9% 3.1%

M-index, Profiset 94.1% 95.4% 1.3% 96.0% 97.0% 1.0%

index structures to complete 10, 20, 30, 50, 60, 70, 80, 90 and 95% queries precisely. The

exact limits on the number of accessed buckets are given as labels of x-axis.

Interpretation of the results obtained is twofold.

First, the difference between the approaches can be read horizontally, i.e. comparing

the number of accessed buckets within the same precision. It indicates the possibility to

lower the approximation threshold, which results into saving time to evaluate a kNN query.

Table 5 gives approximate results of such optimization for kNN precision 90% and 95%.

We can see that ICI is very competitive for all setups.

Second, it follows the vertical comparison of results, i.e. the change in precision within

the same amount of accessed buckets. Table 6 summarizes the values of precision obtained

for both the variants when the original approximation algorithm exceeded 90% and 95%

precision, respectively. This demonstrates improvement in precision when ICI is applied.

Finally, the reader shall remember that we increment ICI counters only for first few

objects in answer when queries are evaluated approximately. In Algorithm 1, ICI is in-

creased for buckets and their parents covering the portion corresponding to the expected

precision. The smaller the required precision is, the fewer buckets get their ICI increased.

For example, an estimated precision of 90% on 30NN leads to updating buckets contain-

ing the first 27 objects. This certainly requires more analysis, which we plan as the future

work.

7. Conclusion and Future Work

Building on the proposal called Inverted Cache Index (ICI), we presented further analysis

of its parameters and additional experimental trials on CoPhIR and Profiset data collec-
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tions. The results for precise kNN evaluation proved that recording previous accesses to

data partitions gives performance improvement. ICI is generally applicable to any data

structure and provides gains in tens of per cent in query response time, which directly

corresponds to the number of accessed data partitions.

The next contribution lies in approximate kNN query evaluation with ICI. We made a

proposal of setting the values of ICI parameters that is based on intrinsic dimensionality of

data, the number of data partitions created by an indexing structure to organize a data-set,

and amount of queries processed within a desired period of time. Though such a proposal

is initial, it provides consistently better results.

The outcome of this article motivates our future work that will focus on proposing an

automatic ICI parameter selection and its deep theoretical and experimental evaluation.

We will also investigate the possibility to adaptively swap between the original priority

query ordering and ICI-based ordering. Such a procedure might lead to improvement of

all queries, i.e. also the queries that are not similar to any previously executed.
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