
INFORMATICA, 2016, Vol. 27, No. 4, 843–862 843
 2016 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2016.114

An Entropy-Based Algorithm for Proposing
a Suitable Design Pattern

Luka PAVLIČ1∗, Marjan HERIČKO1, Vili PODGORELEC1,
Polona REPOLUSK2

1University of Maribor, Faculty of Electrical Engineering and Computer Science

Smetanova 17, SI-2000 Maribor, Slovenia
2University of Maribor, Faculty of Natural Sciences and Mathematics

Koroška cesta 160, SI-2000 Maribor, Slovenia

e-mail: luka.pavlic@um.si

Received: May 2015; accepted: September 2016

Abstract. This paper deals with the problem of selecting a suitable design pattern when necessary.
The number of design patterns has been rapidly rising, but management and searching facilities
appear to be lagging behind. In this paper we will present a platform, which is used to search for
suitable design patterns and for design patterns knowledge exchange. We are introducing a novel de-
sign pattern proposing approach: the developer no longer searches for an appropriate design pattern,
but rather the intelligent component asks the developer questions. We do not want to invest extra
effort in terms of maintaining a special expert system. Guided dialogues consist of independent ques-
tions from different sources and authors that are automatically combined. The enabling algorithm
and formulas are discussed in detail. This paper also presents our comparison with human-created
expert systems via a decision tree. Experiments were executed in order to verify our approach perfor-
mance. The control group used a human-created expert system, while others were given a proposing
component to find appropriate design patterns.

Key words: algorithms, ontologies, design patterns, entropy, selection algorithm, software
engineering.

1. Introduction

Design patterns are a proven way to build high-quality software. The number of design
patterns has been rapidly rising, but management and search facilities appear to be lag-
ging behind. This is why selecting a suitable design pattern is not always an easy task. It is
especially poignant for less-experienced developers. We observed this issue while helping
local software development companies to use design patterns wisely and also when teach-
ing students design pattern-related topics. The observation was also clearly stated earlier
by different authors: “with more than 20 design patterns in the catalog to choose from,
it might be hard to find the one that addresses a particular design problem, especially if
the catalog is new and unfamiliar to you” (Gamma et al., 1998). A similar conclusion was

*Corresponding author.

844 L. Pavlič et al.

reached by Birukuo et al. (2006): “only experienced software engineers who have a deep
knowledge of patterns can use them effectively. These developers can recognize generic
situations where a pattern can be applied. Inexperienced programmers, even if they have
read the pattern books, will always find it hard to decide whether they can reuse a pattern
or need to develop a special-purpose solution” (Birukuo et al., 2006).

We developed the Ontology-Based Design Patterns Repository (OBDPR) in order to
accelerate design patterns usage. In particular, we addressed functionalities for searching
for a suitable design pattern and design pattern knowledge exchange. In this paper we in-
troduce a novel design pattern searching (proposing) approach. The developer no longer
searches for an appropriate design pattern, but rather the component on top of the OBDPR
asks the developer questions. Based on the answers given, the OBDPR then proposes a de-
sign pattern to be used. Dialogues are composed automatically from several independent
expert hints.

Using design patterns while developing software is an absolutely necessary measure
in the long term in order to keep software quality high. In this context, OBDPR is an im-
portant tool, which guarantees that when developers use it, they will solve approximately
50% (see Section 5) of their design problems using an appropriate, already-proven design
pattern. This is significantly better than 34%, which can be achieved using traditional help
(experience, online resources, books, etc. – see related work, e.g. Pavlič et al., 2014). In
addition to this, our approach does not set any additional pressure in terms of maintain-
ing fixed decision trees. Additionally, developers with experience are welcome to include
their little part of knowledge in order to help others.

“Hint” in this paper refers to a simple question-answer pairs that give partial informa-
tion on design pattern usage. An example of an expert hint would be:

What kind of separation do you want in your system?

• by parts that are aware if one (main) part is changed: you can use the “observer”
design pattern;

• by parts I can cycle through: you can use the “iterator” design pattern;
• by layers: providing an interface and an implementation: you can use the “bridge”,

“proxy”, “facade”, “adapter” or “mediator” design patterns.

This paper will present the approaches, algorithms and mathematics used in order to cap-
ture independent expert hints, combine them automatically in a dialogue and in the end,
propose design patterns that improve software developers’ performance in terms of cor-
rectly selected design patterns. This is why the research is applied to software engineering
and it combines concepts from intelligent systems and knowledge management area.

Our work was broken into several steps. Firstly, we proposed a formal ontology-based
design patterns representation. Then we implemented a repository with a design-pattern-
proposing component. An algorithm for guiding a dialogue, based on separate hints, was
developed (an algorithm selects questions dynamically from a set of unasked questions).
We also compared the algorithm with a fixed, human-created decision tree (sequence of
questions, to be asked in relation to given answers, fixed in the form of a “if-then-else” de-
cision tree by domain experts). Using an experiment, we verified if our algorithm provided
good results, when compared to a fixed, human-created decision tree.

An Entropy-Based Algorithm for Proposing a Suitable Design Pattern 845

To capture those steps, the rest of this paper is organized as follows. In Section 2 we
will present some related approaches that tried to cope with the presented issue: how to
find appropriate design patterns when needed. In Section 3, the OBDPR platform and its
capabilities are briefly presented. Section 4 proposes and describes the algorithm that can
be used to combine expert knowledge into dialogues. The algorithm and underlying math-
ematics is described in detail. Section 5 presents our experiences with the algorithm, built
as an intelligent component in OBDPR, and compares the algorithms and formulas with
dialogues, based on a human created decision tree. An experiment will also be presented.
At the end of the paper, the positive effects of using algorithms, conclusions and possible
improvements will be discussed.

2. Related Work

The most closely related work is by Kung et al. (2006) where a five-step methodology for
constructing an expert system was presented that subsequently suggests design patterns
to solve a design problem. The focus is on the collection and analysis of knowledge on
patterns in order to formulate questions, threshold values and rules to be used by an expert
shell. A prototype of the Rule-Based tool (for a subset of GoF patterns) was developed that
selects the design pattern through dialogue with the software designer to narrow down the
choices. The evaluation will also be presented in this paper. The focus is on verifying if our
entropy-based algorithm enables developers to find a suitable design pattern on the basis
of little costs (i.e. without constructing a decision tree, using a special expert system). Our
research is not aimed at forming dialogues (generating questions and answers – although
the approach does allow the further inclusion of machine-generated questions). Instead,
we primarily allow experts to give independent design hints that are automatically and
dynamically linked to dialogues.

Gomes et al. (2003) introduced an approach that is based on Case-Based Reasoning
(CBR) and WordNet. This approach is based on an idea that a system can learn to select
and apply design patterns if it can store and reuse an experience that reveals the situation
in which patterns are used. The application of a specific pattern to a specific software de-
sign is represented in the form of a design pattern application (DPA) case. A DPA case
describes a specific situation where a software design pattern has been applied to a class
diagram. DPA cases are stored in a case repository and indexed using a general ontology
(WordNet). A target class diagram is used as the problem description for which a search
for similar cases in the repository is carried out. Our approach differs in the aim that we
only wish to assist a developer in selecting a suitable design pattern and there is no need
or demand for having a context already described as a UML class diagram. Our approach
does not require a developer to prepare a model first. The information needed to identify
a suitable solution is gathered using a guided dialogue, where a developer provides infor-
mation on problem characteristics by choosing items from the lists of available answers.
This technique of gathering context is also different – we use guided dialogues.

Dietrich and Elgar (2005) introduced one of the possible formal design patterns de-
scription using ontologies in standard notation, namely OWL. Their main focus was on

846 L. Pavlič et al.

creating notation for a detailed description on pattern structure (with dedicated OWL
classes, e.g. ClassTemplate, MethodTemplate, etc.). The ontology ODOL (Object Design
Ontology) is primarily used in order to recognize design patterns that are used in exist-
ing solutions with the Design Pattern Scanner tool. This work is complementary to ours,
since we do not focus on design pattern structure, but rather aim to capture knowledge of
design patterns. However, in our ontology, we link our patterns to ODOL. Therefore, our
approach could be used in order to find suitable design patterns while an ODOL ontology
could further be used in assistance when implementing the selected design pattern.

Kampffmeyer and Zschaler (2007) are authors that employed a similar approach to
ours. They also use ontologies as a tool for the formal description of design patterns with
a similar aim: finding appropriate design patterns in a given situation. They created an
ontology, called “Design Pattern Intent Ontology”, which captures the intent of a given
pattern and a set of problems that are solved by a given pattern. Based on the ontology, the
authors prepared a proof-of-concept tool, called “The Design Pattern Wizard”. It allows
user to select several problem situations, and the tool returns all design patterns, related
to a given set of problem situations. Our approach enables us to collect expert-given hints
on design pattern usage, while the presented tool then automatically guides a short dia-
logue with user in order to select a suitable design pattern. Our ontology is simpler and
focused more on short, straightforward hints and their smart usage via a novel algorithm
for guiding a dialogue.

In the paper “A Question-Based Design Pattern Advisement Approach” (Pavlič et al.,
2014) the authors present an ontology and question-based advisement (OQBA) approach.
In the paper, ontologies are selected as a knowledge formalization technique. Several as-
pects, including design pattern structure and behaviour, are formalized in order to support
DPEX (Design Patterns Expert) tool. The main idea of the approach is similar to the one
presented in this paper: asking developers questions in order to propose appropriate design
patterns in a given context. The paper proves that such approach significantly improves
design pattern adoption in terms of selection correctness and time spent for searching.
It also proves that such approach not only helps novice developers, but also experienced
ones. Like the OQBA paper, we follow the same philosophy: asking developers questions
in order to propose a solution. However, the research presented in this paper, goes beyond
the findings of the OQBA paper. We introduce flexibility in terms of defining questions
and answers (we use the term “hint”) that are used during the guided dialogue. Question-
answer pairs are not connected by design pattern experts, but instead use our algorithms
in order to guide a dialogue. This is how we eliminate high domain expert involvement
in terms of defining decision systems, maintaining a knowledge base, etc. And most im-
portantly: we would like to build a simpler system in terms of performance (the ability
to propose a correct design pattern), close to human-generated dialogues (decision trees),
guided by if-then-else decision trees. In order to do so, we have prepared different foun-
dation – algorithm approaches, based on game theory and information entropy theory
with a mathematically sound set of formulas in order to select and combine independent
questions, etc.

This research is also based on the papers Pavlič and Heričko (2008) and Pavlič et al.

(2009). In the paper “Semantic Web as an Enabling Technology for Better Design Pat-

An Entropy-Based Algorithm for Proposing a Suitable Design Pattern 847

tern Adoption”, the authors present the OBDPR platform, which has full semantic web
potentials in terms of defining an ontology and combining design pattern knowledge. The
platform is used in order to experiment with different searching possibilities, including
guided dialogues (random dialogues, fixed dialogues, etc.). The entropy-based algorithm,
presented in this paper, is implemented on top of the OBDPR platform. Secondly, in the
paper “Improving Design Pattern Adoption with an Ontology-Based Repository” the au-
thors focus on formalizing design patterns descriptions and selecting an appropriate ap-
proach for this challenge. A set of dominant techniques (including DPML, RSL, ODOL,
LePUS, Slam-SL and others) is reviewed and discussed. The OWL-based formalization
technique has been recognized and selected as the most promising knowledge formaliza-
tion technique in the area of design patterns.

As will be discussed in more detail later, Shannon’s information entropy from infor-
mation theory (Shannon, 1948) was used in our platform. Other authors have also used
it. For example, in the paper “Question Answering Using Maximum Entropy Compo-
nents” (Ittycheriah et al., 2001) the authors use knowledge taken from an encyclopedia to
find answers for users’ questions. They use information entropy as a measure for answer
relevance. We use entropy as a measure of information given the context of a problem.
Questions and answers are used as a tool for lowering the current information entropy on
problem context, until an (experimentally determined) threshold value is reached.

3. The Platform: The Ontology Based Design Pattern Repository

The OBDPR is a platform and an application for exchanging knowledge about design
patterns. Among others, it enables simplified searching. It has a web-based user interface.
The OBDPR is not only a design pattern repository. It is ontology-based, which allows for
it to be a platform for building intelligent services.

The OBDPR is used as a proof-of-concept platform and tool within the research, pre-
sented in this paper. It was used as a design pattern repository, design pattern editor,
question-answer pair editor and platform, used during the experiment.

As such it includes several functionalities:

• Holds a repository of design pattern containers and design patterns.
• Integrates knowledge on a particular design pattern from the web and additional data

sources.
• Allows design-pattern experts to annotate patterns with additional knowledge.
• Enables users to view the repository in plain RDF/OWL form with the possibility of

executing predefined/advanced SPARQL queries.
• Transforms current RDF data to provide a user-friendly view on design patterns.
• Provides questions and answers for a particular design pattern with the means of a

FAQ (Frequently Asked Questions), which allows design-pattern experts to transfer
their implicit knowledge to less experienced software engineers.

• Indexes all the integrated data for supporting full text search capabilities of services
built on the platform.

848 L. Pavlič et al.

Fig. 1. OBDPR ontology highlights.

• Allows full access to RDF data to services built on the platform, including questions
and answers, which enable intelligent services to use an expert system-like proposing
or validating of services.

• Includes a set of real-world examples and appropriate design patterns solutions in
order to enable services to be used to train users or to demonstrate the appropriate
use of design patterns in real-world examples.

There are also three intelligent services running on top of the platform: a full-text search
service, a proposing service to support design pattern selection and a training service using
real-world examples from an underlying ontology. The OBDPR prototype includes all
design patterns found in GoF and J2EE design pattern catalogues. It is also open for other
sets of design patterns; inserting additional patterns is a straight-forward operation. GoF
(Gamma et al., 1998) and J2EE (Core J2EE Patterns, 2013) catalogues give us enough
opportunities to perform relevant experiments with design patterns in real-world examples
and with real developers. As mentioned earlier, even repositories of that size have been
shown to be problematic (Gamma et al., 1998).

The OBDPR underlying ontology is implemented using OWL (Web Ontology Lan-
guage, Recommendation by W3C) (W3C Semantic Web, 2013). A highlight ontology
fragment is shown in Fig. 1 (a detailed set of attributes is not shown). The concepts “Pat-
tern” and “PatternContainer” are used to capture knowledge on design patterns. Design
patterns are grouped into Pattern Containers. In this context, they represent sets of design
patterns (e.g. behavioural, structural design patterns, etc.). We use a hierarchical organiza-
tion of pattern containers. Every pattern container may contain several pattern containers
and patterns. This enables us to capture several divisions of design patterns, not only those
found in fundamental literature (for example GoF patterns are usually divided into three
groups – structural, behavioural and creational design patterns – but we can also find other
divisions of the same patterns). Every pattern can be included in several containers; the
same is true for containers. This happens even if multi-container membership is not explic-
itly written down, since the “isMemberOf” relation is declared to be transitive. Patterns
themselves are connected in a more logical way by means of related, similar, composed
patterns and pattern hierarchies. This information is used when we propose a design pat-

An Entropy-Based Algorithm for Proposing a Suitable Design Pattern 849

tern: the user can browse similar, related or complementary design patterns in addition to
examining the only proposed design pattern. Not only are patterns and pattern containers
themselves included in the ontology, but there are also real-world examples using patterns
to give more meaning to the OBDPR user (“TestCase” class).

The core of the ontology (Pattern, PatternContainer) is the same as the one, established
in related work of Pavlič et al. (2014). This is why expert knowledge (hints in terms of
questions and answers) is modelled in a manner that is both user-friendly and computable.
Design pattern experts can provide experiences (hints) in question-answer pairs. This en-
ables them to capture their implicit knowledge in design patterns. Not only can experts
utilize experiences to tell which design pattern should be used in a particular real-life sit-
uation (“Question” class), but they can also specify more possible solutions to real-life
situations (“Answer”) with a specified probability (“AnswerRelevance”) – see Fig. 1. This
is a value from [0,1] and tells a user how likely it is that a particular candidate (“Pattern”
or “PatternContainer”) is used when the answer to a given question is confirmed as pos-
itive. It basically tells us what the certainty is that a particular candidate is useful if the
answer is selected:

• value 0 means it is certainly not likely that the candidate is a final solution;
• value 1 means it is certainly likely that the candidate is a final solution;
• values between 0 and 1 tells us how likely it is that a particular candidate is relevant as

a final solution, i.e. 0.5 means we have no information whatsoever if the candidate is
relevant or not, 0.25 would mean it is not very likely that the candidate is the solution,
while 0.75 would mean it is quite likely that the pattern is the proper solution.

Questions, their possible answers and the connected candidates’ relevance are collected
by design pattern experts. The hint repository can change all the time, since experts are
given the opportunity to insert, edit, or even delete questions and answers on a daily basis
using the platform’s user friendly interfaces.

One example of an expert hint would be:

What kind of separation do you want in your system?

• by layers: providing an interface and an implementation −→ Proxy: 0.7, Facade:
0.7, Bridge: 0.7, Adapter: 0.7, Mediator: 0.7;

• by parts I can cycle through −→ Iterator: 1.0;
• by parts that are aware if one (main) part is changed −→ Observer: 1.0.

The numbers shown above are subjective assessments, given by domain experts. For can-
didates (Patterns or Pattern Containers) that are not mentioned in hints, we assume a value
of 0.5. The presented hint example covers just a few design patterns, others are left in a
“do-not-know”-zone (value 0.5). It could happen that several experts would give rather
different (subjective) values to the same hint. This is why trust-related concerns could
emerge. However, as will be demonstrated later in the paper, our algorithm automatically
deals with issues when the given relevance values could be contradictory. Having contra-
dictory hints in the repository only means a longer dialogue, not wrong outcome.

850 L. Pavlič et al.

4. Algorithm Driven Dialogue

In the previous section, we presented the idea of formally capturingknowledge about using
design patterns, e.g. if an inexperienced developer has a problem using existing classes
in a markedly different way, the expert would say: “Do you only need to use it, or do you
want the interface to be simplified at the same time? In the first case I would propose
using the Adapter pattern, while in the latter case it would be good to use the Facade
pattern”. This very informal means of communication is used on a daily basis. And it
is also supported by our platform. There are not many situations where one can find an
appropriate solution with only one hint. In order to connect several hints (question-answer
pairs) into a dialogue, an oft-used technique in expert systems is to connect them into a
decision tree, which can be used for guiding dialogues in pursuing a final solution. We
believe that such an approach is a) quite expensive, since you need a lot of work from
your domain experts b) inappropriate in the long-term, since updating complex decision
trees with new questions is not an easy task and c) impractical, since experts would not
be particularly motivated to connect questions to form a decision tree, whereas it is not as
taxing to just provide a hint or two.

In this section we will present our algorithm, which enables us to connect those hints
into guided dialogues.

4.1. The Goal

As previously mentioned, the main objective of our algorithm is to dynamically connect
separate hints into a guided dialogue as an alternative to constructing fixed decision trees.
There could, however, be several techniques on how to select an appropriate solution,
based on answers given to the posed questions. One could simply ask all possible questions
and use simple mathematics to select a design pattern that was given the highest relevance
through such a dialogue. A second technique would be to ask random questions for as
long as some kind of measure could not be found that a particular pattern candidate had
significantly greater value than others. We decided to guide a dialogue more cleverly:
after the user answers a question, we would choose the next most promising question. We
wanted to ask as few questions as possible. In an ideal scenario, we would ask as few
questions as would be asked if we would have a fixed, domain experts-created decision
tree. The main idea of the algorithm is therefore to select such a question at every step,
which would maximally increase the captured knowledge about the current design issue
(see Section 4.4).

Our algorithm has three possible termination states: one candidate is chosen based on
the predefined threshold, the user terminates the algorithm manually, or there are no more
questions to be asked.

4.2. Input and Output Data

The input to the algorithm would be a set of all hints (question-answer-relevance struc-
tures) and a set of all candidates in OBDPR. The algorithm would dynamically choose

An Entropy-Based Algorithm for Proposing a Suitable Design Pattern 851

questions from the set in order to give an output: a set of possible design patterns. In
ideal conditions, in the output set there would be only one outstanding appropriate design
pattern.

Let us present a set of candidates where the vector P = [p1,p2,p3, . . . , pn], where
every candidate (pattern) is presented as pi , where 1 6 i 6 n. The number of all possible
candidates is n.

In the algorithm itself, and as an output, the vector C is used. Its structure is as follows:
C = [c(p1), c(p2), c(p3), . . . , c(pn)]. Let us call vector C a “certainty vector”, where
c(pi) is the current certainty for pattern pi and c(pi) ∈ [0,1]. Its meaning is very similar
to the relevance in answers, as discussed in Section 3:

• the number 0 means that it is certainly not likely that the pattern is the final solution;
• 1 means it is certainly likely that the pattern is the final solution;
• while with 0.5 we have no information about the pattern whatsoever.

It is obvious that the initial value of vector C is c(pi) = 0.5 for all i . It is the goal of the
algorithm to employ questions until vector C is transformed as much as possible.

When vector C is evaluated with a value that is deemed good enough (at the moment
it is the experimental determined threshold), the algorithm is finished. If this is not the
case, the next most promising question is selected. In subsequent sections, we will show
how to select certain questions from a set of all unasked questions and how we propose
calculating changes in vector C, based on the answers given.

4.3. Combining Answers for the Current Certainty Vector

When the answer is given during the dialogue, vector A = [a(p1), a(p2), a(p3), . . . ,

a(pn)] is constructed. The values a(pi) are the values of relevance for a particular can-
didate in the given answer (see the example in Section 4). For candidates that are not
mentioned by answer, we use the value 0.5 (which means that we have no information on
the candidate). When changing vector C (current certainty vector) with regard to vector
A (the current answer), several guiding factors should be followed:

• Values c(pi) should remain within the interval [0,1].
• If a(pi) = 0.5, the value of c(pi) should not change, since we have no additional

information on the candidates’ relevance.
• More than a(pi) is higher/lower than c(pi), more the value c(pi) should rise/fall.

But not to a(pi) level, since we do not want one (last) answer to define the final state
of the value c(pi). There will typically be more answers given regarding the same
candidate.

• The more answers that are given, the less they should impact vector C. This is how
we want to regulate the questioning: rough at the beginning but after getting more
answers, we want to refine profile vector C in a more precise way.

Figure 2 shows one possible scenario: c(pi) should change to cnew(pi) only in cases
where a(pi) is different from 0.5. Their impact (cnew(pi)) should be somewhere between
c(pi) and a(pi).

852 L. Pavlič et al.

Fig. 2. Combining the certainty vector with the answer vector.

One of the possibilities was the method of average value (see equation (1)).

cnew(pi) =

{

c(pi)+a(pi)
2

, a(pi) 6= 0.5,

c(pi), a(pi) = 0.5.
(1)

This simple method meets all the guidance factors mentioned above. In addition, it is
also resistant to contradictory answering: if the developer provides an answer in favour of
a particular candidate and later an answer that is not in favour of the same candidate, we
are again close to 0.5 (the “do not know”-zone).

In addition to eliminating contradictory answers during the dialogue, this method also
ensures the quality of the question-answer pair-based knowledge base. Since our method
enables a lot of knowledge to be inserted without a central quality-check point, this prop-
erty is important. In cases where domain experts include contradictoryhints for the knowl-
edge base, this would just prolong the dialogue, so possible contradictory hints would
eliminate each other.

4.4. Evaluating the Current Dialogue State

The evaluation of the current dialogue state (vector C) is used to:

(a) determine if there is one candidate that can be significantly chosen as a final solu-
tion and

(b) select the next question to be asked in the hint repository.

In the first case, we calculated the evaluation value of vector C, and if the value happens
to be lower than the predefined threshold (since we base our approach on entropy theory,
a lower value is better) then the dialogue can stop. When choosing the next question,
we calculate the values of vector C with all possible answer vectors A. The algorithm
selects those questions that definitely and maximally lower the value of vector C in every
case.

An Entropy-Based Algorithm for Proposing a Suitable Design Pattern 853

Fig. 3. The worst and best situations.

Let us briefly discuss what the evaluated value of vector C would be:

• If all patterns share the same certainty, (c(pi) is the same for all i) the value should be
maximal, since such a vector does not provide any information about which pattern
to propose whatsoever (see: Fig. 3).

• The value should be minimal when one pattern has certainty 1 and all others share
certainty 0. In this case, it is not possible to add more information needed to propose
a pattern (see Fig. 3; it is trivial to guess which candidate is the winner).

• The more pattern certainties that share the value 0.5 (the “do not know”-zone), the
larger the value should be.

• Less patterns standing out from the average certainty value means a smaller evalu-
ated value. E.g. if one pattern has certainty 0.8 and all others 0.4, the value should
be lower than if two certainties are close to 0.8 and all others are 0.4. The first pos-
sibility gives us more information about which pattern to propose, while the second
one shows doubt about which of the two candidates to select.

We designed the algorithm in such a way that the evaluation method is separated from
the algorithm itself. The most promising was the formula to calculate information entropy
from vector C, as defined by Shannon (1948). The process of the dialogue would then
basically be the process of lowering the entropy value: when the developer starts the di-
alogue with the platform, the entropy value is maximal, since we have no information
regarding the proposing of the design pattern. Theoretically, if the user answers all the
questions held by the platform, the entropy would be reduced to the minimum possible
level and it would be quite simple to propose a pattern while counting answers in favour
of a particular pattern. The formula, as defined by Shannon (1948), in the case of vector C

would be:

Ent(C) = −

n
∑

i=1

c(pi) · log2

(

c(pi)
)

. (2)

One could argue that entropy is not limited by a maximum value, as defined by thermo-
dynamics and by Shannon in information theory (Shannon, 1948). However, our particular

854 L. Pavlič et al.

problem has well-known less and most entropic states (see Fig. 3), so the entropy is limited
in our case.

The formula, based on entropy, worked well and was shown to be a good guide for
selecting a question to ask. However, we observed issues when two different vectors C

were evaluated as the same, even though they contained rather different information. This
prompted us to ask more questions and have longer dialogues as a result. The reason for
this was quite clear: the Shannon’s entropy formula does not capture relationships between
individual elements, it only evaluates elements on their own and summarizes the partial
values. How to define the threshold value was also an issue: equation (2) gives entropy
values, which are dependent on the size of vector C (with a higher n value, higher entropy
values are to be expected). This is why we developed our own formula, which works on our
domain even better than the original general formula for entropy. However, all Shannon’s
original ideas about entropy (continuity, symmetry, maximum, additivity) and lowering
entropy are preserved (see Shannon, 1948).

Let us begin with some definitions: let cmax = max{ci | 1 6 i 6 n} and let count(cmax)

denote the number of pattern certainties, sharing the maximum value in vector C that
is the number of the most promising candidates. Similarly, let count(c05) = |{ci | ci =

0.5 and 1 6 i 6 n}| that is the number of pattern certainties, sharing the value 0.5 (the
“do not know” zone). Moreover, let p05 =

count(c05)
n

and pmax =
count(cmax)

n
that is p05

represents percentage of those patterns that have the value 0.5 and pmax percentage of
those patterns that share the maximum value of vector C. Finally, let c be the average
value of vector C calculated as

c =
1

n

n
∑

i=1

c(pi).

Then we calculate the relevancy of vector C in the following way:

Rel(C) = 1 − (cmax − c) · D (3)

where

D = 1 − α1 · p05 − α2 · pmax (4)

and α1 and α2 represent certain positive weights that must be applied to each factor. It must
hold that α1 + α2 = 1.

In the formula of Rel(C) factor D plays an important role in a way of controlling the
procedure of asking questions. In the beginning, we want to ask general questions and later
on we begin by asking certain questions based on the previous answers. More precisely, the
main idea of factor D was to incorporate the percentage of all design patterns, involved in
the dialogue (n subtracted by the affected candidates, then divided by n). In the beginning,
factor D is close to 0, but while a dialogue progresses, factor D more closely approaches 1.
The testing has shown that the formula works best if we give some weight to factors p05

and pmax. In our case, we have weight α1 = 0.75 in favour of having candidates addressed

An Entropy-Based Algorithm for Proposing a Suitable Design Pattern 855

by even one question and it is 25% important that we have few candidates that significantly
step out of the average, therefore α2 = 0.25. With trivial mathematical derivation, we end
up with the formula shown in equation (4). One might also choose different values for α1

and α2 in which α1 + α2 = 1 (α1 = 0.6 and α2 = 0.4, α1 = 0.7 and α2 = 0.3, etc.) for
cases where one would like to find the best combination. However, it was not the aim of
our research to prove what the best working ratios were.

Summing everything up we end up with the formula of D, the value of which lies in
[0,1]: obviously p05,pmax ∈ [0,1], therefore α1 · p05 ∈ [0, α1] and α2 · pmax ∈ [0, α2].
Moreover, α1 · p05 + α2 · pmax ∈ [0, α1 + α2] = [0,1] which leads to D ∈ [0,1].

Now let us return to equation (3): observe that also cmax −c ∈ [0,1], therefore Rel(C) ∈

[0,1]. If cmax − c is close to 1 (this is in case when all but some values of ci are close to 0
and one close to 1 (the case we want to end up with), the value of Rel(C) will be close
to 0, which is the desired entropy. In the case of the vector C that we start with (that is
ci = 0.5 for all i), the value of Rel(C) = 1 (because cmax = c = 0.5), which is the highest
entropy – we do not have any information yet.

4.5. The Algorithm

In this section, we will present the whole algorithm, as discussed throughout this paper.
The function “guide_dialog” is the primary one. It is used to select, ask questions and
collect answers until its termination because of a) the user b) a solution has been selected or
c) there are no more questions to be asked. Since the user observes the progress of vector C

all the time (visual element in OBDPR), it is easy to see when a particular candidate is
starting to gain. The user is also given the opportunity to skip questions that he or she does

1: create a set of all questions QUE
2: create a set of all candidates P
3: procedure guide_dialog(QUE, P)

4: THRESHOLD = 40.45
5: create vector C, ci = 0.5, 1 6 i 6 n, n = candidates number
6: while QUE not empty do

7: Q = select_question(QUE,C)
8: if Q == empty then

9: print C, terminate
10: end if

11: remove Q from QUE
12: collect answer ANS

13: if ANS! =“do not know” then

14: create vector V_ANS from answer ANS
15: C = combine(C,V _ANS), print C

16: if (user select to finish) or (Rel(C) < THRESHOLD) then

17: terminate
18: end if

19: end if

20: end while

21: end procedure

856 L. Pavlič et al.

1: # NQUE is a set of all unasked questions
2: # TS is a current state of certainty vector
3: function select_question(NQUE, TC) → question

4: create vector MIN; MIN[i] = 1, 1 6 i 6 n

5: current_rel = Rel(T C)

6: # verify all possible answers, find max change in TC,
7: # even if worse answer is given
8: for for every question in NQUE do

9: min_difference = 1
10: for every possible answer do

11: create vector A from answer
12: tempC = combine(TC,A)
13: created_diff = current_rel − Rel(tempC)
14: if created_diff < min_difference then

15: min_difference = created_diff
16: end if

17: end for

18: MIN[current question] = min_difference
19: end for

20: find index i of maximal value in vector MIN
21: if MIN[i] < 0 then

22: return no question # no answer can increase the knowledge
23: end if

24: return NQUE[i]

25: end function

1: # C is current state of certainty vector
2: function Rel(C) → Rel

3: calculate progress factor from C as D = 1 − α1 · p05 − α2 · pmax

4: calculate relevancy of C as Rel(C) = 1 − (cmax − c) · D

5: return Rel
6: end function

1: # C is certainty vector
2: # A is answer to combine with
3: function combine(C,A) → cnew

4: create vector CN; CN(pi) = c(pi)

5: change values in CN as CN(pi) =
c(pi) + a(pi)

2
if a(pi) 6= 0.5

6: return CN
7: end function

not understand or does not know the answer to. The threshold value of 0.45 for Rel(C)

was experimentally determined (meaning that during simulations and real experiments,
lower values did not improve the quality of the proposed patterns; they only prolonged
the dialogue). This value can, however, be easily changed in order to investigate its ideal
value.

An Entropy-Based Algorithm for Proposing a Suitable Design Pattern 857

The function “select_question” receives a list of all unasked questions and the current
state of vector C. The output is a question to be asked, if possible.

The function “rel” calculates the relevance value of vector C as discussed in Sec-
tion 4.4.

The function “combine” accepts vector C and it combines with a vector that is cre-
ated when the answer is given. This function is also used when algorithms combine all
questions with the current vector C in order to determine the best question to ask.

5. The Experiment

With this experiment, we wanted to test the hypothesis: entropy-based algorithm for guid-
ing a dialogue is not significantly different (in terms of correctness) than a fixed, human-
created decision tree. The type of guiding the dialogue was an independent variable. We
measured developer decision correctness and the length of dialogues.

Input data for experimental purposes was acquired by domain experts (experienced
senior developers and architects from partner companies and researchers with significant
design pattern knowledge). We ended up with 36 hints, dealing with 32 different design
patterns. Every hint was connected with an average of 2.7 candidates (minimal 2, max-
imal 4), which implies that these hints were real-world simple independent hints – not
artificial, perfectly polished ones. One could argue that the presented numbers are low.
However, it was our idea that volumes were something that we had to live with on a daily
basis as a developers, since hints came out of a real environment. When taking into ac-
count the presented formulas and algorithms, if our approach worked well with volume
of that size, then there is no objective obstacle to it not working even better when a larger
knowledge base is available.

For the purposes of comparison, we also asked domain experts to construct a com-
peting expert system with a fixed decision tree (using the same hints, not new ones). The
same hints from the repository were fixed in a simple decision tree, with simple if-then-
else rules that connects questions and answers to the final proposal. Basically, the fixed
dialogues with fixed outcomes were created in an opposition to our dynamic, algorithm
driven dialogues. With such a created fixed tree, it was possible to guide 72 different di-
alogues, 3 of which gave no solution to the user. We believe that such a tree can guide
dialogues the best, since it was completely constructed and verified by domain experts
from the industry and academy. It was our aim to figure out how well our algorithm per-
forms, compared to a human-, hand-constructed tree.

We invited 40 candidates to be involved in the experiment. They were all given 19
simple cases (please find typical one later) where design patterns might be used. 17 of the
candidates were developers from industry with several years of experiences in software
development, 23 of them were final-year IT students with a solid knowledge of object-
oriented systems, software development, architectures and best practices. They were all
asked to solve as many examples as possible. Half of them (industry people and students,
mixed) were solving cases using dialogues, guided by a fixed decision tree, while half were

858 L. Pavlič et al.

using our algorithm. We measured how many questions were answered in every dialogue
and if they managed to find an appropriate design pattern.

Typical case during the experiment:
You are developing a PhoneBook class. It will enable you to manage your contacts in your
mobile phone. A PhoneBook class should reuse already existing classes that enable the
easy use of mobile phones, for example calling contacts or sending an SMS to a contact. At
development time you do not know what the classes should look like, so you use your own
dummy-class MyPhone. After getting the class AndroidPhone you notice that MyPhone
and AndroidPhone are similar but have different methods covering the same functionality.
You want to use the AndroidPhone class, but are not willing to change your classes and
keep using MyPhone to use AndroidPhone functionalities.

Which design pattern would you use to solve the issue?
The results are as follows:
Candidates using a fixed decision tree were guided with dialogues containing 3–7 ques-

tions. The average dialogue had 4.3 questions. They managed to find 48% (standard devi-
ation 21%) of the right solutions.

Candidates using our algorithm were asked to answer 7–10 questions in each dialogue
(average 8.5), and they answered an average of 1.2 questions in a dialogue with “do not
know” (maximum 3). They managed to find 45% (standard deviation 32%) of the right
solutions.

A typical recorded dialogue, guided by our algorithm:

System: Do you want to change the way that existing functionalities are used in your
class?

User: No.
System: What behavioural aspects do you want to change?
User: The way the objects communicate.
System: What do you want to do?
User: Define or change class architecture in my system.
System: How do you want to connect to the interface of the existing class?
User: I will use my own interface that is different from the existing one.
System: Do you have many methods to choose from in the runtime?
User: No.
System: Do the objects share the same behaviour?
User: Yes.
System: Do you want to have the possibility of returning to the previous object state?
User: No.
System: Do you want a collection of objects to react to a change in a single object?
User: No.
System: You should use pattern Adapter.

The results, given by the dialogue, guided by fixed, expert-created decision tree and
those, guided by entropy-based algorithm have proven not to have a statistically signif-
icant difference. In previous research (Pavlič et al., 2014) we showed that the question-
based approach helps in terms of design pattern identification correctness. This is why

An Entropy-Based Algorithm for Proposing a Suitable Design Pattern 859

the outcome is not surprising. However, developers had to answer more questions using
our algorithm guided dialogue, but on the other hand, our approach means no additional
effort for domain experts (e.g. constructing a fixed dialogue or changing the existing with
new question-answer pairs). We also see a lot of potential in integrating several knowl-
edge bases of separate hints and dialogues, having all hints incorporated would then be a
logical consequence.

The correctness rate (45% and 48%) might not sound like a lot in terms of finding
a correct design pattern while designing software. However, it should be noted that this
does not mean that developers are designing their software incorrectly in more than 50%
of cases. It means that they are not using the appropriate, already-proven design patterns
for solving design problems. Instead of this, they are inventing solutions on their own.
One could say that in over 50% of cases, software architects are reinventing the wheel.
The correctness rate, achieved in this experiment, is better than conventional help (i.e.
books, online resources, experiences) – see Pavlič et al., 2014 by a factor of 1.48.

6. Conclusions

The experiments showed that using our algorithm did not mean that the results, in terms
of correctness, would be different if domain experts invested a lot of effort to create a fixed
decision tree. The dialogue length was also satisfactory. With 36 hints, and 32 patterns,
less than a quarter of the chosen separate hints would give one enough information in
order to decide on which design pattern to include. Having more hints would lower that
number even further.

The experiment shows that candidates, using a fixed, human-created decision tree,
were guided by dialogues with an average length of 4.3 questions. They managed to find
48% of the right solutions (aligned with already proven and published design patterns).
Candidates using our algorithm were asked 8.5 questions on average per case. Correctness
rate was 45% which is not statistically different.

Our approach provides the same performance without high domain expert involve-
ment. However, the dialogue length is rather longer. Having the possibility to integrate
hints from several domain experts, we could say that our algorithm enables a straight-
forward knowledge transfer from experienced developers to inexperienced ones. Such a
knowledge transfer was a goal when design patterns were introduced in the first place
(Gamma et al., 1998), but large, printed design pattern catalogues have made this idea
impractical.

While our approach offers promising answers and results, it also triggers new questions
and further research to be done. One thing to be done is definitely to improve the formula
for guiding the algorithm. Another detail that could be addressed even more is research on
threshold values – how many answers would be enough to further improve the quality of
the dialogues? The approach could also be applied to development tools as a handy plug-
in while developers are in doubt about which, if any, design pattern to use. The approach
could also be applied to other, non-design pattern-related fields. The experiment may also

860 L. Pavlič et al.

have to be repeated with a larger knowledge base. Although the formulas were designed
not to be affected by knowledge base size, it would be interesting to see how dialogue
length is affected by a larger question-answer corpus (i.e. more than 1000 independent
hints). We designed the formulas and algorithms in such a way that a larger knowledge
base provides more opportunities for lower entropy in order to propose the pattern. Thus,
we expect that having more questions can only be a benefit.

In this paper, we have shown that the OBDPR is not only a platform for the easy ex-
change of knowledge and experiences about design patterns; its ontological data layer also
enables some intelligent services. One of those is definitely the algorithm that takes sev-
eral hints from several authors and connects them into a guided dialogue. During the time
that we performed this research, and while writing this paper, we repeated the experiment
several times (with students, as a part of software development courses). We observed the
same results (with slight but insignificant deviations) as presented in this paper. Industry
partner responses to our research have also been positive.

References

Birukuo, A., Blanzieri E., Giorgini P. (2006). Choosing the Right Design Pattern: The Implicit Culture Approach.
Technical report DIT-06-007. Department of Information and Communication Technology, University of
Trento.

Core J2EE Patterns. http://www.corej2eepatterns.com/. Last visited in July 2013.
Dietrich, J., Elgar, C. (2005). A formal description of design patterns using OWL. In: Proceedings of the 16th

Australian Software Engineering Conference, IEEE Computer Society, pp. 243–250.
Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1998). Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley.
Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P., Ferreira, J., Bento, C. (2003). Selection and reuse of

software design patterns using CBR and WordNet. In: Proceedings of the 15th International Conference on

Software Engineering and Knowledge Engineering, SEKE 2003, pp. 289–296.
Ittycheriah, A., Franz, M., Zhu, W., Ratnaparkhi, A., Mammone, R.J. (2001). Question answering using maxi-

mum entropy components. In: Second Meeting of the North American Chapter of the Association for Com-

putational Linguistics on Language Technologies 2001, Pittsburgh, Pennsylvania, June 1–7, 2001. North
American Chapter of The Association for Computational Linguistics, Association for Computational Lin-
guistics, Morristown, NJ, pp. 1–7. doi:10.3115/1073336.1073341.

Kampffmeyer, H., Zschaler, S. (2007). Finding the pattern you need: the design pattern intent ontology. In:
Proceedings of the 10th International Conference on Model Driven Engineering Languages and Systems

(MoDELS), Vol. 4735. Springer, pp. 211–225.
Kung, D.C., Bhambhani, H., Shah, R., Pancholi, G. (2006). An expert system for suggesting design patterns:

a methodology and a prototype. In: Khoshgoftaar, T.M. (Ed.), Software Engineering with Computational

Intelligence. Kluwer.
Pavlič, L., Heričko, M. (2008). Semantic web as an enabling technology for better design pattern adoption. In:

19th Central European Conference on Information and Intelligent Systems, Varaždin, Croatia. University of
Zagreb, Faculty of Organisation and Informatics.

Pavlič, L., Heričko, M., Podgorelec, V., Rozman, I. (2009). Improving design pattern adoption with an ontology-
based repository. Informatica, 33(2), 189–197.

Pavlič, L., Podgorelec, V., Heričko, M. (2014). A question-based design pattern advisement approach. Computer

Science and Information Systems, 645–664.
Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27.
W3C Semantic Web . https://www.w3.org/standards/semanticweb. Last visited in March 2016.

An Entropy-Based Algorithm for Proposing a Suitable Design Pattern 861

L. Pavlič received his PhD degree in computer science in 2009 from the University of
Maribor, Slovenia. He is currently a senior researcher with the Institute of Informatics,
FERI, at the University of Maribor. His main research interests include all aspects of
IS development, reuse in software engineering, object orientation, information system
architecture, Java, UML and XML-related technologies, semantic technologies, intelligent
systems, big data and nosql. He has appeared as an author and co-author in several peer-
reviewed scientific journals. He has also presented his work at a number of international
conferences. In addition, he has participated in many national and international research
projects.

M. Heričko is a full-time professor at the Institute of Informatics. He is the head of the
Information Systems Laboratory and head of the Institute of Informatics. He received his
PhD in Computer Science from University of Maribor in 1998. His main research interests
include all aspects of information systems development, software and service engineering,
agile methods, process frameworks, software metrics, functional size measurement, SOA,
component-based development, object-orientation, software reuse and software patterns.
Dr. Heričko has been a project or work co-ordinator in several applied projects, project or
work co-ordinator in several international research projects and committee member and
chair of several international conferences.

V. Podgorelec is a professor of computer science at the University of Maribor, Slovenia.
His main research interests include intelligent systems, semantic technologies, and med-
ical informatics. He has been participating in many international research projects and is
author of several journal papers on computational intelligence, software engineering and
medical informatics. Dr. Podgorelec has worked as a visiting professor and researcher at
several universities around the world, including University of Osaka, Japan, University of
Nantes, France, University of La Laguna, Spain, University of Madeira, Portugal, and Uni-
versity of Applied Sciences Seinäjoko, Finland. He received several international awards
and grants for his research activities.

P. Repolusk received her PhD degree in mathematics in 2013 from the University of
Maribor, Slovenia. She is currently working as a teaching assistant at Faculty of Natural
Sciences and Mathematics at the University of Maribor. Her main research interests in-
clude combinatorics, particularly graph theory, especially different types of domination
and convexity. She has appeared as an author and co-author in several peer-reviewed sci-
entific journals and presented her work at a number of international conferences.

862 L. Pavlič et al.

Entropija grindžiamas algoritmas, skirtas tinkamiausiems tipiniams

projektavimo sprendimams parinkti

Luka PAVLIČ, Marjan HERIČKO, Vili PODGORELEC, Polona REPOLUSK

Straipsnyje sprendžiamas uždavinys, kaip projektuojamai programai pasirinkti tinkamiausius tipi-
nius projektavimo sprendimus. Žinomų tipinių programų projektavimo sprendimų skaičius sparčiai
auga, bet esamos jų tvarkymo ir paieškos priemonės atsilieka nuo šios spartos. Straipsnyje pasiū-
lyta tinkamiausių tipinių projektavimo sprendimų paieškos ir žinių apie tokius sprendimus mainų
platforma. Pasiūlytoje platformoje projektuotojui nereikia pačiam ieškoti jam tinkamiausio tipinio
projektavimo sprendimo. Vietoje to dirbtinio intelekto metodus naudojantis platformos komponen-
tas klausia projektuotojo, kokią projektavimo problemą jam reikia išspręsti, pats pasiūlo jam tin-
kamiausius problemai spręsti tipinius sprendimus. Kitaip nei kitos panašaus tipo priemonės, mūsų
pasiūlytas komponentas nėra sukurtas kaip ekspertinė sistema. Tokia sistema veikia per lėtai. Mes
naudojame kryptingą dialogą, kuriame klausimai generuojami automatiškai kombinuojant įvairius
skirtingų autorių parengtus informacijos šaltinius. Straipsnyje išsamiai aprašyti tam naudojami algo-
ritmai su atitinkamomis formulėmis. Straipsnyje taip pat yra aprašyti eksperimentai, vykdyti mūsų
komponento ir sprendimų medžio metodą naudojančios ekspertinės sistemos veikimui palyginti.

