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Abstract. In some recent papers a discussion on global minimization al-
gorithms for a broad class of functions was started. An idea is presented here
why such a case is different from a case of Lipshitzian functions in respect with
the convergence and why for a broad class of functions an algorithm converges
to global minimum of an objective function iff it generates an everywhere dense
sequence of trial points. N
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1. Introduction. In Pinter (1983) the convergence of global
optimization methods is considered for a class of continues func-
tions and in Pinter (1986a, 1986b) for ! = UrsoFL where Fr is a
class of Lipshitzian function with Lipshitz constant L. It is stated
there that the algorithms satisfying some requirements (axioms)
generate the sequences of trial points which only limit points are the
points of global minima of the objective functions f(z), z €ACR".

In the notes of Zilinskas (1989a, 1989b) it is shown that for
such broad classes of functions as F' or a class of continues func-
tions the method converges to global minimum iff it generates an
everywhere dense sequnce of trial points z;. In Pinter (1991) this
statement is interpreted incorrectly. Some correct examples are
presented there considering class Fi but not #'. No critics towards
the type of convergence in case of minimization of Lipshitzian func-
tions with known constant was in the notes of Zilinskas (19892,
1989b) which are formulated as a mathematical theorem without
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important problems in global optimization theory it seems necces-
sary to present to the comunity of global optimization the main
"arguments of Zilinskas (1989&, 1989b) to avoid their incorrect in-
terpretation.

2. Paradigm of designing the numerical algontms ‘The
numerical algorithms (integration, search for a zero, minimization
etc.) normally are designed for a class of functions F which may be
defined qualitatively (e.g., convex, quadratic etc.) or qualitatively
and quantitatively (e.g., Lipshitzian functions with Lipshitz con-
stant L). Sometimes an algorithm is defined heuristically without
specifying a class of functions explicitly, but depending on some
parameters which specify a favourable class of functions implicitly.
For a given class of functions an optimal algorithm may be de-
fined or complexity of a specific algorithm estimated ( see Traub
and Wozniakowski, 1980). :

* In a general case a deterministic algorithm d(I#) is a sequence
of functions d;(z;,y;, j = 1,...,i — 1,Ig), i = 1,2,.;.‘," where z; =
dy € A, z; = di(zj,y;, j = 1,...,i = 1,Ir) € A and Ir is a vector of
parameters, dependmg on mformatlon on F . The variable y; may
be substituted by a vector containing not only the function values
but also the derivatives at point z;, but such a generalization is not
essential for this consideration. The algorithm d = (d;,d3,...) may
be defined, e.g., maximizing an optimality criterion in respect with
F or as mentioned before heuristicaily without explicit specifying
of F. ] o : ) )

To apply an algorithm to a specific problem the objective func-
tion should be embedded into a class of functions F choosing a vec-
tor Ir. We would like to stress class here because a generalization
of the results which are correct, e.g., for Fr, to ' may be not triv-
ial. Omwthe ot}i‘ei' hand the arbitrarily different choice of parameters
for different functions makes not impossible an algorlthm finding a
global minimum in the first iteration. -

Some broad: classes (continues functions or F') are defined

qualitatively without parameters. The corresponding algorithms
should also be without any parameters. If tiiey a.e introduced then
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~the (. maybe implicit) orientation to a subclass of a considered class
is - meant there. When Ir is fixed, a deterministic algorithm gener-
ates the same sequence of trial pomts z; also for different functions
Wik ), f2(-) for which however fi(;) = fozi), i =1,2,.... The idea of
Zilinskas (1989a, 1989b) was that if the sequence of the points z; is
not everywhere dense in A then in a broad class of functions, e.g.,
continues or F', there exist different functions with different global
minima which coincide at the points z;. Therefore an algorithm
should generate an everywhere dense sequnce of points z;.to guar-
antee the convergence for every function of the considered broad
cla.ss. ‘

3. Adaptive methods. In practical prob]ems very often the
qualitative information on an objective function corresponds to
that used to justify an optimization algorithm, but the quanti-
tative information is not available. For example, the practical con-
tinues problems are, as a rule, Lipshitzian, but the Lipshitz con-
stant is unknown, .what corresponds to the assumption f(:) € F L
There exist two possibilities: to choose a more or less justified
constant (and to use an algorithm for Fr) or construct a specific
algorithm (theoretically without parameters in this case) for a class
F!. The third possibility is a constructive adaptation: to try to es-
timate L from the data obtained in the course of optimization, i.e.,
L; = Lij((zi, %), f = 1,...,5). For the statistical models in control
theory and optimization such an adaptation is justified by the sta-
tistical features of an estimate (Torn and Zilinskas, 1989). We will
‘not discuss here the justification of the estimates of parameters for
deterministic models (it does not seem possible if.the sequence z;
is not everywhere dense in A) but only mention that in this case z;
depends only on z;,y;, j = 1,...,i — 1. .Therefore an a,da,ptive algo-
rithm for a class F! generates the same sequence for the different
functions which coincide only at z;. ‘

4. Type of convergence. If the points z; are dense every-
where in A then continues functions coinciding at z; are identic.
If they are not dense everywhere in A then jn a broad class of
functlons (cpntmues or F') it is possible to construct a function
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which coincides with a given function at z; but differs from the
latter arbitrarily much at the point which is not a limit point of
"z;. As shown above the algorithms (also adaptive ones) designed
for the broad class of functions use only information on (z;, ;) and
generate the same sequences z; for different functions (also with
different points of global minima) if they only coincide at z;. This
contradicts to the statement of Pinter (1983, 1986a, 1986b, 1991),
‘that only limit points of z; are the pomts of global minimum of an
objective function. ~

The latter type of convergence is characteristic for the case
of more narrow than F' class of functions, e.g., Lipshitzian (with
known constant) one. This case is considered in the specific al-
gorithms used as the examples in papers of Pinter (1983, 1986a,
1986b, 1991). It seems that namely this case (contrary to the for-
mulation) is meant in the cited papers since it is mentioned by
Pinter (1991) that for an objective function the corresponding Lip-
shitz constant L = L(f) is meant. But this means that the Lipshitz
‘constant is known and the usual Lipshitzian case but not a gener-
alization for the case of F! is considered. -For the class of continues
functions or F ﬁherefore a safe constant for the algorithm could
not be choosen. IT he statement of Zilinskas (1989a, 1989b) on the
everywhere dense convergence is valid only for a broad class of func-
“tions (continues or F' ) but not for F. If the Lipshitz constant may
be estimated automatically (e.g., by means of interval arithmetic)
then the adaptation in the initial Lipshitzian class of functions Fi
is possible: to use different smaller than L constants for subsets of
A, e.g., Torn and Zilinskas (1989).

~Concluding our arguments we would like to repeat that an algo-
rithm converges to the global minimum of every objective function
from the broad -class (continues or F') iff it generates the every-
where dense in A4 sequence z;.
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