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Abstract. Continuous query is a monitoring query issued by a moving object to keep the query
condition satisfied. In the continuous query, the safe-region method is preferable to reduce the load
for several requests on the server. A safe-region is a region in which the query result is unchanged,
and it is created and sent to the moving object with the query result. The moving object always
checks the current position in the region. When it leaves the region, it requests a new result to
the server. Safe-region generation methods have been eagerly discussed for simple query types,
including kNN, distance range, and RkNN queries. This paper challenges to generate the safe-region
for trip route planning queries (TRPQ). This type of query is very time consuming even for snap-shot
queries, and therefore, there are many restrictions on the safe-region generation methods in existing
studies. This paper first investigates the property of the safe-region on TRPQ, and then proposes two
types of efficient algorithms, the preceding rival addition (PRA) and the tardy rival addition (TRA)
algorithms. The former algorithm runs fast, however, it still requires long processing time when the
density of the data object is high. The latter algorithm is very fast independent of the density of
data objects, however, the safe-region generated by TRA becomes about 5% larger in the size of
generated safe-region. We evaluate the performance through intensive experiments.

Key words: safe-region, trip route planning queries, continuous trip route planning queries, road
network distance.

1. Introduction

Due to the rapid increase in the number of smart device users, efficient spatial queries for
location bases services (LBS) applications play an essential role. Suppose that a user is
driving a car (moving object: MO) using an LBS application in a strange city, and the user
wants to know the nearest gas station from a current location because of gas shortage. So,
the user sends a query to the LBS server and obtains the location of the nearest gas station.
However, when the MO ignores the result and keeps driving for the final destination, the
query result becomes invalid, and the user needs to repeat the similar query to the server.
If the distance or time span between repeated queries is short, the user will get the same
result with the previous query. On the other hand, if it is long, the user may overlook the
optimal result.

*Corresponding author.
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Fig. 1. An example of the safe-region for TRPQ.

To cope with this problem, the concept of the safe-region has been proposed. The safe-
region is a region where the query result is the same while the user is inside the region.
When the server receives a query request from an MO, it searches the result and creates
the safe-region in accordance with the query result, then sends back to the MO. The MO
continually checks the current position and whether it remains in the safe-region. If the
MO leaves the safe-region, it requests a new result (with the safe-region) to the server
again. This process is repeated while the user is interested in the query.

The concept of a safe-region has been introduced in earlier works Prabhakar et al.

(2002), targeting simple query types, including distance-range queries, kNN queries, and
RkNN queries. This paper proposes safe-region generation methods for continuous trip
route planning queries (CTRPQ). Though several types of trip planning queries have been
proposed as described in the next Section 2, these types of queries are very time consuming
even when they are invoked as snap-shot queries.

From the view of the processing time, the optimal sequenced route (OSR) query is the
simplest trip route planning query (Sharifzadeh et al., 2005). Given a current position q ,
a final destination d , and M sets of data points, an OSR query finds the minimum cost route
starting from q to d which passes through exactly one data point of each set of data points.
The visiting order among categories are uniquely specified in OSR queries. For example,
a gas station, a restaurant, and a movie theater are specified as visiting categories, the OSR
query finds the minimum cost route to visit selected one data point from each category
following the specified order. The cost of the trip can be measured by several criteria, for
example, the total length of a trip route, the total travelling time, and the total toll fees. In
the rest of this paper, we assume that the cost is measured by the total length of a trip route.
However, the concept of our proposed methods can be applied to other criteria. In general,
as we mentioned above, TRPQs need long processing time, and in existing works, they
have been proposed only for snap-shot queries.

In this paper, we propose the safe-region generation methods for CTRPQ. Figure 1
shows an example of the generated safe-region. In this example, before reaching the final
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destination d , three data points v1, v2, v3, selected from each category, are specified to
visit. The bold line shows the optimal trip route, and the unfilled circle marked area is
the generated safe-region. Even if a user veers from the optimal route, the route is still
optimal if the current position is in the safe-region. Therefore, the user will only need
to target the first visiting point (v1) on the route if the user is still in the safe-region.
By applying generated safe-regions to CTRPQ, the user does not need to send a new
query while the user stays inside the safe-region. Therefore, using safe-region reduces the
number of queries when the user veers from the query route. To the best of our knowledge,
the safe-region generation method for TRPQ was first proposed in Ohsawa et al. (2016).
This paper is the extended version of it.

The main contributions of this paper are as follows:

• three algorithms for safe-region generation in TRPQ are presented, and they are
evaluated through intensive experiments;
• a new OSR query algorithm that is insensitive to the densities of data point sets is

proposed;
• an on-the-fly road network distance materialization method is introduced for the

efficient trip route path lengths comparison.

The rest of the paper is organized as follows. Related work is described in Section 2. In
Section 3, snap-shot query methods for TRPQ are expressed. In Section 4, the first safe-
region (SR) in CTRPQ is defined, and a naive algorithm for the safe-region is described.
Two types of safe-region generation methods for CTRPQ are proposed in Section 5. Exper-
imental evaluations are shown in Section 6. Finally, this paper is concluded in Section 7.

2. Related Work

In this section, we present related works for three topics: variation of trip route planning
queries (TRPQ) queries, continuous queries, and the safe-region generation.

In existing works, several types of TRPQ algorithms have been proposed actively.
A trip planning querying (TPQ) was first proposed in Li et al. (2005). In their method, a
TPQ finds the shortest route from the starting point to the destination by visiting each data
point from specified data categories sets sequentially. The visiting order is not specified in
this query, and the minimum distance query (MDQ) algorithm, which gives the optimal
route adaptable to road network distance, was proposed. Due to the lack of any restriction
on the visiting order to data points categories, it requires processing time in proportion to
M!5M

i=1
N(Ci ) where M is the number of data point sets to be visited during the trip and

N(Ci ) is the number of data points in category Ci . Therefore, TPQ is practical when M

is small.
A similar approach called optimal sequenced route (OSR) queries was proposed by

Sharifzadeh et al. (2005). In OSR queries, the visiting order is uniquely specified, and the
processing time for OSR becomes obviously shorter than for the TPQ queries. Alterna-
tively, in Chen et al. (2008), they proposed a multi-rule partial sequenced route (MRPSR)
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query. In their query, the visiting order of data point categories is specified by a set of
rules, and the computational complexity lies between TPQ and OSR queries.

These types of queries require long processing time, and therefore, a precomputation
method was proposed by Sharifzadeh and Shahabi (2008) to shorten the processing time.
Their method based on an extension version of the Voronoi diagrams is called the addi-
tively weighted Voronoi diagram (AWVD). However, this method can be adaptable only
to a restricted version of a trip route planning query in which the final destination is not
specified, and the trip route is terminated at the data point belonging to the last visiting
category. For this reason, this method cannot be applied to our CTRPQ. Another problem
is that the visiting categories order must be determined when AWVD is constructed.

If the trip route can be optimized by the total travelling time, it is more convenient for
the user. Costa et al. (2015) proposed a method to optimize the route by the total travelling
time, and they also considered changes of traffic conditions. They supposed a condition
that the travelling time over an edge was time-dependent in OSR search.

In addition to snap-shot queries, continuous queries for moving objects have been ac-
tively researched since the year 2000. They can be classified into three main categories
based on (1) query types, (2) Euclidean distance or road network distance, and (3) mobility
of queries and data objects.

In the literature, varieties of continuous queries have been researched, consisting of
range queries (Gedik and Liu, 2004; Prabhakar et al., 2002), kNN query (Mouratidis et

al., 2006), reverse NN (RNN) queries (Bentis et al., 2006; Xia and Zhang, 2006), spatial
semi-join queries (Iwerks et al., 2004), path NN query (Chen et al., 2009), and skyline
query (Huang et al., 2012).

In continuous queries, researches have been mainly focused on Euclidean distance in
the pioneer studies. However, the movement of cars and humans are constrained on a road
network in practical scenarios. To the best of our knowledge, a continuous query method in
the road network distance was first proposed in Mouratidis et al. (2006). In their approach,
kNN objects are continuously monitored on road networks, where the distance between a
query and a data object is determined by the length of the shortest path connecting them.

Continuous queries are generally realized based on the client-server model, and the
task of a server is to continuously compute and update the result of each query according
to the location changes of the moving objects. Consequently, queries are repeated period-
ically or with a certain distance move. However, when the frequency of updates becomes
high, the load on the server becomes high.

To overcome overloads at the server side, the safe-region method was proposed in
Prabhakar et al. (2002). When a moving object issues a kNN or range query, the server
generates a safe-region in which the query result remains unchanged. By the time the
moving object leaves the safe-region, a new query result and the safe-region are requested
to the server.

Alternatively, an efficient and effective monitoring technique based on the concept of
a safe-region for range queries in road network distances was introduced in Cheema et al.

(2011). They also proposed safe-region generation method for continuous RkNN queries.
Although safe-region generation methods have been actively researched, these algorithms
were targeted to essentially simple query types.
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For TRPQ, Nutanong et al. proposed continuous detour query (CDQ) method, the sim-
plest type of TRPQ (Nutanong et al., 2012). However, their method can only be applicable
when the number of visiting data point categories is one. Additionally, their continuous
query aimed for the fast re-calculation of new query result, and their interest was not the
generation of the safe-region.

To the best of our knowledge, the first attempt of continuous trip route planning queries
was introduced in Ohsawa et al. (2016) which was our previous work for CTRPQ with the
objective to solve complex TRPQ queries. This paper is an extended version of the pre-
vious work. In the OSR query, the processing time in Htoo et al. (2012) method varies
drastically depending on the visiting order of the data point categories. This paper pro-
poses an algorithm insensitive to the distribution of data density. Moreover, this paper also
proposes an on-the-fly network distance materialization method which is suitable for the
safe-region generation.

3. Snap-Shot Query Methods for TRPQ

This section describes four types of snap-shot TRPQ algorithms. First, Section 3.1 defines
TRPQ and introduces an existing method applicable in road network distances. Section 3.2
describes a fast TRPQ algorithm based on a best first search. This algorithm is improved in
the average processing time. However, when the distribution densities of data object cate-
gories are substantially different from each other, the processing time is strongly affected
by the search order of categories. Section 3.3 proposes an algorithm to ease the effect.
The efficient safe-region generation algorithm proposed in Section 5.2 uses the TRPQ in
Euclidean distance. Therefore, Section 3.4 introduces a Euclidean distance based TRPQ
algorithm.

3.1. TRPQ and PNE Algorithm

Let Ci be a category of the data points to be visited, and S be a sequence of Ci to specify
the visiting order. That is, S = [C1,C2, . . . ,CM ], and here M is the length of S (M = |S|).
This type of TRPQ is called the optimal sequenced route (OSR) query. A TRPQ finds
the optimal trip route that gives the minimum trip cost. The cost is measured by various
criteria, for example, the total length of the trip route, the total travelling time, and the
total toll fees. In the rest of the paper, the cost is measured by the total length of the trip
route, however, another cost can directly be applicable.

Definition 1 (Trip route planning query). Given M categories of data point sets Ci

(1 6 i 6 M), a current position q , and a final destination d , the trip route planning query
(TRPQ) answers the minimum cost route while visiting each data point pi selected from
Ci (pi ∈ Ci) during the trip from q to d . The trip route is denoted by R1..M (q, d). The
subscript [1..M] shows each data point to visit in order from category one to category M .
The trip route visiting from the first category is denoted by RM (q) for simplicity.
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Table 1
Notations.

Notation Meaning

M Number of categories to be visited
Ci Visiting data point set (i 6 ı 6M)
q Current position of the moving object
d Final destination of the trip
dE(x, y) Euclidean distance between x and y

dN (x, y) Network distance between x and y

RM (q) Optimal sequenced route starting at q, visiting M kinds of data,
then terminated at the final destination d

LM (q) Total trip route length of RM (q)

RE
M

(q) Optimal sequenced route searched in Euclidean distance

LE
M (q) Total trip route length of RE

M (q)

R2..M(p,d) Partial OSR starting from p, visiting each data point
from C2 to CM in order, and then terminated at d

L2..M(p,d) The total length of R2..M (p,d)

To simplify the explanation of the algorithm, we sometimes assume that the data point
is on a road-network node. However, this restriction can be easily relaxed (Papadias et al.,
2003).

Li et al. (2005) proposed MDQ algorithm for the trip route query in the road network
distance in which the visiting order is not specified. Sharifzadeh et al. (2005) proposed the
similar algorithm for OSR query called progressive neighbour exploration (PNE). Both
algorithms gradually expand the search area by a similar way in Dijkstra’s shortest path
algorithm. When a data point from the first visiting category C1 is found, the algorithm
starts a search targeting to a data point from the second visiting category (C2). In parallel,
the search is continued for the next nearest data point in the first category. Generally, when
a data point belonging to the data set Ck is found, the algorithm advances searching for
a data point in Ck+1, and also continues the search for the next nearest data point in Ck .
Repeating this process, the search is terminated when M types of data points are found
and the final destination point d is reached.

Table 1 summarizes notations which frequently appear in the rest of the paper.

3.2. TRPQ Applied A* Algorithm

The PNE algorithm needs long processing time, because the explored area in the road
network expands circular for all-directions from q . To shorten the processing time, Htoo
et al. (2012) proposed a new TRPQ method based on A* algorithm. Hereafter, we call
this algorithm OSRA.

Figure 2 shows the outline of OSRA. In this example, the search starts from q , and
then finds P 1

1
belonging to C1. From this data point, a new search targeting to a data point

in C2 starts. In parallel, the search started at q finds another data point in C1 in the same
way with PNE. A search path starting at q , visiting P 1

1
and P 2

1
eventually reaches a node

na in Fig. 2. We call this route a partial route and denote it as PR1..2(q,na). Generally,
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Fig. 2. Outline of trip route search by OSRA.

a partial route starting from a point p, visiting i types of data points, and reaching a node
n is shown as PR1..i(p,n), and the length as LPR1..i(p,n).

When a search reaches a network node na , all network nodes adjacent to na are ob-
tained by referring to the adjacency list, and the following record is composed for each
adjacent node (n). The records are then inserted into a heap H.

〈Cost,Ci ,L,n,na ,Pprev〉. (1)

Here, Ci is the next visiting data category, L is the partial route length, LPR1..i(q,n). Cost

is L+ dE(n, d), and the heap is ordered by Cost value. Pprev is the last-visited data point
that belongs to Ci−1. The reason of keeping already expanded node na is to restore the
trip route path by backtracking from n to q .

Repeating a deleteMin operation on H and the node expansion, the search area is
gradually enlarged. The search is terminated when n in the record extracted from H is
d (reaching the destination). Similarly in the Dijkstra’s algorithm and A* algorithm, once
de-heaped, a record is registered in a closed set (CS). Every time a node is de-heaped
from H, the node is checked whether it has already been included in CS, and the node is
expanded only when it has not been included in CS to avoid the duplicated node expansion.
In practice, CS is implemented by a hash table or a balanced binary tree. The difference of
records in CS and H in a shortest path search is that the record in CS is assigned keys by a
combination of the current node (n) and the previously visited data point Pprev, because a
node in the road network is referred multiple times when the previously visited data point
is different. For example, the search paths targeting to C1 started from q to find the data
points P 1

1
and P 2

1
which belong to C1, and then new searches targeting to C2 start from

both of them. These two searches are executed independently. Therefore, a node that has
been expanded by another search can be expanded again.

3.3. Sparse Category First Algorithm

The algorithm described in Section 3.2 runs fast when the distribution density of the data
points are similar among categories. Contrary, when they differ greatly, the processing
time is strongly affected by the visiting order of the data point categories.
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(a) (b)

(c) (d)

Fig. 3. Flow of sparse category first trip route search.

This problem has been pointed out by Ohsawa et al. (2012). When the distribution
densities of data points differ largely, the data point in the sparsest category must be deter-
mined first to shorten the processing time. Ohsawa et al. (2012) assumed that the densities
of the data point sets were known in advance. However, this assumption does not always
stand in real world applications. Therefore, this section proposes a method to investigate
the distribution density of the data points set during the TRPQ.

Figure 3 shows the flow of the proposed method. In this example, the query (starting)
point of the trip route search is q , the final destination of the trip is d . During the trip from
q to d , visiting three kinds of data points are �, ♦, ⋆, in this order.

This query is performed by the following steps.

Step 1: Search the shortest path connecting q and d by A* algorithm (Fig. 3(a)). This step
only finds the shortest path. After the shortest path has been found, the contents of
the heap (H) and the closed set (CS) are kept for the succedent steps.

Step 2: Continue the node expansion by A* algorithm to find data points in each cate-
gory (Fig. 3(b)). The expanded area grows larger, bounded by an ellipse whose focal
points are q and d . Every time a data point is found in the procedure, the category of
the found data point is marked as visited. Continue the above process until all cat-
egories are marked (at least one data point is found for all categories). Then, deter-
mine the last marked category Cl . Here, Cl can be considered the most sparsely dis-
tributed category around the shortest path connecting q and d . In Fig. 3(b), Cl is ⋆,
and the first found data point in Cl is a.

Step 3: The problem to find the trip route is divided into two sub-problems; one is to find
the partial route from q to a via l−1 data points selected each in Ci (1 6 i 6 l−1),
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and the other one is the route from a to d via M − l data points selected each in
Cj (l + 1 6 j 6 M). Then, merge two partial trip routes. As the result, the route
q→ x→ a→ y→ d is found (Fig. 3(c)). Let the total length of the path be T , and
the length be L. Notice that the route T is still not guaranteed as the shortest trip
route currently.

Step 4: Resume the node expansion described in Step 2, and continue it while the follow-
ing condition holds.

dN (q,n)+ dE(n, d)6 L.

During the node expansion, add the found data points belonging to Cl into a candi-
date data point set Cand.

Step 5: Search each trip route whose l-th visiting point is the element in Cand, in the
same manner as described in Step 3. Then, answer the shortest route among them
as the result. In Fig. 3(d), data point b is found in the node expansion, and it is added
into Cand. Then, the partial route from q to b, and b to d is searched, and the total
length is compared with T . The shortest one is answered as the result.

Lemma 1. The shortest trip route visits one of the data points in Cand as the l-th visiting

data point.

Proof. Proof by contradiction. Suppose that the shortest route path visits a data point p

( 6∈ Cand) as l-th data point. The total length of the partial route starting from q to p and
the partial route starting from p to d must be shorter than the first found trip route in
Step 3, therefore the following equation stands.

L1..l−1(q,p)+Ll+1..M(p, d) < L, (2)

L1..l−1(q,p) > dN (q,p) and Ll+1..M (p, d)> dN (p, d) stand, therefore,

dN (q,p)+ dN (p, d) > dN (q,p)+ dE(p, d). (3)

However, dN (q,p)+ dE(p, d) > L, because of the assumption that p is not included in
Cand. Therefore,

dN (q,p)+ dN (p, d) > L. (4)

This contradicts the assumption. �

3.4. Euclidean Distance Based TRPQ

TRPQ in Euclidean distance is considerably faster than in the road network distance. The
length of the trip route obtained in Euclidean distance gives the lower bound of it in the
road network distance. Ohsawa et al. (2012) proposed an efficient algorithm for TRPQ in
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Fig. 4. Safe region in CTRPQ.

Euclidean distance. R-tree is used as the spatial index to manage data points. The search
descends the R-tree downward by referring to the minimum bounding rectangles (MBRs)
in R-tree and creating routes. The search process is controlled by a heap, and the optimal
route is found when the heap becomes empty. This algorithm can find the trip route in two
or three orders of magnitude faster than the queries in road network distance. Therefore,
the trip route searched in Euclidean distance can be used for pruning the search space in
a road network.

4. Continuous Trip Route Planning Queries

In this section, the basic strategy of the safe-region (SR) in CTRPQ is presented in Sec-
tion 4.1, and then a naive algorithm to obtain the safe-region is proposed in Section 4.2.

4.1. Safe-Region for CTRPQ

On the continuous trip route planning query (CTRPQ), the current position of a mov-
ing object (MO) changes continually. Fig. 4 shows the outline of a safe-region (SR) in a
CTRPQ. When a moving object at q issues a query, the server searches the optimal trip
route (TR) and generates the SR, and then sends them to the moving object. In this exam-
ple, the optimal TR is the route visiting data points p1 and p2 in order (M = 2), selected
each from C1 and C2 respectively. The MO always checks whether it remains inside of the
SR, and when it leaves the SR, it requests a new optimal TR and the corresponding SR.
On the other hand, when the MO follows the route and reaches p1, belonging to the first
visiting data category on the optimal route, the MO issues a new query starting from p1

and the visiting category number is reduced to M−1 (from C2 to CM ), and then obtains a
new SR. The procedure is repeated until the MO reaches the final visiting category (CM ).
After passing through the data point in the final category, SR generation is not necessary
anymore, because the problem is reduced to the shortest path search between the current
position and the destination, and the whole road network can be considered as an SR.

Definition 2 (Safe-region: SR). An SR is the collection of the road link segments on
which TRP queries issued at any point in the region give the same result. In other words,



Safe-Region Generation Methods for Continuous Trip Route Planning Queries 141

in the safe-region, RM (q) = RM(q ′), where q is the initial query point and q ′ is any
position in the SR.

Therefore, while the MO remains in the SR, no new query is necessary even if MO
veers from the first queried trip route. The SR of the trip route (TR) satisfies the following
properties.

Property 1. Let the first visiting data point on the TR searched from a point q be p1

(∈ C1). The first visiting data point searched from any other point (q ′) in the SR is identical

with p1.

Proof. The proof is by contradiction. If the first visiting point of the query from q ′ is p′
1

( 6= p1), the TR queried from q ′ becomes RM (q ′) ( 6=RM (q)). This result contradicts the
definition of the SR. Therefore, this property holds. �

Property 2. When a TR is given, the rest of the route after visiting the data point in the

first category (C1) is uniquely determined except for the case of plural TRs which give the

same length.

Proof. The queried TR is the optimal (the shortest) route. Therefore, if the first visiting
data point (p1) is given, the rest of the TR is uniquely determined. �

Therefore, to find the safe-region, it is enough to search the area on the road network
where the first visiting data point for the TRs is the same.

By Property 1, the first visiting data point is the same if TR is queried in the SR. Con-
trary, the first visiting data points are different on the TRs queried by two end points (net-
work nodes) of a network link across the SR border. In this case, the shortest TR queried
from a node included in the SR goes through p1 (∈C1), and the shortest TR queried from
the other node of the link goes through the other data point p′ (∈ C1). Hereafter, p′ is
called a rival object (RO). For example, in Fig. 4, data objects A, B, C, and D are rival
objects against p1.

Definition 3 (Minimal rival object set). Minimal rival object set is the set of necessary
and sufficient rival objects to form an SR.

4.2. Basic Algorithm for Safe-Region Generation

This section describes a naive algorithm to generate an SR.
Figure 5 shows the basis for the safe-region generation. In the figure, q is the current

position of an MO, d is the final destination, the thick line shows R2(q) where two kinds
of data points are visited from q before reaching d . By Property 2, the TR queried by
a point in the SR always passes through p1 as the first visiting point.

The SR to be generated is a region where the first visiting point on the TR is p1.
Therefore, the SR can be obtained by expanding the area starting from p1 and checking
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Fig. 5. Rival data object.

whether the first visiting point on the queried TR is p1 or not at each expanding node. This
area expansion is performed in the similar manner in the Dijkstra’s shortest path algorithm,
controlled by a minimum heap managing the records with the format 〈cst, n, ℓ〉. Here, n is
the current noticed node in the road network, cst is dN (p1, n), and ℓ is a road segment
where one edge is n and the other edge is already visited node by the node expansion. The
heap is sorted in ascending order by cst value. And the record, once obtained by the heap,
is added to the closed set (CS) to avoid duplicated checks.

When the de-heaped record from the heap is r , the TR starting from r.n (RM(r.n)) is
searched by the algorithm presented in Section 3.2 or 3.3. If the first visiting data point in
the TR is p1, the link r.ℓ is added into the SR. Then, the adjacent links to r.n are obtained
by the adjacency list, and the following procedure is done for each link. Let the link be ℓp ,
and the opposite end point of r.n be np . If ℓp has not been registered in CS, a new record
〈n.cst + |ℓp|, np, ℓp〉 is composed, and added into the heap. The above sequence of steps
is called the node expansion. On the other hand, when the first visiting data point in the
TR does not meet p1, the node is not further expanded because the node is not included
in the SR. However, even in this case, a part of the link (r.ℓ) can be included in the SR.
Therefore, if the query condition for a part of the link is satisfied, the part will be added
into the safe-region.

Generally, the SR is not given as a closed region in the similar way in the region
formed by Voronoi decomposition. For example, when data points in C1 are distributed
only around the centre of the road network, the TR will contain the same point as the
first visiting data point even if the query point is located far away. In such case, the SR
becomes large, and the processing time becomes very long, because the processing time
is proportional to the number of nodes contained in the SR. We can assume the moving
objects do not veer far away from the TR route. Therefore, in practical way, we set an
upper limit of the node number contained in the SR, and when the number is exceeded,
we terminate the expansion of the SR, and send the result SR to the moving object.

5. Safe-Region Generation Method for CTRPQ

This section proposes two efficient algorithms for safe-region generation. The first one
is the preceding rival addition algorithm, and the second one is the tardy rival addition
algorithm.
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Fig. 6. Minimal rival objects set.

5.1. Fundamental Strategy for Proposed Methods

If the minimal rival object set (MROS) is given in advance, the safe-region can be obtained
easily. In this case, the TR starting from each object r (∈RO), R2..M (r, d) can be searched
in advance. So, we also obtain L2..M (r, d) in advance.

Figure 6 shows an example of this assumption. The first visiting data object of the
queried TR is p where (p ∈ C1), and the SR is created around it. dp shows the length of
the trip route starting from p (L2..M (p, d)). Five data points from r1 to r5 are the rival
objects of p. As mentioned above, the length of the TR starting from each data object can
be calculated in advance. The SR can be created fast in this preparation.

As described in Section 4.2, the search area is gradually enlarged while the TR starting
from a network node n visits p as the first visiting point. This check can be done by
comparing the TR length starting from n and the first visiting point p with other rival
object as the first visiting point, using precomputed di . n is included in the SR while the
next inequality stands.

dN (p,n)+ dp 6 min
i

{

dN (ri, n)+ di)
}

. (5)

This method can avoid repetition of the time consuming TR queries, therefore, a fast SR
generation can be expected.

The main issue to consider is how to obtain minimal rival object set in advance. In the
rest of this section, two algorithms are presented to settle this problem.

5.2. Preceding Rival Addition Algorithm

We need to find enough ROs to affect the shape of the safe-region rapidly. When a TR is
searched in Euclidean distance, we can obtain the candidate of RO fast. The length of TR
in Euclidean distance gives the lower bound of TR searched in road network distance, i.e.
LM (q)>LE

M (q). Between the length of the TR starting p1 (∈C1) and a length of another
TR starting from p′

1
(∈ C1), the following property stands.
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Property 3. Let p1 be the first visiting point in a TR. When a network node n is included in

the safe-region of the TR, a data point p′
1

(∈C1) can be an RO if the following inequality

is satisfied.

L2:M (p1)+ 2dN (p1, n) > LE
M

(

p′
1

)

. (6)

Here, the sub-script 2..M shows a route starting from the second category to the M-th

category.

Proof. If the length of a TR passing through p′
1

is shorter than the TR passing through p1,
the following inequality stands.

L2:M (p1)+ dN (p1, n)> L2:M

(

p′
1

)

+ dN

(

p′
1
, n

)

. (7)

By triangle inequality,

dN

(

p′
1
, n

)

> dE

(

p′
1
,p1

)

− dN (p1, n). (8)

Then,

L2:M (p1)+ dN (p1, n) > L2:M

(

p′
1

)

+ dE

(

p′
1
,p1

)

− dN (p1, n)

> LE
M

(

p′
1

)

− dN (p1, n).

Therefore, the given inequality stands. �

The procedure described in Section 4.2 enlarges the search area gradually while the
first visiting data point is p1. To perform this, the time consuming TR query in road net-
work distance must be repeated at every node. Therefore, we contrive a method to shorten
the processing time to form an SR by reducing the number of the rival objects. By enlarg-
ing the SR, all possible rival objects that satisfy Property 3 are searched. For each rival
object (p′

1
∈ C1), the length of the TR (i.e. L2..M (p′

1
, d)) is obtained in advance. Under

this preparation, the shortest TR route starting from an expanding node n can be obtained
only by the shortest path search between n and each rival object.

Algorithm 1 shows the pseudocode of the algorithm described above. The parameter q

is the current position of the MO, d is the final destination of the trip, and M is the number
of categories to be visited. Besides these parameters, the procedure refers to R-tree indexes
managing each data point set (Ci ). They are referred to RTree[i] (1 6 i 6 M). The lines
from 2 to 4 initialize the heap H, the closed set CS, the result set of segments to be included
in the SR, and the set of the candidate rival objects RO.

The function initialize performs the following initialization steps.

(a) Find the optimal TR starting from q to d visiting M kinds of data points. This TR
visits p1 as the first visiting data point.
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Algorithm 1 PRA.

1: function PRA(q, d,M)
2: H ←∅

3: CS←∅

4: SR←∅,RO←∅

5: p1← initialize(q, d,M)
6: while H not empty do

7: r← H.deleteMin()
8: CS← CS ∪ r

9: AddCandidate(r,RO,p1)
10: minDist← minDistInSet(r,RO)
11: if minDist < r.d then

12: SR← SR ∪ clip(r.ℓ,minDist)

13: else

14: SR← SR∪ r.ℓ

15: end if

16: for all e ∈ getAdjacentLinks(r.n) do

17: if e.ℓ not visited then

18: H.enqueue(< r.d + |e.ℓ|, e.next, e.ℓ >)

19: end if

20: end for

21: end while

22: return SR
23: end function

(b) Put the following two records into H. Here, ℓ is the road link on which p1 exists.
a and b are the edges of ℓ. ℓa and ℓb are parts of ℓ divided at p1.

〈

L2:M(a)+ |ℓa|, a, ℓa

〉

,
〈

L2:M (b)+ |ℓb|, b, ℓb

〉

.

(c) Return the data point (p1).

While H is not empty, lines from 6 to 21 are repeated. At line 7, a record having
minimum d value is de-heaped from H, and the record is registered into CS at line 8.

In line 9, addCandidate searches TR in Euclidean distance from r.n while Eq. (6) is
satisfied, and then the first visiting object in the searched Euclidean TR is added into the
rival object set RO. In this search, p1 and found rival candidate objects are successively
removed from set C1 (this means that the found rival objects are removed from RTree[1]).

Line 10 calculates the distance from the current node r.n to each rival object and de-
termines the minimum distance among them. If the distance is smaller than r.d , it means
a route visiting the rival object is shorter than the route visiting p1, in other words, r.n

is not included in the SR. In this case, r.ℓ is divided into two segments, and the part TR
passing through p1 which is shorter than the rival object is added into SR (line 12). On
the other hand, if the route visiting p1 is shorter, the whole r.ℓ is added into SR (line 14).
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Algorithm 2 AddCandidate.

1: function addCandidate(r,RO,p1)
2: route← RE

M(p1, d)

3: next← route.p[1] ⊲ 1st visiting data point in route
4: while 2× r.d > route.length do

5: if next.p 6∈ RO then

6: next.d←R2..M (next.p, d)

7: RO← RO ∪ next

8: end if

9: RTree[1].delete(next.p)

10: route←RE
M (p1, d)

11: next← route.p[1]

12: end while

13: end function

Algorithm 3 minDistInSet.
1: function minDistInSet(r,RO)
2: minDist←∞

3: for all c ∈ RO do

4: dst← c.shortestPath(r.n)

5: if dst < minDist then

6: minDist← dst

7: end if

8: end for

9: return minDist

10: end function

In line 16, all links neighbouring to r.n are obtained by referring to the adjacency list.
Then new records are composed, and they are inserted into H.

Algorithm 2 shows AddCandidate, which obtains RO set incrementally. New objects,
which satisfy Eq. (6), are obtained and added into RO. TR in Euclidean distance, starting
from p1 and visiting M data points, is searched incrementally in line 2, and the first visiting
data point (∈C1) is assigned to the variable next. From line 4, a new rival object (next) is
searched, and while it satisfies Property 3, it is added into RO.

Algorithm 3 finds the shortest TR route to reach r.n among the rival objects. Each RO
(c) preserves the TR distance from the position to d . Therefore, the total TR distance from
a node n can be easily calculated by adding dN (n, c) to the preserved length L2..M (c, d).

5.3. Verification in Road Network Distance

In Algorithm 3, the road network distance between an expanding node (r.n) and a rival ob-
ject is calculated repeatedly, while the safe-region gradually enlarges (r.n is changed). For
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(a) (b)

Fig. 7. The efficiency in road network distance calculation.

this calculation, the existing pair-wise A* algorithm can be applied. Though, A* algorithm
is efficient enough to search the shortest path in the road network, the distance queries are
repeated multiple times. Therefore, we contrive a method for the distance calculation to
shorten the processing time. This is a type of on-the-fly network distance materialization
method.

Before presenting our method, we examine a conventional pair-wise A* algorithm.
When two points s and e on a road network are given, the road network distance dN (s, e)

between these two points are calculated by the A* algorithmas following. In the algorithm,
a heap (H) is used to retrieve the minimum cost record, and the record format in H is
〈c,n, d〉 where c is the cost (dN(s, n) + dE(n, e)), n is a current noticed road network
node, and d is the road network distance from s to the current node n (i.e. dN (s, n)). To
prevent duplicated processing, once de-heaped, a node is registered in a closed set (CS).

The heap (H) is initialized by the record 〈dE(s, e), s,0〉, then the repetition of the
following steps starts.

Step 1: De-heap a record (r) having the minimum c value from H.
Step 2: If r.n is already in CS, go to Step 1, else insert r into CS.
Step 3: If r.n= e, the path to e has been found, then return r.d value as the shortest path

length.
Step 4: Obtain adjacent nodes to r.n referring to the adjacency list. For each adjacent

node n, compose 〈dN (r.n,n) + r.d + dE(n, e), n, dN (r.n,n)+ r.d〉, then insert it
into H.

Lemma 2. Let s be a start point, r.n be a current node and r.d be a distance from s to

r.n. If a record r is included in a closed set CS, then r.d is the shortest distance from s

to r.n.

The proof of this lemma is shown in Htoo et al. (2013).
In Algorithm 3, the road network distance from r.n to a candidate object o is calculated.

To obtain the distance, the pair-wise A* algorithm can be applied. Figure 7(a) shows an
example of how to apply it. Here, � shows the nodes in H, and× shows the nodes in CS.

The positions of ROs (in this example s) are fixed, on the other hand, r.n moves around
the surrounding area of q . Figure 7(b) shows this situation. Nodes n1 ∼ n4 are the adjacent
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nodes of q . Following dN (o, q) searching, dN (o,n1) ∼ dN (o,n4) are requested. In this
situation, similar explorations on the network are repeated when we apply the pair-wise
A* algorithm.

This repetition can be efficient by reusing the contents of H and CS. According to
Lemma 2, the records in CS have dN (o,n) as d value in the record. Therefore, if a desti-
nation node is already in CS, dN (o,n) can be obtained to refer r.d .

When a destination is not in CS, proceed according to the following steps.

Step 1: Recalculate c value of the all records in H by

c= dN (o, r.n)+ dE(r.n,n).

Here, r.n is the n (node) in the record r .
Step 2: Resume the search procedure using recalculated H. Step(1) is executed only for

the nodes in the heap and no disk IO is necessary, therefore, the CPU time of this
step is short.

Figure 7(b) shows the status after the distance to n1–n4 have been obtained. As shown
in this figure, the number of nodes in CS and in H are considerably smaller than five times
of them in Fig. 7(a). The difference of the number of node expansion times is directly
proportional to the processing time.

5.4. Tardy Rival Addition Algorithm

In the PRA algorithm, the number of rival objects (RO) increased rapidly. Every time a
candidate RO (o) is found by Euclidean distance search, the TR from o visiting M − 1

categories must be determined in the road network distance. Therefore, the total process-
ing time increases in proportion to the number of the ROs. In addition to determining the
TR in the Euclidean distance, a found candidate RO must be removed from R-tree index
to perform the incremental search in the CTRPQ algorithms (see line 8 in Algorithm 2).
For this object deletion, R-tree index is needed to be copied into the main memory. When
a R-tree index is referred, a least recently used (LRU) buffer is used to improve the IO
response. Therefore, this deletion is performed inside the buffer region to avoid to soil
R-tree. To solve these problems, we propose the following approximated algorithm called
tardy rival addition (TRA) algorithm.

The principle of TRA is to find the candidate rival objects by nearest neighbour query
targeting to C1 object from the currently noticed node. The search area is gradually en-
larged as the same with the basic algorithm and the PRA. During the enlargement of the
SR area, the nearest neighbour object except p1 in C1 from the current noticed node is
searched. And then, the object is added into the RO set. In this method, the RO search can
be limited by the vicinity of the current node, therefore, the number of the ROs is apt to
be reduced.

On the other hand, this method can overlook the RO which makes an actual shape of
the SR. When enough ROs are not found, the size of the SR tends to be enlarged larger
than the actual size. However, by the result of the experiment, this enlargement is smaller
than a few percentage of the real SR size.
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Fig. 8. Safe-region generation by TRA.

Algorithm 4 AddCandidate for TRA.
1: function addCandidate(r,RO,p1)
2: next← NN(RTree[1], r.n,p1)

3: RO← RO∪ next

4: end function

Figure 8 shows a situation for the SR generation. In this figure, when node n1 and n2

are checked, the route passing through p1 is considered the shortest because the RO has
not been found, and then the expansion is continued. When node n4 is checked, the object
o1 is found as an RO by the NN search at n4, and also it is found that the TR length passing
through o1 is shorter than the TR passing through p1 at node n4. In this case, apparently
n4 is not included in the SR. However, n2 and n1 also have a possibility that these nodes
are not included in the SR, because o1 has not been in the RO set when they are checked.
Therefore, the check is needed to trace back along the path to reach n4. In this case, when
n2 is tested again, it is found that n2 is not included in the SR, and while testing on n1, it
is found that it is included in the SR. In this situation, the border of the SR is determined
on the link between n1 and n2. A defect of this method is that TRA does not guarantee to
find enough ROs to form an exact shape of the SR, because there can be a possibility of
the existence of ROs which have not been found yet.

In comparison with PRA, TRA does not need to remove the rival objects from the
R-tree, and thus the copy of the R-tree managing C1 is not necessary.

The flow of the procedure for the TRA is the same with PRA. The only difference is
in the function addCandidate. This algorithm is presented in Algorithm 4. The function
NN in line 2 returns the nearest neighbour in C1 but except p1.

6. Experimental Results

To evaluate the algorithms proposed in this paper, we conducted several experiments. The
algorithms were implemented by Java. In these experiments, we used a real road map
(167 km2) with road network nodes 16 284 and 24 914 links that cover an area of a city,
and generated data points sets with various densities. For example, the density of 0.001
means that a data point exists at every 1 000 road edges. The size of the area is not so
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Fig. 9. Shift the sparsest category visiting order.

large, however, this type of query is apt to be used by a user for a trip route search in an
unknown city, and hence the search area is restricted in a city.

Figure 9 shows results for the performance of the sparse category first OSR algorithm
presented in Section 3.3 and the OSRA. Figure 9(a) shows the processing time to search
TR visiting four kinds of data points, the density C1 is 0.001 and the rest (C2 ∼ C4) are
0.02. The horizontal axis shows the route length in kilometer (km). Figure 9(a) shows
the result in which the first visiting category is the sparsest. The sparse category first
algorithm (SCFA) requires longer processing time than OSRA. This is because SCFA
requires additional processing to determine the sparsest category.

In the rest of Fig.9(b)–(d) the sparsest category shifts to the second (b), to the third (c),
and to the last visited (d). According to the sparsest category visited later, the processing
time of OSRA becomes longer. Contrary, SCFA turns to be relatively faster than OSRA.

Figure 10 shows the average processing time of TR search. Figure 10(a) shows the
average processing time of the same experiment with Fig. 9, and Fig. 10(b) shows the
result that the density of dense category is 0.02 and its sparse category is 0.002. As shown
in this result, the processing time of OSRA increases according to the position of the
sparsest category. On the other hand, the processing time of SCFA does not affect the
visiting order of the sparsest category.

Figure 11 compares the processing time of the basic algorithm (BA), PRA, and TRA
when M = 3. In the rest of experiment, OSRA is used for TR search, because the density
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Fig. 10. Processing time vs. visiting order of the sparsest category.
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Fig. 12. Processing time for SR when M = 4.

of all data point sets is the same. The basic algorithm requires very long processing time
especially when the density of the data points is low. This is because when the density
is low, the size of the SR becomes larger, and according to the enlargement in size, the
number of repetitions to find TR in the road network distance becomes large. The process-
ing time becomes low in accordance with the density increase. Contrary, the processing
time of PRA increases when the density becomes high. This is because the number of the
candidate rival objects also increases when the density is high. Therefore, the execution
times of line 6 in Algorithm 2 increase, and this is dominant in PRA processing. TRA
shows stable and low processing time independent of the density distribution.

Figures 12 and 13 show the processing time when M = 4 and M = 5 respectively.
According to the increase of M , the processing time of all algorithms increases, however,
PRA and TRA keep remaining lower in the processing time than BA.

In a trip, after a MO has reached the first visiting data point, a new SR targeting to the
second visiting data point is generated. Figure 14 shows the processing time to generate
the second SR in a trip. In this figure, only PRA and TRA are compared, because BA needs
long processing time especially when the density of data points is low. The last number in
the legend shows M number. For example, PRA5 shows the result when M = 5, and the
value shows the processing time to generate the SR for the TR visiting the rest four data
points.
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7. Conclusion

This paper firstly discussed trip route query (targeting to OSR) algorithms in the road net-
work distances, and proposed an algorithm whose processing time is not sensitive to the
distribution of the density of data point sets. The processing time of OSR query usually in-
creases greatly when the distribution density of the last visiting data point set is sparse. To
cope with this problem, we proposed the sparse category first algorithm. Through exper-
imental evaluations, we demonstrated that the algorithm is insensitive to the distribution
of the data density.

Moreover, this paper proposed three types of safe-region generation algorithms for
continuous trip planning queries. The first one is the BA, it takes long processing time.
The PRA searches the rival objects in Euclidean distance, and then it compares the length
of the trip route between the target object and the rival objects. This algorithm outper-
forms the BA in processing time, however, it is apt to find many redundant rival objects
when the density of the data point is high. This characteristic causes long processing time
especially when the data point density of the first visiting data point category is high. The
last proposed algorithm is the TRA. This algorithm finds lesser rival objects than the PRA,
therefore the processing time is very short. However, the main issue of this algorithm is
that it gives about 5% larger than PRA in the safe-region size. This is because the TRA is
not guaranteed to find minimal rival objects. A countermeasure to this problem is future
works.
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