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Abstract. The 2-tuple linguistic computational model is an important tool to deal with linguistic

information. To extend the application of hesitant fuzzy linguistic term sets and avoid information

loss, this paper introduces hesitant fuzzy 2-tuple linguistic term sets that are expressed by using

several symbolic numbers in [0,1]. Considering the order relationship between hesitant fuzzy 2-

tuple linguistic term sets, measures of expected value and variance are defined. Meanwhile, several

induced generalized hesitant fuzzy 2-tuple linguistic aggregation operators are defined, by which

the comprehensive attribute values of alternatives can be obtained. Then, models for the optimal

weight vector on a decision maker set, on an attribute set and on their ordered sets are constructed,

respectively. Furthermore, an approach to multi-granularity group decision making with hesitant

fuzzy linguistic information is developed. Finally, an example is selected to illustrate the feasibility

and practicality of the proposed procedure.

Key words: group decision making; 2-tuple linguistic computational model; hesitant fuzzy

linguistic term set; aggregation operator.

1. Introduction

Since Zadeh (1975a, 1975b, 1975c) first introduced linguistic variables to cope with

qualitative information, linguistic variables have received considerable attention (Her-

rera et al., 1995, 2000; Herrera and Herrera-Viedma, 1997; Herrera and Martínez, 2000;

Liu, 2009; Xu, 2009) and have been applied in many fields, especially in decision making

(Alonso et al., 2013; Agell et al., 2012; Chen and Ben-Arieh, 2006; Delgado et al., 1993;

Degani and Bortolan, 1988; Herrera and Verdegay, 1993; Merigó et al., 2010; Tan et al.,

2011; Wang, 2013; Wang et al., 2015; Wei and Zhao, 2014). Later, researchers noted

that the linguistic variable only permits the decision maker to express his/her qualita-

tive individual information by using one linguistic term from the predefined linguistic

term set. This seems to be inadequate in some situations. For example, a decision maker

may think that the quality of a product is between ‘good’ and ‘very good’ rather than
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‘good’ or ‘very good’. Therefore, many group decision-making methods with uncertain

linguistic information are proposed (Jin et al., 2013; Liu et al., 2011; Park et al., 2011;

Xu, 2004, 2006a, 2006b; Zhang, 2013; Zhang and Guo, 2012). Furthermore, Wang and

Hao (2006) introduced the proportional linguistic 2-tuple variable that is expressed by two

consecutive linguistic terms and the possible proportions of these two linguistic terms. Ma

et al. (2007) developed a model to join different single terms in a new synthesized term by

using a fuzzy model and measures of consistency and determinacy. To reflect the mem-

bership and non-membership degrees of a given linguistic variable, Wang and Li (2009)

defined the concept of intuitionistic linguistic sets, which are expressed by a linguistic

term, a membership degree and a non-membership degree. Later, Liu (2013a, 2013b)

introduced several intuitionistic linguistic aggregation operators. In a similar way to intu-

itionistic linguistic sets (Wang and Li, 2009), Liu (2013a, 2013b) and Liu and Jin (2012)

proposed interval-valued intuitionistic uncertain linguistic sets that are denoted by an un-

certain linguistic variable, an interval membership and non-membership degrees. The au-

thors further defined several interval-valued intuitionistic uncertain linguistic aggregation

operators and researched their application in group decision making.

Very recently, Rodríguez et al. (2012) presented the concept of hesitant fuzzy linguis-

tic term sets (HFLTSs) that are denoted by several linguistic terms from the predefined

linguistic term set. Such a generalization further addresses the hesitancy and inconsis-

tency of the decision maker. Meanwhile, some properties of HFLTSs are discussed, and

the envelope of HFLTSs is defined. Later, Rodríguez et al. (2013) further developed an ap-

proach to group decision making with hesitant fuzzy linguistic preference relations, which

is based on the envelope of HFLTSs and the 2-tuple arithmetic mean operator (Herrera and

Martínez, 2000). After that, according to the preference relation on intervals (Wang et al.,

2005) and the defined non-dominance degree, the authors developed an approach to rank

the comprehensive attribute values. Liao et al. (2015) studied the correlation coefficients

of HFLTSs and discussed their application in decision making. Later, Wei et al. (2014)

analysed the issues of the method in Rodríguez et al. (2013) and studied the hesitant fuzzy

linguistic multi-criteria group decision-makingproblem. To compare HFLTSs, the authors

defined a possibility degree formula, which is based on the comparison of HFLTSs of the

same length. However, this method in fact results in a distinct HFLTS that contains more

linguistic terms. Furthermore, the comparison method is not in accordance with common

sense. For example, let H1 = {s3, s4, s5, s6} and H2 = {s2, s3, s4} be two HFLTSs on the

predefined linguistic term set S = {si , i = 1,2, . . . ,6}. To compare H1 and H2, the authors

added one linguistic term s̄2 into H1 and added two linguistic terms s̄5 and s̄6 into H2,

then it derives H ∗
1

= {s̄2, s3, s4, s5, s6} and H ∗
2

= {s2, s3, s4, s̄5, s̄6}, where s̄2 ∈ H1 and

s̄5, s̄6 ∈ H2. After that, the authors compared H ∗
1

and H ∗
2

to represent the relationship be-

tween H1 and H2. According to the defined possibility degree formula (Wei et al., 2014),

we have p(H1 > H2) = 0.8. However, when H1 and H2 are directly compared according

to the principle in Wei et al. (2014), we get p(H1 > H2) = 1/2 + 1/4 = 0.75. Further-

more, let H1 = {s1, s2, s3, s4} and H2 = {s2, s3}, then p(H1 > H2) = p(H2 > H1) = 0.5.

However, we usually conclude that H2 is better than H1 for the former has a smaller hesi-

tancy degree. Moreover, Wei et al. (2014) defined two hesitant fuzzy linguistic operators
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based on the convex combination of two linguistic terms (Delgado et al., 1993), which

may cause a loss of information by the use of the round operator (Herrera and Martínez,

2000). Liu and Rodríguez (2014) presented a method to transform a HFLTS into an associ-

ated trapezoidal fuzzy number called the fuzzy envelope and researched its application in

multi-attribute decision making. As Herrera and Martínez (2000) noted, linguistic compu-

tational model based on the associated membership function may also be loss of informa-

tion. Furthermore, Zhu and Xu (2014) discussed the hesitant fuzzy linguistic preference

relation by using the defined distant consistency index; Beg and Rashid (2013) developed

an approach to hesitant fuzzy linguistic multi-attribute decision making based on TOP-

SIS method, which assumes that all attributes have the same importance. Meng and Chen

(2015) defined a new distance measure on HFLTSs, which needn’t consider the number of

elements in a HFLTS. Then, the authors developed an approach to hesitant fuzzy linguistic

multi-granularity decision making based on distance measures.

At present, there are three main methods to process linguistic information: the mem-

bership function (Degani and Bortolan, 1988), the ordinal scale (Yager, 1981), and the

discrete fuzzy number (Massanet et al., 2014). It is worth noting that the linguistic sym-

bolic computational model based on the ordinal scale has received considerable atten-

tion for its adaptation and simplicity (Agell et al., 2012; Chen and Ben-Arieh, 2006;

Delgado et al., 1993; Yager, 1981; Zhu and Hipel, 2012). The 2-tuple linguistic com-

putational model (Herrera and Martínez, 2000) is one of the most important and popular

methods to express linguistic variables on the ordinal scale that contains a linguistic term

and a symbolic translation value. This model can avoid the loss of information. Since it

was first introduced by Herrera and Martínez (2000), several 2-tuple linguistic aggregation

operators are defined such as the induced 2-tuple linguistic generalized aggregation op-

erator (Merigó and Gil-Lafuente, 2013), the proportional 2-tuple geometric aggregation

operator (Xu et al., 2013) and the 2-tuple linguistic power aggregation operator (Xu and

Wang, 2011). Furthermore, Martínez and Herrera (2012) reviewed the current researches

for the 2-tuple linguistic computational model in detail.

To make HFLTSs (Rodríguez et al., 2012) more easy to use and to avoid the infor-

mation loss (Herrera and Martínez, 2000), this paper develops an approach to hesitant

fuzzy linguistic multi-granularity group decision making by using the 2-tuple linguistic

representation model, which can eliminate the problem in Wei et al. (2014). To do this,

the concept of hesitant fuzzy 2-tuple linguistic term sets (HFTLTSs) is introduced. Based

on measures of expected value and variance, an order relationship between HFTLTSs is

offered. Then, several induced generalized aggregation operators are defined, by which

the comprehensive attribute values can be obtained. Based on the defined similarity de-

gree of HFTLTSs, models for the optimal weight vector are built. Finally, an approach to

hesitant fuzzy linguistic multi-granularity group decision making with incomplete weight

formation and interactive characteristics is developed.

This paper is organized as follows: Section 2 introduces some basic concepts such as

2-tuple linguistic representation models, hesitant fuzzy linguistic term sets and hesitant

fuzzy 2-tuple linguistic term sets. Section 3 defines several induced generalized hesitant

fuzzy 2-tuple linguistic operators such as the induced generalized hesitant fuzzy 2-tuple
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linguistic hybrid weighted averaging (IG-HFTLHWA) operator and the induced general-

ized hesitant fuzzy 2-tuple linguistic hybrid Shapley averaging (IG-HFTLHSA) operator.

Meanwhile, several special cases are discussed. Section 4 first introduces a similarity de-

gree of HFTLTSs. Then, models for the optimal fuzzy vector on a decision maker set,

on an attribute set and on their ordered sets are built, respectively. Section 5 develops an

approach to multi-granularity hesitant fuzzy linguistic group decision making. Section 6

offers an illustrative example to show the concrete application of the developed procedure.

Conclusions are made in the last section.

2. Basic Concepts

2.1. 2-Tuple Linguistic Variables and Hesitant Fuzzy Linguistic Term Sets

As Zadeh (1975a, 1975b, 1975c) noted, in some situations, it is insufficient to express

fuzzy information by using quantitative variables. To deal with this issue, we usually use

qualitative variables: linguistic variables such as “unimportant”, “fair”, and “important”.

Let S = {si |i = 0,1, . . . , t} be a linguistic term set with odd cardinality. Any label

si represents a possible value for a linguistic variable and it should satisfy the following

characteristics (Herrera and Martínez, 2000): (i) The set is ordered: si > sj , if i > j ;

(ii) Max operator: max(si, sj ) = si , if si > sj ; (iii) Min operator: min(si , sj ) = si , if si 6

sj ; (iv) A negation operator: neg(si) = sj such that j = t − i .

For example, the linguistic term set S can be expressed by S = {s0: worst, s1: worse, s2:

bad, s3: fair, s4: good, s5: better, s6: best}.

Definition 1. (See Herrera and Martínez, 2000.) The symbolic translation is a numerical

value assessed in [0.5,0.5) that supports the difference of information between a counting

of information β assessed in the interval of granularity [0, t] of the predefined linguistic

term set S and the closest value in {0,1, . . . , t}, which indicates the index of the closest

linguistic term in S.

To improve the accuracy and facilitate the process of computing with words (CW),

Herrera and Martínez (2000) introduced the 2-tuple linguistic representation model that

consists of a pair of values, namely, (si , αi) ∈ S × [0.5,0.5) with si being a linguistic

term from the predefined linguistic term set S and αi being a symbolic translation value

in [0.5,0.5).

Definition 2. (See Herrera and Martínez, 2000.) Let S = {s0, s1, . . . , st } be a linguis-

tic term set, and β ∈ [0, t] be a real number representing the aggregation result of lin-

guistic symbolic, then the 2-tuple linguistic variable that expresses the equivalent infor-

mation to β is obtained by using the following function 1: 1 : [0, t] → S × [0.5,0.5),

1(β) = (si , αi) with

{

si , i = round(β)

αi = β − i, αi ∈ [−0.5,0.5),
where round(·) is the usual round

operation, si has the closest index label to β and αi is the value of the symbolic translation.
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Definition 3. (See Herrera and Martínez, 2000.) Let S = {s0, s1, . . . , st } be a linguistic

term set, and (si , αi) be a 2-tuple linguistic variable. There is always a function 1−1:

1−1 : S × [0.5,0.5) → [0, t],

1−1(si , αi) = i + αi = β.

In a similar way to Herrera and Martínez (2000), Chen and Tai (2005) introduced

another form of the 2-tuple linguistic representation model.

Definition 4. (See Chen and Tai, 2005.) Let S = {si |i = 0,1, . . . , t} be a linguistic term

set with odd cardinality, then any β ∈ [0,1] can be transformed into a 2-tuple linguistic

variable, denoted by 1(β) = (si , α) with

{

si , i = round(β · t),

α = β − i/t, α ∈ [−0.5/t,0.5/t).

Remark 1. From Definition 4, one can conclude that any 2-tuple linguistic variable (si , α)

can be converted into a crisp value β ∈ [0,1], denoted by 1−1(si, α) = i/t + α. Thus,

the model presented in Definition 4 restricts the value of β from [0, t] into [0,1]. This

representation model eliminates the cardinal influence of the linguistic term set and can

deal with multi-granularity linguistic group decision-making problems. For this reason,

this paper adopts the 2-tuple linguistic representation model shown in Definition 4.

Because of various reasons such as time pressure, the decision makers’ limited deci-

sion expertise about the problem domain, and the inconsistency and uncertainty of the

decision makers’ subjective judgements; it may be more suitable to express qualitative

information by using several linguistic terms. For this purpose, Rodríguez et al. (2012)

defined hesitant fuzzy linguistic term sets (HFLTSs) that permit the decision makers to

use several linguistic terms to represent qualitative information.

Definition 5. (See Rodríguez et al., 2012.) A HFLTS H is an ordered finite subset of

consecutive linguistic terms of S with S = {s0, s1, . . . , st } being a linguistic term set.

For example, let S = {s0: worst, s1: worse, s2: bad, s3: fair, s4: good, s5: better, s6:

best} be a linguistic term set, then the qualitative information Q could be expressed by

H(Q) = {s0, s1, s2, s3}.

2.2. Hesitant Fuzzy 2-Tuple Linguistic Term Sets

To avoid information loss during the calculation of HFLTSs, this section introduces the

concept of hesitant fuzzy 2-tuple linguistic term sets (HFTLTSs). It is worth noting that the

relationship between HFLTSs and HFTLTSs is similar to that between 2-tuple linguistic

variables and linguistic variables (Chen and Tai, 2005).

Definition 6. Let S = {si |i = 0,1, . . . , t} be a linguistic term set with odd cardinality.

A HFTLTS is composed of several linguistic terms and several numbers in [0.5/t,0.5/t),
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denoted by {(sl, αl)}l=i,i+1,...,j , where j 6 t , sl represents the linguistic label in S and αl is

the value of the symbolic translation. Any HFTLTS {(sl, αl)}l=i,i+1,...,j can be converted

into a real set {βi, βi+1, . . . , βj } with βl ∈ [0,1], l = i, i + 1, . . . , j , and βk 6 βk+1, k =

i, i + 1, . . . , j − 1, denoted by

1−1
({

(sl, αl)
}

l=i,i+1,...,j

)

= {l/t + αl}l=i,i+1,...,j = {βl}l=i,i+1,...,j . (1)

Equivalently, any real set A = {β1, β2, . . . , βp} with βr ∈ [0,1], r = 1,2, . . . , p, and

βk 6 βk+1, k = 1,2, . . . , p − 1, can be converted into a HFTLTS, expressed by

1(A) =
{

(sr , αr )
}

r=1,2,...,p
(2)

with

{

sr , r = round(βr · t), r = 1,2, . . . , p,

αr = βr − r/t, αr ∈ [−0.5/t,0.5/t), r = 1,2, . . . , p.

For example, let S = {si |i = 0,1, . . . ,6} be the predefined linguistic term set. Let

{(s1,0.033), (s2,0.042), (s3,0.005), (s4,0.021)} be a HFTLTS for S. According to the

equation (1), we derive

1−1
({

(s1,0.033), (s2,0.042), (s3,0.005), (s4,0.021)
})

= {0.1997,0.3753,0.505,0.6877}.

On the other hand, for the real number set A = {0.2,0.25,0.3,0.36}, using the equa-

tion (2), we have 1(A) = {(s1,0.033), (s2,0.083), (s2,0.027), (s2,0.067)}.

Remark 2. HFTLTSs are not new linguistic fuzzy variables. It is a linguistic computa-

tional model for HFLTSs. Because the decision maker usually applies the linguistic term

from the predefined linguistic term set to express his/her qualitative information, the value

of the symbolic translation is equal to zero. The situation that the symbolic translation is

not equal to zero only appears in the process of calculation.

To compare HFTLTSs, let us consider the concepts of expected value and variance on

HFLTSs.

Definition 7. Measure of expected value E on HFTLTSs, for any HFTLTS H =

{(sl, αl)}l=i,i+1,...,j on the predefined linguistic term set S, is defined by E(H) =
∑j

l=i
l/t+αl

j−i+1
, and measure of variance V on HFTLTSs, for the HFTLTS H , is defined

by V (H) =
∑j

l=i (
l/t+αl

j−i+1
− E(H))

2

with (sl, αl) = l/t + αl for each l = i, i + 1, . . . , j .

The order relationship, for any two HFTLTSs H and K on the predefined linguistic

term set S, is defined as follows:

If E(H) < E(K), then H < K .
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If E(H) = E(K), then

{

V (H) > V (K), H < K,

V (H) = V (K), H = K.

For example, let S = {si |i = 0,1, . . . ,6} be the predefined linguistic term set. Let H1 =

{(s2,0.04), (s3,0.05), (s4,0.03)} and H2 = {(s3,0.02), (s4,0.02)} be two HFTLTSs for

S. Then, their expected values are E(H1) = 0.54 and E(H2) = 0.603. According to the

above order relationship, we have H1 < H2. When H1 = {(s2,0.02), (s3,0.04), (s4,0.02),

(s5,0.00)}, we get E(H1) = 0.603. From V (H1) = 0.8269 and V (H2) = 0.1855, we de-

rive H1 < H2.

3. Several Hesitant Fuzzy 2-Tuple Linguistic Aggregation Operators

To obtain the comprehensive hesitant fuzzy linguistic attribute values, this section defines

several hesitant fuzzy 2-tuple linguistic aggregation operators.

3.1. Aggregation Operators based on Additive Measures

Definition 8. Let Hi (i = 1,2, . . . , n) be a collection of HFTLTSs on the predefined

linguistic term set S. The generalized hesitant fuzzy 2-tuple linguistic weighted aver-

aging (GHFTLWA) operator of dimension n is a mapping GHFTLWA: HFTLTSsn →

HFTLTSs, defined by

GHFTLWA(H1,H2, . . . ,Hn)

=

(

n
⊕

i=1

ωHi H
γ

i

)
1

γ

=
⋃

(sθ1
,αθ1

)∈H1,...,(sθn ,αθn )∈Hn

1

((

n
∑

i=1

ωHi 1
−1(sθi , αθi )

γ

)
1

γ
)

,

where γ ∈ R+, and ωHi is the weight of the HFTLTS Hi with ωHi > 0 and
∑n

i=1
ωHi = 1.

Next, let us consider several special cases of the GHFTLWA operator.

Remark 3. Let γ → 0
+, then the GHFTLWA operator reduces to the hesitant fuzzy 2-

tuple linguistic geometric mean (HFTLGM) operator

HFTLGM(H1,H2, . . . ,Hn)

=

n
∏

i=1

H
ωHi

i =
⋃

(sθ1
,αθ1

)∈H1,...,(sθn ,αθn )∈Hn

1

(

n
∏

i=1

1−1(sθi , αθi )
ωHi

)

,

Let γ = 1, then the GHFTLWA operator reduces to the hesitant fuzzy 2-tuple linguistic

weighted averaging (HFTLWA) operator

HFTLWA(H1,H2, . . . ,Hn)

=

n
⊕

i=1

ωHi Hi =
⋃

(sθ1
,αθ1

)∈H1,...,(sθn ,αθn )∈Hn

1

( n
∑

i=1

ωHi 1
−1(sθi , αθi )

)

.
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Let γ = 2, then the GHFTLWA operator reduces to the hesitant fuzzy 2-tuple linguistic

quadratic weighted averaging (HFTLQWA) operator

HFTLQWA(H1,H2, . . . ,Hn)

=

(

n
⊕

i=1

ωHi H
2

i

)
1

2

=
⋃

(sθ1
,αθ1

)∈H1,...,(sθn ,αθn )∈Hn

1

((

n
∑

i=1

ωHi 1
−1(sθi , αθi )

2

)
1

2
)

.

Let γ → +∞, then the GHFTLWA operator reduces to the Max operator

Max(H1,H2, . . . ,Hn) =
⋃

(sθ1
,αθ1

)∈H1,...,(sθn ,αθn )∈Hn

(

n
max
i=1

(sθi , αθi )
)

,

and let γ → −∞, then the GHFTLWA operator reduces to the Min operator

Min(H1,H2, . . . ,Hn) =
⋃

(sθ1
,αθ1

)∈H1,...,(sθn ,αθn )∈Hn

( n

min
i=1

(sθi , αθi )
)

.

Let γ = −1, then the GHFTLWA operator reduces to the hesitant fuzzy 2-tuple linguistic

harmonic mean (HFTLHM) operator

HFTLHM(H1,H2, . . . ,Hn)

=

(

n
⊕

i=1

ωHi

Hi

)−1

=
⋃

(sθ1
,αθ1

)∈H1,...,(sθn ,αθn )∈Hn

1

(

n
∑

i=1

ωHi

1−1(sθi , αθi )

)−1

.

In a similar way to the GHFTLWA operator, the induced generalized hesitant fuzzy

2-tuple linguistic ordered weighted averaging (IG-HFTLOWA) operator is defined as fol-

lows:

Definition 9. Let Hi(i = 1,2, . . . , n) be a collection of HFTLTSs on the predefined

linguistic term set S. The IG-HFTLOWA operator of dimension n is a mapping IG-

HFTLOWA: HFTLTSsn → HFTLTSs defined on the set of second arguments of two

tuples 〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉 with a set of order-inducing variables ui (i =

1,2, . . . , n), denoted by

IG-HFTLOWA
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

(

n
⊕

j=1

wjH
γ

(j)

)
1

γ

=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

((

n
∑

j=1

wj1
−1(sθ(j)

, αθ(j)
)γ

)
1

γ
)

,



Hesitant Fuzzy Group Decision Making 775

where γ ∈ R+, (·) is a permutation on ui (i = 1,2, . . . , n) such that u(j) is the j th largest

value of ui , and wj is the weight of the j th position with wj > 0 and
∑n

i=1
wj = 1.

Similar to the GHFTLWA operator, there are several special cases of the IG-

HFTLOWA operator.

Remark 4. Let γ → 0
+, then the IG-HFTLOWA operator reduces to the induced hesitant

fuzzy 2-tuple linguistic ordered geometric mean (I-HFTLOGM) operator

I-HFTLOGM
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

n
∏

j=1

H
wj

(j) =
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

(

n
∏

j=1

1−1(sθ(j)
, αθ(j)

)wj

)

.

Let γ = 1, then the IG-HFTLOWA operator reduces to the induced hesitant fuzzy 2-tuple

linguistic ordered weighted averaging (I-HFTLOWA) operator

I-HFTLOWA
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

n
⊕

j=1

wjH(j) =
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

(

n
∑

j=1

wj1
−1(sθ(j)

, αθ(j)
)

)

.

Let γ = 2, then the IG-HFTLOWA operator reduces to the induced hesitant fuzzy 2-tuple

linguistic quadratic ordered weighted averaging (I-HFTLQOWA) operator

I-HFTLQOWA
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

(

n
⊕

j=1

wjH
2

(j)

)
1

2

=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

((

n
∑

j=1

wj1
−1(sθ(j)

, αθ(j)
)2

)
1

2
)

.

Let γ = −1, then the IG-HFTLOWA operator reduces to the induced hesitant fuzzy

2-tuple linguistic ordered harmonic mean (I-HFTLOHM) operator

I-HFTLOHM
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

(

n
⊕

j=1

wj

H(j)

)−1

=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

(

n
∑

j=1

wj

1−1(sθ(j)
, αθ(j)

)

)−1

.

From Definitions 8 and 9, we know that the GHFTLWA operator only considers the im-

portance of the attributes, while the IG-HFTLOWA operator gives the importance of the
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ordered positions. To reflect these two aspects, we further introduce the induced general-

ized hesitant fuzzy 2-tuple linguistic hybridweighted averaging (IG-HFTLHWA) operator

as follows:

Definition 10. Let Hi (i = 1,2, . . . , n) be a collection of HFTLTSs on the predefined

linguistic term set S. The IG-HFTLHWA operator of dimension n is a mapping IG-

HFTLHWA: HFTLTSsn → HFTLTSs defined on the set of second arguments of two

tuples 〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉 with a set of order-inducing variables ui (i =

1,2, . . . , n), denoted by

IG-HFTLHWA
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

(

n
⊕

j=1

wj Ḣ
γ

(j)
∑n

j=1
wjω

γ

H(j)

)
1

γ

=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

((

n
∑

j=1

wj (ωH(j)
1−1(sθ(j)

, αθ(j)
))γ

∑n
j=1

wjω
γ
H(j)

)
1

γ
)

,

where γ ∈ R+, (·) is a permutation on ui (i = 1,2, . . . , n) such that u(j) is the j th largest

value of ui , and wj is the weight of the j th position with wj > 0 and
∑n

i=1
wj = 1, and

ωHi is the weight of Hi the HFTLTS Hi with omegaHi > 0 and
∑n

i=1
ωHi = 1.

From Definition 10, it is easy to obtain the following special cases.

Remark 5. Let ωHi = 1/n, for each i = 1,2, . . . , n, then the IG-HFTLHWA operator

reduces to the IG-HFTLOWA operator; Let wj = 1/n for each j = 1,2, . . . , n, and ui =

uj for all i, j = 1,2, . . . , n with i 6= j , then the IG-HFTLHWA operator reduces to the

GHFTLWA operator.

Let γ = 1, then the IG-HFTLHWA operator reduces to the induced hesitant fuzzy

2-tuple linguistic hybrid weighted averaging (I-HFTLHWA) operator

I-HFTLHWA
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

n
⊕

j=1

wjωH(j)
H(j)

∑n
j=1

wjωH(j)

=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

(

n
∑

j=1

wjωH(j)
1−1(sθ(j)

, αθ(j)
)

∑n
j=1

wjωH(j)

)

.

Let γ = 2, then the IG-HFTLHWA operator reduces to the induced hesitant fuzzy 2-tuple

linguistic quadratic hybrid weighted averaging (I-HFTLQHWA) operator

I-HFTLQHWA
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

(

n
⊕

j=1

wj Ḣ
2

(j)
∑n

j=1
wjω

2

H(j)

)
1

2
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=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

((

n
∑

j=1

wj (ωH(j)
1−1(sθ(j)

, αθ(j)
))2

∑n
j=1

wjω
2

H(j)

)
1

2
)

.

Let γ = −1, then the IG-HFTLHWA operator reduces to the induced hesitant fuzzy 2-

tuple linguistic hybrid harmonic mean (I-HFTLHHM) operator

I-HFTLHHM
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

(

n
⊕

j=1

wj /ωH(j)
∑n

j=1
(wj/ωH(j)

)H(j)

)−1

=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

((

n
∑

j=1

wj/ωH(j)
∑n

j=1
(wj/ωH(j)

)1−1(sθ(j)
, αθ(j)

)

)−1)

.

Similar to the quasi aggregation operator, we can also define the Quasi IG-HFTLHWA

(QIG-HFTLHWA) operator as follows:

Definition 11. Let Hi (i = 1,2, . . . , n) be a collection of HFTLTSs on the prede-

fined linguistic term set S. The QIG-HFTLHWA operator of dimension n is a map-

ping QIG-HFTLHWA: HFTLTSsn → HFTLTSs defined on the set of second arguments

of two tuples 〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉 with a set of order-inducing variables ui

(i = 1,2, . . . , n), denoted by

QIG-HFTLHWA
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

(

g−1

(

n
∑

j=1

wjg(ωH(j)
1−1(sθ(j)

, αθ(j)
))

∑n
j=1

wjg(ωH(j)
)

))

,

where g is a strictly continuous monotonic function such that g : [0,1]arrowR,γ ∈ R+,

(·) is a permutation on ui (i = 1,2, . . . , n) such that u(j) is the j th largest value of ui , and

wj is the weight of the j th position with wj > 0 and
∑n

i=1
wj = 1, and ωHi is the weight

of Hi the HFTLTS Hi with ωHi > 0 and
∑n

i=1
ωHi = 1.

Let g = xγ , x ∈ [0,1], then the QIG-HFTLHWA operator is the IG-HFTLHWA oper-

ator.

3.2. Aggregation Operators Based on Fuzzy Measures

In Section 3.1, all defined generalized hesitant fuzzy 2-tuple linguistic aggregation op-

erators are based on the assumption that the elements in a set are independent. How-

ever, in some situations, there usually exist some degrees of correlations. To cope with

this issue, researchers usually adopt the correlated aggregation operators to compute the
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comprehensive attribute values. At present, there are two types of the correlated aggrega-

tion operators. One type is the Choquet aggregation operator (Meng et al., 2014a, 2014b;

Meng and Zhang, 2014; Xu, 2010), and the other type is the Shapley aggregation operator

(Meng and Chen, 2014a, 2014b, 2014c; Meng et al., 2014c, 2014d). Because the Shap-

ley function globally considers the interdependence between elements (Meng and Chen,

2014a, 2014b, 2014c; Meng et al., 2014c, 2014d), we define the induced generalized hes-

itant fuzzy 2-tuple linguistic hybrid Shapley averaging (IG-HFTLHSA) operator. First, let

us consider the following expression of the Shapley function (Shapley, 1953):

Shi(µ,N) =
∑

T ⊆N\i

(n − t − 1)!t !

n!

(

µ(T ∪ i) − µ(T )
)

∀i ∈ N, (3)

where µ is a fuzzy measure on N = {1,2, . . . , n} (Sugeno, 1974), s and n denote the

cardinalities of T and N , respectively.

Definition 12. Let Hi (i = 1,2, . . . , n) be a collection of HFTLTSs on the predefined

linguistic term set S. The IG-HFTLHSA operator of dimension n is a mapping IG-

HFTLHSA: HFTLTSsn → HFTLTSs defined on the set of second arguments of two

tuples 〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉 with a set of order-inducing variables ui (i =

1,2, . . . , n), denoted by

IG-HFTLHSA
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

(

n
⊕

j=1

Shj (µ,N)Ḣ
γ

(j)
∑n

j=1
Shj (µ,N)Sh

γ
H(j)

(v,H)

)
1

γ

=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

((

n
∑

j=1

Shj (µ,N)(ShH(j )
(v,H)1−1(sθ(j )

, αθ(j )
))γ

∑n
j=1

Shj (µ,N)Sh
γ
H(j )

(v,H)

)
1

γ
)

,

where γ ∈ R+, (·) is a permutation on ui (i = 1,2, . . . , n) such that u(j) is the j th largest

value of ui , Sh(v,H) is the Shapley function for the fuzzy measure v on H = {Hi}i∈N ,

and Sh(µ,H) is the Shapley function for the fuzzy measure µ on the ordered set N =

{1,2, . . . , n}.

From the expression of the Shapley function, it is easy to check that when v and µ are

two additive measures, then the IG-GHFTLHSA operator is the IG-HFTLHWA operator.

Remark 6. Let ShHi (v,H) = 1/n for each i = 1,2, . . . , n, then the IG-HFTLHSA oper-

ator reduces to the induced generalized hesitant fuzzy 2-tuple linguistic ordered Shapley

averaging (IG-HFTLOSA) operator

IG-HFTLOSA
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

(

n
⊕

j=1

Shj (µ,N)H
γ

(j)

)
1

γ
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=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

((

n
∑

j=1

Shj (µ,N)1−1(sθ(j)
, αθ(j)

)γ

)
1

γ
)

.

Let γ = 1, then the IG-HFTLHSA operator reduces to the induced hesitant fuzzy 2-tuple

linguistic hybrid Shapley averaging (I-HFTLHSA) operator

I-HFTLHSA
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

n
⊕

j=1

Shj (µ,N)ShH(j)
(v,H)H(j)

∑n
j=1

Shj (µ,N)ShH(j)
(v,H)

=

⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

(

n
∑

j=1

Shj (µ,N)ShH(j)
(v,H)1−1(sθ(j)

, αθ(j)
)

∑n
j=1

Shj (µ,N)ShH(j)
(v,H)

)

.

Let γ = 2, then the IG-HFTLHSA operator reduces to the induced hesitant fuzzy 2-tuple

linguistic quadratic hybrid Shapley averaging (I-HFTLQHSA) operator

I-HFTLQHSA
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

(

n
⊕

j=1

Shj (µ,N)Ḣ 2

(j)
∑n

j=1
Shj (µ,N)Sh

γ

H(j)
(v,H)

)
1

2

=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

((

n
∑

j=1

Shj (µ,N)(ShH(j)
(v,H)1−1(sθ(j)

, αθ(j)
))2

∑n
j=1

Shj (µ,N)Sh
γ

H(j)
(v,H)

)
1

2
)

.

Let γ = −1, then the IG-HFTLHSA operator reduces to the induced hesitant fuzzy 2-tuple

linguistic hybrid harmonic Shapley mean (I-HFTLHHSM) operator

I-HFTLHHSM
(

〈u1,H1〉, 〈u2,H2〉, . . . , 〈un,Hn〉
)

=

(

n
⊕

j=1

Shj (µ,N)/ShH(j)
(v,H)

∑n
j=1

(Shj (µ,N)/ShH(j)
(v,H))H(j)

)−1

=
⋃

(sθ(1)
,αθ(1)

)∈H(1),...,(sθ(n)
,αθ(n)

)∈H(n)

1

((

n
∑

j=1

Shj (µ,N)/ShH(j)
(v,H)

∑n
j=1

(Shj (µ,N)/ShH(j)
(v,H))1−1(sθ(j)

, αθ(j)
)

)−1)

.

4. Models for the Optimal Weight Vector

Because of various reasons such as the complexity of the decision-making problems, the

time pressure, and the decision makers’ limited decision expertise, the weight information

may be not exactly known. As a hot research topic in decision-making theory, models for

the weight vector have been researched by many researchers (Ma et al., 2007; Massanet

et al., 2014; Martínez and Herrera, 2012; Merigó and Gil-Lafuente, 2013; Meng et al.,

2014a, 2014b; Meng and Zhang, 2014). This section continues to study models for the

weight vector. First, let us consider a similarity degree of HFTLTSs.
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4.1. A Similarity Degree of HFTLTSs

Let H1 and H2 be any two HFTLTSs on the predefined linguistic term set S. For

any (li, αi) ∈ H1, the distance between (li , αi) and H2 is defined by d((li, αi),H2) =

min(lj ,αj )∈H2
|1−1(li, αi) − 1−1(lj , αj )|.

Definition 13. Let H1 and H2 be any two HFTLTSs on the predefined linguistic term

set S. The distance from H1 to H2 is defined by

d(H1,H2) =
∑

(li,αi )∈H1

1

h1

d
(

(li, αi),H2

)

and the distance from H2 to H1 is defined by

d(H2,H1) =
∑

(lj ,αj )∈H2

1

h2

d
(

H1, (lj , αj )
)

where h1 and h2 are the counts of H1 and H2, respectively.

From Definition 13, one can easily check that the distance between H2 and H1 can be

denoted by D(H1,H2) = d(H1,H2)+d(H2,H1)
2

. The similarity degree between HFTLTSs is

defined as follows:

Definition 14. Let H1 and H2 be any two HFTLTSs on the predefined linguistic term

set S. The similarity degree between H1 and H2 is defined by

CC(H1,H2) = 1 − D(H1,H2). (4)

Proposition 1. The similarity degree CC, for any two HFTLTSs H1 and H2 on the pre-

defined linguistic term set S, satisfies

(i) CC(H1,H1) = 1;

(ii) CC(H1,H2) = CC(H2,H1);

(iii) 0 6 CC(H1,H2) 6 1.

Corollary 1. The distance D, for any two HFTLTSs H1 and H2 on the predefined lin-

guistic term set S, satisfies

(i) D(H1,H1) = 0;

(ii) D(H1,H2) = D(H2,H1);

(iii) 0 6 D(H1,H2)6 1.

Example 1. Let H1 = {(s2,0.05), (s3,0.07)} and H2 = {(s3,0.04), (s4,0.07), (s5,0.02)}

be two HFTLTSs on the predefined linguistic term set S = {s0, s1, s2, s3, s4, s5, s6}. We

have

d(H1,H2) = 0.0938
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and

d(H2,H1) = 0.1601.

Thus, D(H1,H2) = 0.117. The similarity degree between H1 and H2 is CC(H1,H2) =

0.873.

For a given multi-granularityhesitant fuzzy linguistic group decision-makingproblem,

without loss of generality, suppose there are m alternatives A = {a1, a2, . . . , am} and n at-

tributes C = {c1, c2, . . . , cn}, which are judged by q decision makers E = {e1, e2, . . . , eq}.

Let Sj = {si |i = 0,1, . . . , tj } be the predefined linguistic term set for the attribute cj ∈

C,j = 1,2, . . . , n. Assume that Gk = (Gk
ij )m×n is the hesitant fuzzy linguistic decision

matrix given by the decision maker ek , where Gk
ij is the hesitant fuzzy linguistic judge-

ment value of the alternative ai ∈ A for the attribute cj ∈ C on the predefined linguistic

term set Sj . For brevity, let M = {1,2, . . . ,m}, N = {1,2, . . . , n} and Q = {1,2, . . . , q}.

4.2. Models for the Optimal Weight Vectors on the Expert Set and on the Associated

Ordered Set

For each hesitant fuzzy linguistic decision matrix Gk = (Gk
ij )m×n, k ∈ Q, we trans-

form it into the hesitant fuzzy 2-tuple linguistic decision matrix H k = (H k
ij )m×n with

H k
ij = ∪sk

ij
∈H k

ij
(sk

ij
,0) for each pair of (i, j). Calculate the similarity degree CC(H k

ij ,H
l
ij )

between H k
ij and H l

ij for each pair of (i, j), where k, l ∈ Q with k 6= l. When the weight

information on the decision maker set is not exactly known, we build the following model

for the optimal weight vector ω:

max

∑

k∈Q

n
∑

j=1

m
∑

i=1

∑

l∈Q,l 6=k

ωekCC
(

H k
ij ,H

l
ij

)

s.t.







∑

k∈Q ωek = 1Aω 6 b

Fω = d

ωek > 0, ωek ∈ Wek , k ∈ Q,

(5)

where Wek is the known weight information, and Aω 6 b and Fω = d are the known

inequality and equality constraints, respectively.

When there are interactions between the decision makers, then the following model

for the optimal fuzzy measure vE on the decision maker set E is constructed:

max

∑

k∈Q

n
∑

j=1

m
∑

i=1

∑

l∈Q,l 6=k

Shek (v
E,E)CC

(

H k
ij ,H

l
ij

)
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s.t.



























vE(E) = 1,

Ã(vE(S1), v
E(S1), . . . , v

E(Sp1
))6 b̃, Sr ⊆ E, r = 1, . . . , p1,

F̃ (vE(T1), v
E(T1), . . . , v

E(Tp2
)) = d̃, Tr ⊆ E, r = 1, . . . , p2,

vE(S) 6 vE(T ) ∀S,T ⊆ E s.t. S ⊆ T ,

vE(ek) ∈ Wek , vE(ek)> 0, k ∈ Q,

(6)

where Sh(vE ,E) is the Shapley function for the fuzzy measure vE on the decision maker

set E, and Ã(vE(S1), v
E(S1), . . . , v

E(Sp1
))6 b̃ and F̃ (vE(T1), v

E(T1), . . . , vE(Tp2
)) =

d̃ are the known inequality and equality constraints, respectively.

Let CCk
ij =

∑

l∈Q,l 6=k CC(H k
ij ,H

l
ij ), reorder CCk

ij , k = 1,2, . . . , q , such that

CC
(1)
ij > CC

(2)
ij > · · · > CC

(q)

ij for each pair of (i, j), where (·) is a permutation on Q.

When the weight information on the ordered set Q is incompletely known, then we build

the following model for the optimal weight vector w:

max

∑

k∈Q

n
∑

j=1

m
∑

i=1

wkCC
(k)
ij

s.t.















∑

k∈Q wk = 1,

A′w 6 b′,

F ′w = d ′,

wk > 0, wk ∈ Wk, k ∈ Q,

(7)

where Wk is the known weight information, and A′w 6 b′ and F ′w = d ′ are the known

inequality and equality constraints, respectively.

Considering interactions between the ordered positions, model for the optimal fuzzy

measure µQ on the ordered set Q is constructed as follows:

max

∑

k∈Q

n
∑

j=1

m
∑

i=1

Shk

(

µQ,Q
)

CC
(k)
ij

s.t.



























µQ(Q) = 1,

Ã′(µQ(S1),µ
Q(S2), . . . ,µ

Q(St1))6 b̃′ , Sr ⊆ Q, r = 1, . . . , t1,

F̃ ′(µQ(T1),µ
Q(T2), . . . ,µ

Q(Tt2)) = d̃ ′, Tr ⊆ Q, r = 1, . . . , t2,

µQ(S)6 µQ(T ) ∀S,T ⊆ Q s.t. S ⊆ T ,

µQ(k) ∈ Wk, µQ(k)> 0, k ∈ Q,

(8)

where Sh(µQ,Q) is the Shapley function for the fuzzy measure µQ on the ordered set Q

and Ã′(µQ(S1),µ
Q(S2), . . . ,µ

Q(St1))6 b̃′ and F̃ ′(µQ(T1),µ
Q(T2), . . . ,µ

Q(Tt2)) = d̃ ′

are the known inequality and equality constraints, respectively.
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4.3. Models for the Optimal Weight Vectors on the Attribute Set and on the Associated

Ordered Set

Suppose that H = (Hij )m×n is the comprehensive hesitant fuzzy 2-tuple linguistic deci-

sion matrix. Let H+ = (H+
1

,H+
2

, . . . ,H+
n ) and H+ = (H−

1
,H−

2
, . . . ,H−

n ) be the pos-

itive and negative hesitant fuzzy 2-tuple linguistic vectors, respectively, where H+
j =

max
n
i=1

Hij and H−
j = min

n
i=1

Hij for each j ∈ N . Calculate the similarity degrees

CC(H+
j ,Hij ) and CC(H−

j ,Hij ) for each pair of (i, j).

When the weight information of the attributes is not exactly known, then we build the

following model for the optimal weight vector ω:

max

m
∑

i=1

n
∑

j=1

ωcj

CC(H+
j ,Hij )

CC(H+
j ,Hij ) + CC(H−

j ,Hij )

s.t.















∑

j∈N ωcj = 1,

Rω 6 α,

Pω = β,

ωcj > 0, ωcj ∈ Wcj , j ∈ N,

(9)

where Wcj is the known weight information, and Rω 6 α and Pω = β are the known

inequality and equality constraints, respectively.

When there are correlations between the attributes, the following model for the optimal

fuzzy measure vC on the attribute set C is constructed:

max

m
∑

i=1

n
∑

j=1

Shcj

(

vC ,C
)

CC(H+
j ,Hij )

CC(H+
j ,Hij ) + CC(H−

j ,Hij )

s.t.



























vC(C) = 1,

R̃(vC(S1), v
C(S1), . . . , v

C (Sd1
))6 α̃, Sr ⊆ C, r = 1, . . . , d1,

P̃ (vC(T1), v
C(T1), . . . , v

C (Td2
)) = β̃, Tr ⊆ C, r = 1, . . . , d2,

vC(S) 6 vC(T ) ∀S,T ⊆ C s.t. S ⊆ T ,

vC(cj ) ∈ Wcj , vC(cj )> 0, j ∈ N,

(10)

where Sh(vC ,C) is the Shapley function for the fuzzy measure vC on the attribute set C,

and R̃(vC(S1), v
C(S1), . . . , v

C(Sd1
)) 6 α̃ and P̃ (vC(T1), v

C (T1), . . . , v
C(Td2

)) = β̃ are

the known inequality and equality constraints, respectively.

Let Hω = (Ḣij )m×n be the weighted comprehensive matrix for H = (Hij )m×n with

Ḣij =
⋃

(sij ,αij )∈Hij

1
(

ωcj 1
−1(sij , αij )

)

.

Let Ḣ+ = (Ḣ+
1

, Ḣ+
2

, . . . , Ḣ+
n ) and Ḣ− = (Ḣ−

1
, Ḣ−

2
, . . . , Ḣ−

n ) be the positive and

negative hesitant fuzzy 2-tuple linguistic vectors, respectively, where Ḣ+
j = max

n
i=1

Ḣij
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and Ḣ−
j = min

n
i=1

Ḣij for each j ∈ N . Calculate the similarity degrees CC(Ḣ+
j , Ḣij ) and

CC(Ḣ−
j , Ḣij ) for each pair of (i, j).

Let CCij =
CC(Ḣ+

j ,Ḣij )

CC(Ḣ+
j ,Ḣij )+CC(Ḣ−

j ,Ḣij )
. For each i ∈ M , reorder CCij , j = 1,2, . . . , n,

such that CCi(1) > CCi(2) > · · · > CCi(n), where (·) is a permutation on N . When the

weight information on the ordered set N is incompletely known, then we build the follow-

ing model for the optimal weight vector w:

max

m
∑

i=1

n
∑

j=1

wjCCi(j)

s.t.















∑

j∈N wj = 1,

R′ω 6 α′,

P ′ω = β ′,

wj > 0,wj ∈ Wj , j ∈ N,

(11)

where Wj is the known weight information, and R′ω 6 α′ and P ′ω = β ′ are the known

inequality and equality constraints, respectively.

Considering correlations between the ordered positions in N , calculate the Shapley

weighted matrix HSh = (Ḧij )m×n with Ḧij = ∪(sij ,αij )∈Hij
1(Shcj (v

C ,C)1−1(sij , αij )).

Let Ḧ+ = (Ḧ+
1

, Ḧ+
2

, . . . , Ḧ+
n ) and Ḧ− = (Ḧ−

1
, Ḧ−

2
, . . . , Ḧ−

n ) be the positive and neg-

ative hesitant fuzzy 2-tuple linguistic vectors, respectively, where Ḧ+
j = max

n
i=1

Ḧij and

Ḧ−
j = min

n
i=1

Ḧij for each j ∈ N . Calculate the similarity degrees CC(Ḧ+
j , Ḧij ) and

CC(Ḧ−
j , Ḧij ) for each pair (i, j). For each i ∈ M , reorder ĊĊij , j = 1,2, . . . , n, such

that ĊĊi(1) > ĊĊi(2) > · · · > ĊĊi(n), where ĊĊij =
CC(Ḣ+

j ,Ḣij )

CC(Ḣ+
j ,Ḣij )+CC(Ḣ−

j ,Ḣij )
and (·) is a

permutation on N . Then, we build the following model for the optimal fuzzy measure µN

on the ordered set N :

max

m
∑

i=1

n
∑

j=1

Shj (µ
N ,N)ĊĊi(j)

s.t.



























µN (N) = 1,

R̃′(µN (S1),µ
N (S2), . . . ,µ

N (Sh1
))6 α̃′, Sr ⊆ N, r = 1, . . . , h1,

P̃ ′(µN (T1),µ
N (T2), . . . ,µ

N (Th2
)) = β̃ ′, Tr ⊆ N, r = 1, . . . , h2,

µN (S)6 µN (T ) ∀S,T ⊆ N s.t. S ⊆ T ,

µN (j) ∈ Wj , µN (j)> 0, j ∈ N,

(12)

where Sh(µN ,N) is the Shapley function for the fuzzy measure µN on the ordered set N ,

and R̃′(µN (S1),µ
N (S2), . . . ,µ

N (Sh1
)) 6 α̃′ and P̃ ′(µN (T1),µ

N (T2), . . . ,µ
N (Th2

)) =

β̃ ′ are the known inequality and equality constraints, respectively.



Hesitant Fuzzy Group Decision Making 785

5. An Approach to Multi-Granularity Hesitant Fuzzy Linguistic Group Decision

Making

This section considers a decision-making method to multi-granularity hesitant fuzzy lin-

guistic group decision making by using the defined aggregation operators and the built

models. The main decision steps are involved as follows:

Step 1: Transform the hesitant fuzzy linguistic decision matrix Gk = (Gk
ij )m×n into

Rk = (Rk
ij )m×n , where Rk

ij =

{

Gk
ij for benefit attribute cj

(Gk
ij )

c for cost attribute cj
with (Gk

ij )
c =

⋃

sk
ij

∈Gk
ij
{sk

tj −ij
}, i ∈ M , j ∈ N .

Step 2: Convert the hesitant fuzzy linguistic decision matrix Rk = (Rk
ij )m×n (k ∈ Q) into

the hesitant fuzzy 2-tuple linguistic decision matrix H k = (H k
ij )m×n with H k

ij =
⋃

sk
ij

∈H k
ij
(sk

ij
,0) for each pair (i, j), where sk

ij
belongs to the predefined linguistic

term set Sj with respect to the attribute cj .

Step 3: When the weight information on the decision maker set is not exactly known, we

utilize model (7) (or (6)) to calculate the optimal weight vector.

Step 4: When the weight information on the ordered position set is not exactly known,

we utilize model (9) (or (8)) to calculate the optimal weight vector.

Step 5: Use the IG-HFTLHSA (or IG-HFTLHWA) operator to calculate the comprehen-

sive hesitant fuzzy 2-tuple linguistic decision matrix H = (Hij )m×n.

Step 6: When the weight information on the attribute set is not exactly known, we apply

model (11) (or (10)) to calculate the optimal weight vector.

Step 7: When the weight information on the ordered position set is not exactly known,

we apply model (13) (or (12)) to calculate the optimal weight vector.

Step 8: Again use the IG-HFTLHSA (or IG-HFTLHWA) operator to calculate the com-

prehensive hesitant fuzzy 2-tuple linguistic term set Hi of the alternative ai , i ∈ M .

Step 9: According to the comprehensive hesitant fuzzy 2-tuple linguistic term set Hi , cal-

culate the expected value E(Hi) and the variance V (Hi). Then, rank the value Hi ,

i ∈ M , and select the best choice.

Step 10: End.

Example 2. Let us consider the multi-granularity hesitant fuzzy linguistic decision-

making problem of evaluating investment. Suppose that there is an investment company,

which intends to invest a sum of money in the best option (Tan, 2011). There is a panel

with four possible alternatives to invest the money: a car company a1, a food company a2,

a computer company a3, and a TV company a4. The investment company must take a

decision according to the following four attributes: the risk factor c1, the growth factor c2,

the social-political impact c3, and the environmental impact c4. The four possible alterna-

tives are evaluated by three decision makers E = {e1, e2, e3} under the above attributes.

With respect to these four attributes, their evaluation on alternatives by using the different

linguistic term sets is as follows:
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S1 = S4 = {s0: very small; s1: small; s2: fair; s3: big; s4: very big};

S2 = {s0: extremely slow; s1: very slow; s2: slow; s3: fair; s4: fast; s5: very fast; s6:

extremely fast};

S3 = {s0: little; s1: fair; s2: much}.

The evaluation information given by these three decision makers is given in the fol-

lowing matrices:

G1 =









{s2, s3} {s5} {s1, s2} {s3, s4}

{s3} {s2, s3} {s0} {s1}

{s1, s2} {s2, s3, s4} {s1} {s2, s3}

{s2} {s3} {s1} {s2}









,

G2 =









{s3} {s4, s5} {s2} {s4}

{s2, s3} {s4} {s1} {s0, s1}

{s3} {s4} {s0} {s3}

{s3, s4} {s2, s3} {s1} {s2, s3}









,

G3 =









{s3, s4} {s5, s6} {s2} {s3}

{s0, s1, s2} {s3, s4} {s0} {s2}

{s2, s3} {s4} {s2} {s2}

{s3, s4} {s2} {s1} {s1}









.

Based on the decision makers’ reputation, experience and decision expertise, the

weight information on the decision maker set E is defined by

ωe1
> ωe2

, ωe1
> ωe3

, ωe1
6 0.5, 0.2 6 ωe2

6 0.4, 0.2 6 ωe3
6 0.3. (13)

Namely, the importance of the decision maker e1 is no smaller than that of the decision

maker e2 or e3. The importance of the decision maker e1 is no bigger than the sum of the

other two decision makers’. Compared with the other two decision makers, the percent-

age of the importance of the decision maker e2 is given between 20% and 40%, and the

percentage of the importance of the decision maker e3 is given between 20% and 30%.

Based on the principle of the larger similarity degree the bigger weight, the weight

information on the ordered set Q = {1,2,3} is defined by

0.2 >w1 − w2 > 0.1, 0.2 > w2 − w3 > 0.1, 0.2 6 w3 6 0.3, w1 6 0.5. (14)

Namely, the difference between any two adjacent positions belongs to [0.1,0.2], and

the importance of the 3th position belongs to [0.2,0.3]. Furthermore, the importance of

the 1st position is no bigger than the sum of the other two positions.

These four companies belong to one country, whose government always attaches a

greater importance to environmental protection than any other factor. However, the im-

portance of environment is no bigger than the sum of the other three attributes’ impor-

tance. Furthermore, this country has a stable social-political environment, which means

that the influence of the social-political factor is smaller than that of the risk or growth
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factor. With respect to the other three attributes, the percentage of the importance of the

social-political factor is given between 10% and 20%. For the risk and growth factors,

since it is difficult to decide which is more important, it assumes that their importance is

equal and defined between 20% and 40%. Based on these facts, the weight information of

the attributes is given as follows:

0 6 ωc4
− ωc1

6 0.1, 0 6 ωc1
− ωc3

6 0.1, 0.2 6 ωc1
= ωc2

6 0.4,

0.1 6 ωc3
6 0.2, ωc4

6 0.5.
(15)

Similar to the weight information on the ordered set Q, the weight information on the

ordered set N = {1,2,3,4} is given by

0.2 > w1 − w2 > 0.1, 0.2 >w2 − w3 > 0.1, 0.2 > w3 − w4 > 0.1,

0.1 6 w4 6 0.2, w1 6 0.5.
(16)

To obtain the most desirable alternative(s), the following procedure is involved.

Step 1: Transform the hesitant fuzzy linguistic decision matrix Gk = (Gk
ij )4×4 into

Rk = (Rk
ij )4×4 (k ∈ Q), denoted by

R1 =









{s1, s2} {s5} {s0, s1} {s0, s1}

{s1} {s2, s3} {s2} {s3}

{s2, s3} {s2, s3, s4} {s1} {s1, s2}

{s2} {s3} {s1} {s2}









,

R2 =









{s1} {s4, s5} {s0} {s0}

{s1, s2} {s4} {s1} {s3, s4}

{s1} {s4} {s2} {s1}

{s0, s1} {s2, s3} {s1} {s1, s2}









,

R3 =









{s0, s1} {s5, s6} {s0} {s1}

{s2, s3, s4} {s3, s4} {s2} {s2}

{s1, s2} {s4} {s0} {s2}

{s0, s1} {s2} {s1} {s3}









.

Step 2: Convert the hesitant fuzzy linguistic decision matrix Rk = (Rk
ij )4×4 (k ∈ Q)

into the hesitant fuzzy 2-tuple linguistic decision matrix, take k = 1 for example,

H 1 =







{(s1,0), (s2,0)} {(s5,0)} {(s0,0), (s1,0)} {(s0,0), (s1,0)}

{(s1,0)} {(s2,0), (s3,0)} {(s2,0)} {(s3,0)}

{(s2,0), (s3,0)} {(s2,0), (s3,0), (s4,0)} {(s1,0)} {(s1,0), (s2,0)}

{(s2,0)} {(s3,0)} {(s1,0)} {(s2,0)}






.

Step 3: According to the model (7) and the condition (14), the following linear pro-

gramming model for the optimal fuzzy measure vE on the decision maker set E is built:
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max 0.191
(

vE(e1) − vE(e2, e3)
)

− 0.08
(

vE(e2) − vE(e1, e3)
)

− 0.11
(

vE(e3) − vE(e1, e2)
)

+ 26.56

s.t.



























vE(e1)> vE(e2),

vE(e1)> vE(e3),

vE(e1)6 0.5,

vE(S) − vE(T )6 0, S, T ⊆ E s.t. S ⊆ T ,

vE(e2) ∈ [0.2,0.4], vE(e3) ∈ [0.2,0.3].

Solving the above model, we derive

vE(e1) = 0.5, vE(e2) = vE(e3) = vE(e2, e3) = 0.2,

vE(e1, e2) = vE(e1, e3) = vE(e1, e2, e3) = 1.

According to the fuzzy measure vE , formula yields She1
(vE ,E) = 0.7, She2

(vE,E) =

She3
(vE ,E) = 0.15.

Step 4: From model (9) and the condition (15), the following linear programming

model for the optimal fuzzy measure µQ on the ordered set Q is built:

max 0.847
(

µQ(1) − µQ(2,3)
)

− 0.017
(

µQ(2) − µQ(1,3)
)

− 0.83
(

µQ(3) − µQ(1,2)
)

+ 26.56

s.t.



























µQ(1 + j) − µQ(2 + j)> 0.1, j = 0,1,

µQ(1 + j) − µQ(2 + j)6 0.2, j = 0,1,

µQ(1)6 0.5,

µQ(S) − µQ(T )6 0, S, T ⊆ Q s.t. S ⊆ T ,

µQ(3) ∈ [0.2,0.3].

Solving the above model, we have

µQ(1) = 0.5, µQ(2) = µQ(2,3) = 0.3, µQ(3) = 0.2,

µQ(1,2) = µQ(1,3) = µQ(1,2,3) = 1.

According to the fuzzy measure µQ, formula yields Sh1(µ
Q,Q) = 0.65, Sh2(µ

Q,Q) =

0.2, Sh3(µ
Q,Q) = 0.15.

Step 5: For each pair of (i, j), let uk = CCk
ij , k = 1,2,3. Let γ = 2, using the IG-

HFTLHSA operator, the comprehensive hesitant fuzzy 2-tuple linguistic decision matrix
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H is obtained as follows:

H =









{(s1,−0.015), (s1,0), (s2,−0.12), (s2,−0.13)}

{(s1,0.043), (s1,0.11), (s1,0.199), (s1,0.21), (s1,0.269), (s1,0.347)}

{(s2,−0.161), (s2,−0.037), (s2,0.711), (s3,−0.203)}

{(s2,−0.219), (s2,−0.175), (s2,−0.205), (s2,−0.161)}

{(s5,−0.012), (s5,−0.001), (s5,0), (s5,0.011)}

{(s2,0.318), (s3,−0.455), (s3,0.056), (s3,0.232)}

{(s3,−0.455), (s3,0.232), (s4,0)}

{(s3,−0.177), (s3,−0.135)}

{(s0,0), (s1,−0.109)} {(s0,0.102), (s1,−0.007)}

{(s2,−0.008)} {(s3,−0.009), (s3,0.007)}

{(s1,0.015)} {(s1,0.015), (s2,−0.01)}

{(s1,0)} {(s2,0.003), (s2,0.013)}









.

Step 6: Because the risk factor c1 and the growth factor c2 are considered to have

the same importance, we have vC(c1, cj ) = vC (c2, cj ), j = 3,4, and C(c1, c3, c4) =

vC (c2, c3, c4). From the comprehensive decision matrix H , model (11) and the condi-

tion (16), the following linear programming model for the optimal fuzzy measure vC on

the attribute set C is built:

max 0.037
(

vC (c1) − vC(c2, c3, c4)
)

− 0.016
(

vC(c2) − vC(c1, c3, c4)
)

− 0.045
(

vC(c3) − vC(c1, c2, c4)
)

− 0.023
(

vC (c4) − vC(c1, c2, c3)
)

+ 0.011
(

vC(c1, c2) − vC(c3, c4)
)

− 0.004
(

vC (c1, c3) − vC(c2, c4)
)

+ 0.03
(

vC (c1, c4) − vC(c2, c3)
)

+ 1.892

s.t.



































































vC(c4) − vC(c1)> 0,

vC(c4) − vC(c1)6 0.1,

vC(c1) − vC(c3)> 0,

vC(c1) − vC(c3)6 0.1,

vC(c1) − vC(c2) = 0,

vC(c1, cj ) − vC(c2, cj ) = 0, j = 3,4,

vC(c1, c3, c4) − vC(c2, c3, c4) = 0,

vC(c4)6 0.5,

vC(S) − vC(T )6 0, S, T ⊆ C s.t. S ⊆ T ,

vC(c1), v
C(c2) ∈ [0.2,0.4], vC(c3) ∈ [0.1,0.2].

Solving the above model, we derive

vC (c1) = vC(c2) = vC(c1, c2) = vC(c1, c3) = vC(c2, c3) = vC(c1, c2, c3) = 0.2,

vC (c3) = 0.1, vC(c4) = vC(c3, c4) = 0.3,

vC (c1, c4) = vC(c2, c4) = vC(c1, c2, c4) = vC(c1, c3, c4) = vC(c2, c3, c4)

= vC(C) = 1.
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According to the fuzzy measure vC , formula yields

Shc1

(

vC ,C
)

= Shc2

(

vC ,C
)

= 0.1, Shc3

(

vC ,C
)

= 0.025, Shc4

(

vC ,C
)

= 0.625.

Step 7: From model (13) and the condition (17), the following linear programming

model for the optimal fuzzy measure µN on the ordered set N is built:

max 0.112
(

µN (1) − µN (2,3,4)
)

− 0.019
(

µN (2) − µN (1,3,4)
)

− 0.025
(

µN (3) − µN (1,2,4)
)

− 0.069
(

µN (4) − µN (1,2,3)
)

+ 0.047
(

µN (1,2) − µN (3,4)
)

+ 0.044
(

µN (1,3) − µN (2,4)
)

+ 0.022
(

µN (1,4) − µN (2,3)
)

+ 1.434

s.t.



























µN (1 + j) − µN (2 + j) > 0.1, j = 0,1,2,

µN (1 + j) − µN (2 + j) 6 0.2, j = 0,1,2,

µN (1)6 0.5,

µN (S) − µN (T )6 0, S, T ⊆ N s.t. S ⊆ T ,

µQ(4) ∈ [0.1,0.2].

Solving the above model, we derive

µN (1) = 0.5, µN (2) = µN (2,3) = µN (2,4) = µN (2,3,4) = 0.3,

µN (3) = µN (3,4) = 0.2, µN (4) = 0.1,

µN (1,2) = µN (1,3) = µN (1,4) = µN (1,2,3) = µN (1,2,4) = µN (1,3,4)

= µN (N) = 1.

According to the fuzzy measure µN , formula yields

Sh1(µ
N ,N) = 0.683, Sh2(µ

N ,N) = 0.15,

Sh3(µ
N ,N) = 0.1, Sh4(µ

N ,N) = 0.07.

Step 8: Without loss of generality, let S = {s0, s1, . . . , s6}. Furthermore, for each i , let

uj =
CC(H+

j ,Hij )

CC(H+
j ,Hij )+CC(H−

j ,Hij )
, j = 1,2,3,4. Let γ = 2, using the IG-HFTLHSA operator,

the comprehensive HFTLTS Hi of the alternative ai (i = 1,2,3,4) is obtained. Take H4

for example,

H4 =
{

(s3,0.11), (s3,0.1), (s3,0.109), (s3,0.098), (s3,0.089), (s3,0.079),

(s3,0.088), (s3,0.078), (s3,0.103), (s3,0.093), (s3,0.102), (s3,0.092),

(s3,0.083), (s3,0.073), (s3,0.081), (s2,0.071)
}

.

Step 9: According to the comprehensive hesitant fuzzy 2-tuple linguistic term sets Hi

(i = 1,2,3,4), the expected values are

E(H1) = 0.503, E(H2) = 0.729, E(H3) = 0.469, E(H4) = 0.485.
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Table 1

Ranking order with respect to the IG-HFTLHSA operator.

E(H1) E(H2) E(H3) E(H4) Ranking order

γ = −1 0.613 0.935 0.525 0.480 H2 > H1 > H3 > H4

γ → 0
+ 0.278 0.804 0.538 0.466 H2 > H3 > H4 > H1

γ = 0.1 0.443 0.786 0.537 0.465 H2 > H3 > H4 > H1

γ = 0.2 0.510 0.769 0.536 0.465 H2 > H3 > H1 > H4

γ = 0.5 0.560 0.725 0.529 0.466 H2 > H1 > H3 > H4

γ = 1.0 0.562 0.700 0.513 0.470 H2 > H1 > H3 > H4

γ = 2.0 0.503 0.729 0.469 0.485 H2 > H1 > H4 > H3

γ = 5.0 0.348 0.750 0.395 0.501 H2 > H4 > H3 > H1

γ = 10 0.286 0.750 0.372 0.502 H2 > H4 > H3 > H1

According to H2 > H1 > H4 > H3, we know that the food company a2 is the best choice.

With respect to the comprehensive hesitant fuzzy 2-tuple linguistic decision matrix H ,

when the different values of γ are used to calculate the comprehensive HFTLTSs of the

alternatives, ranking order is obtained as shown in Table 1.

From Table 1, we know that ranking orders may be different with respect to the dif-

ferent values of γ . However, all ranking results show that the food company a2 is the best

choice. In this example, when we do not consider the interactions between the elements

in the corresponding sets, using the IG-HFTLHWA operator, the following procedure is

involved.

Step 1′: From Step 2 and model (6), the following linear programming model for the

optimal weight vector ω on the decision maker set E is constructed:

max 26.937ωe1
+ 26.396ωe2

+ 26.333ωe3

s.t.



























ωe1
+ ωe2

+ ωe3
= 1,

ωe2
− ωe1

6 0,

ωe3
− ωe1

6 0,

ωe1
6 0.5,

ωe2
∈ [0.2,0.4], ωe3

∈ [0.2,0.3].

Solving the above model, we have ωe1
= 0.5, ωe2

= 0.3, ωe3
= 0.2.

Step 2′: From Step 2 and model (8), the following linear programming model for the

optimal weight vector w on the ordered set Q is constructed:

max 28.25w1 + 26.52w2 + 24.89w3

s.t.



























w1 + w2 + w3 = 1,

w1+j − w2+j > 0.1, j = 0,1,

w1+j − w2+j 6 0.2, j = 0,1,

w1 6 0.5,

w3 ∈ [0.2,0.3].

Solving the above model, we derive w1 = 0.5, w2 = 0.3, w3 = 0.2.
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Step 3′: For each pair of (i, j), let uk = CCk
ij (k = 1,2,3). Let γ = 2, using the IG-

HFTLHWA operator, the comprehensive hesitant fuzzy 2-tuple linguistic decision matrix

H ′ is obtained as follows:

H ′ =









{(s1,−0.032), (s1,0), (s2,−0.34), (s2,−0.39)}

{(s1,0.09), (s1,0.22), (s1,0.392), (s1,0.497), (s2,−0.402), (s2,0.27)}

{(s2,−0.404), (s2,−0.221), (s2,0.264), (s3,0.396)}

{(s1,0.436), (s2,−0.494), (s2,−0.47), (s2,−0.404)}

{(s5,−0.154), (s5,−0.098), (s5,0), (s5,0.055)}

{(s3,0.107), (s3,0.133), (s3,0.309), (s4,0.48)}

{(s3,0.133), (s4,0.48), (s4,0)}

{(s3,−0.435), (s3,−0.177)}

{(s0,0), (s1,−0.282)} {(s0,0.224), (s1,−0.088)}

{(s2,−0.09)} {(s3,−0.042), (s3,0.151)}

{(s1,0.207)} {(s1,0.072), (s2,−0.131)}

{(s1,0)} {(s2,−0.065), (s2,0.062)}









.

Step 4′: From the comprehensive matrix H ′ and model (10), the following linear pro-

gramming model for the optimal weight vector ω on the attribute set C is constructed:

max 1.982ωc1
+ 1.913ωc2

+ 1.908ωc3
+ 1.956ωc4

s.t.



































ωc1
+ ωc2

+ ωc3
+ ωc4

= 1,

ωc1
− ωc2

= 0, ωc4
− ωc1

> 0,

ωc4
− ωc1

6 0.1, ωc1
− ωc3

> 0,

ωc1
− ωc3

6 0.1, ωc4
6 0.5,

ωc1
,ωc2

∈ [0.2,0.4],

ωc3
∈ [0.1,0.2].

Solving the above model, we have ωc1
= ωc2

= 0.25, ωc3
= 0.15, ωc4

= 0.35.

Step 5′: From model (12), the following linear programming model for the optimal

weight vector w on the ordered set N is constructed:

max 2.111w1 + 1.998w2 + 1.956w3 + 1.889w4

s.t.



























w1 + w2 + w3 + w4 = 1,

w1+j − w2+j > 0.1, j = 0,1,2,

w1+j − w2+j 6 0.2, j = 0,1,2,

w1 6 0.5,

w4 ∈ [0.1,0.2],

Solving the above model, we derive w1 = 0.4, w2 = 0.3, w3 = 0.2, w4 = 0.1.

Step 6′: Without loss of generality, let S = {s0, s1, . . . , s6}. Furthermore, for each i , let

uj =
CC(H+

j ,Hij )

CC(H+
j ,Hij )+CC(H−

j ,Hij )
, j = 1,2,3,4. Let γ = 2, using the IG-HFTLHWA opera-

tor, the comprehensive HFTLTS Hi of the alternative ai (i = 1,2,3,4) is obtained. Take
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Table 2

Ranking order with respect to the IG-HFTLHWA operator.

E(H1) E(H2) E(H3) E(H4) Ranking order

γ = −1 0.404 0.612 0.514 0.483 H2 > H3 > H4 > H1

γ → 0
+ 0.225 0.647 0.521 0.483 H2 > H3 > H4 > H1

γ = 0.1 0.258 0.650 0.522 0.484 H2 > H3 > H4 > H1

γ = 0.2 0.531 0.654 0.522 0.484 H2 > H1 > H3 > H4

γ = 0.5 0.427 0.663 0.524 0.484 H2 > H3 > H4 > H1

γ = 1.0 0.507 0.678 0.528 0.485 H2 > H3 > H1 > H4

γ = 2.0 0.586 0.702 0.532 0.488 H2 > H1 > H3 > H4

γ = 5.0 0.666 0.736 0.535 0.496 H2 > H1 > H3 > H4

γ = 10 0.669 0.748 0.521 0.501 H2 > H1 > H3 > H4

H4 for example,

H4 =
{

(s3,0.09), (s3,0.08), (s3,0.083), (s3,0.073), (s3,0.073), (s3,0.062),

(s3,0.069), (s3,0.059), (s3,0.082), (s3,0.072), (s3,0.079), (s3,0.069),

(s3,0.068), (s3,0.058), (s3,0.064), (s2,0.054)
}

.

Step 7′: According to the comprehensive hesitant fuzzy 2-tuple linguistic term sets Hi

(i = 1,2,3,4), the expected values are

E(H1) = 0.586, E(H2) = 0.702, E(H3) = 0.532, E(H4) = 0.488.

From H2 > H1 > H3 > H4, we know that the food company a2 is the best choice.

With respect to the comprehensive hesitant fuzzy 2-tuple linguistic decision matrix

H ′, when the different values of γ are used to calculate the comprehensive HFTLTSs,

ranking order is obtained as shown in Table 2.

From Table 2, we also derive different ranking results with respect to the different val-

ues of γ , and all of them show that the food company a2 is the best choice. In the practical

decision-making problems, when it is sufficient to only consider the importance of ele-

ments separately, the decision maker can use the IG-HFTLHWA operator; otherwise, we

suggest the decision maker to adopt the IG-HFTLHSA operator. Furthermore, the pes-

simistic decision maker could use the smaller value of γ , the optimistic decision maker

may apply the larger value of γ , while the neutral decision maker could use the middle

value of γ , for example, γ = 1.

Remark 7. Because all existing methods cannot cope with group decision making with

multi-granularity hesitant fuzzy linguistic information, they cannot be applied in this ex-

ample. This also shows that the new method expands the application of HFLTSs.

6. Conclusion

Different to existing researches about HFLTSs, we introduce the concept of hesitant fuzzy

2-tuple linguistic term sets to express HFLTSs, which avoids the information loss and
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distortion during the calculation of language information. To research the application of

HFTLTSs, an order relationship is introduced. Meanwhile, several aggregation operators

are defined, by which the comprehensive attribute values of the alternatives can be ob-

tained. To deal with the situation where the weight information is incompletely known,

models for the optimal weight vector by using the similarity degree are established. Then,

we develop a method to multi-granularity hesitant fuzzy linguistic group decision making.

It is worth noting that we only discuss the application of HFTLTSs in decision mak-

ing, and we will continue to study the application of HFTLTSs in some other fields such

as industrial engineering, expert systems, neural networks, digital image processing, and

uncertain systems and controls. Furthermore, we will continue to study HFLTSs including

the computational model, the order relationship, the aggregation operator and model for

the optimal weight vector.

All abovementioned researches can be classified into decision making with qualitative

fuzzy information, and there are many studies (Hajiagha et al., 2013a, 2013b; Kiris, 2013;

Liao et al., 2014; Meng et al., 2014d; Singh, 2014; Tan et al., 2015a, 2015b, Wang and Liu,

2014; Zhu and Xu, 2013; Zhang and Xu, 2015; Zhao et al., 2014; Zhang and Wu, 2014;

Zeng et al., 2013) for decision-making based on quantitative fuzzy variables, which is

another very important topic of multi-attribute decision making. Therefore, we shall study

decision making in quantitative fuzzy environment in our future works.
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Būdas svyruojantiesiems neraiškiesiems grupiniams sprendimams
priimti, grįstas daugiareikšme lingvistine informacija

Fanyong MENG, Dao ZHOU, Xiaohong CHEN

Kortežinis lingvistinis skaičiavimo modelis yra svarbi priemonė apdoroti lingvistinę informaciją.

Straipsnis pristato svyruojančiąsias neraiškiąsias kortežines lingvistinių apibrėžčių aibes, kurios yra

išreikštos keletu simbolinių skaičių iš intervalo [0,1] norint praplėsti svyruojančiųjų neraiškiųjų

lingvistinių apibrėžčių aibių taikymą ir išvengti informacijos netekčių. Atsižvelgiant į sąryšio tarp

svyruojančiųjų lingvistinių apibrėžčių aibių tvarką, apibūdintas tikėtinų verčių ir dispersijos nusta-

tymas. Taip pat keletas išplaukiančių iš apibendrintų svyruojančiųjų neraiškiųjų kortežų sujungimo

operatorių, kuriais galima gauti išsamias alternatyvų rodiklių vertes, yra apibrėžti. Tuomet sudaryti

sprendimų priėmėjo, rodiklių aibės optimalus svorių vektorius ir jų sutvarkytų aibių modeliai. Be

to, būdas svyruojantiesiems neraiškiesiems grupiniams sprendimams priimti, grįstas daugiareikšme

lingvistine informacija, yra pateiktas. Galiausiai pasirinktas pavyzdys parodyti siūlomos procedūros

galimybes ir praktiškumą.


