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.A.batract. In some recent papers a diacu..ion on global minimizational­
gorithms for a broadclu. of functions wu started. An idea is presepted here 
wby such a ca.ee i. diff'erent from a cue of Lipshitzian functions in respect with 
the convergence and why for a broad clUII of {unctions an algorithm cC)nverges 
to global minimum of an objective function iff'it generates an everywhere dense 
sequence of trial points. 
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1. Introduction. In Pinter (1983) the convergence of global 
optimization methods is considered for a: class of continues func­
tions and in Pinter (19861., 1986b) for F' = UL>oFL where FL is a 
class of Lipshitzian function with Lipshitz constant L.1t is stated 
there that the algorithms satisfying some requirements (axioms) 
generate the sequences of trial points which only limit points are the 
points of global minima of the objective functions f(z). z E A C R,fl. 

In the notes of Zilinskas (1989a, 1989b) it is shown that for 
such broad classes of functions as F' or a class of continues .func­
tions the method converges to global minimum iff it generates an 
everywhere dense sequnce of trial points Zj. In Pinter (1991) this 
statement is interpreted incorrectly. Some correct exa.mples are 
presented there considering class FL but not F'. No critics to,,:,ards 
the type of convergence in case of minimization of Lipshitzian func­
tions with known constant was in the notes of Zilinskas (198980, 
1989b) which a.re formulated as a. mathematical theorem without 
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important problems in global optimization theOry it seems necces­
sary to present t.o the comunity of global optimization the main 

. arguments of Zilinskas (1989a, 1989b) to avoid their incorrect in-
terpreta.tion. . 

;. ·2.: Paradigm of designing .the Dumeriw algoritms. 'The 
numeric&.l algorithms (integration, search for a zero, minimiza.tion 
etc.) norm~.ny are designed for a class offunctions F which may be 
defined qualitatively (e.g., convex, quadratic etc.) or qualitatively 
and qua.ntitatively (e.g.) Lipshitzian functions with Lipshitz con­
stant L). Sometimes an algorithm is defined heuristically without 
specifying a class of functions explicitly, but depending on some 
parameters which specify a favourable class of functions implicitly. 
Fqr a 'given claSs offunctions an optimal algo~ithm maybe de­
.fined. or complexity o,f a. specific algorithm estimated (see Traub 
and Wozniakowskf, 1980). . 

In a general case a deterministic algorithm d(I,.) is a sequence 
of functions di(zj,YJ, j = 1, ... ,i - 1,1,.), i = 1,~, .. :; wher~ Z1 = 
d1 E A, Zi = di(Zj·,y;. j = 1, ... ,i ..,.1,1,.) E A and I,. is a vect.Qr of 
parameters, depending on information on F • The variable 1/j may 
be s.ubstituted by a vector containing not only the fu,nction values 
bu;t also the der~tives at point Zj, but such a generalization is not 
ess~ntial for this consideration. The algorithm d = (d1 , d2, ..• Lmay 
be defined, e.g., jIDaXhllizing an optimality criterion in respect.with 
F or as mentioned before h~Ufj.sticaily without explicit ~pecifyiDg 
of -:F. 

To apply an algorithm to a specific problem the objective func­
tion should be embedded into 8; class of functions F choosing a vec­
tor"I,.. We would like to stress class 'here because a; generalization 
of tbe results which arc correct, e.g., for FL to F' may. be not triv- . 
ial. On' the other hand the arbitrarily different choice of parameters 
for different functions makes riOt impossible an algorithm finding a 
global minimum in the first.iteration. 

Some broad· classes (continues functions or F') are. d~fiiled 
qualitatively Without parameters •. The corresponding algorithms 
should ahro be without any parameters. If they a..e introduced then 
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,the ( m<tybe implicit) orientation to a subclass of a considered class 
is ·meant there. When IF is fixed, a deterministic ~gorithm gener­
ates the same sequence of trial points Zi also for. different functions 
11(')' 120 for which however !1(Zi) = 12(zi), i = 1,~, ... ~ The idea of 
Zilinskas (19898., 1989b) was that ifthe sequence ofthe points Xi is 
not everywhere dense in A then in a broad class of functions, e.g., 
continues or :Fl, there exist different functions with different global . . 

minima which coincide at th~ points Xi' Therefore an algorithm 
should generate ·an everywhere dense sequnce of points x,to guar­
antee th~ convergence for every function o~ the considered broad 
class. .... 

-;. 

3. Adaptive methods: In practical problems very often the 
qualitative information on an objective function corresponds to 
that used to Justify arioptimization algorithm, l?ut the quanti­
tative information is not available. For example, the practiced con­
tinues problems are, as· a rule, Lipshitzian, but the Lipshitz con­
·stant is unknown, ;whatcorresponds to the assumption 10 E :Fl. 
There exist two possibiliti~s: to choose a more or less justified 
constant (and to use an algorithm for Fd or construct a specific 
algorithm (theoretically without parameters in this case) for a: class 
:F'. The third possibility is a constructive adaptation: to try to es­
timate L from the data obtained in the course of optimization, i.e., 
Lj.= Lj«Xi,Yi), i = 1, ... ,i). For the statistical models in control 
theory and optimization such an adaptation is justified by the sta­
tistical features of an estimate (Torn and Zilinskas, 1989). We will 
not discuss here the justification of the estimates of parameters for 
deterministic models (it does not seem possible if. the sequence Xi 

is not everywhere dense in A) but only mention that jn this case Xi 

depends only on Zj, Yj, i = 1, ... , i - L . Therefore an adaptive algo­
rithm for a class :F' generates the same sequence for the different 
functions which coincide only at Zi. 

4. Type of convergence. If the points Zi are dense every­
where in A then continues functions coinciding at Zi are identic. 
If they are not dense everywhere in A then ,in a. broa.d class of 
functions (conti~ues or :Fl ) it is possible to construct a function 
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which coincides with a given function at Zi but differs from the 
latter arbitrarily much at the point which is not a limit point of 

. Zi. As shown above the algorithms (also adaptive ones) designed 
for the broad class of functions use only informa.tion 011 (Zi' Yi) and 
generate the same sequences Zi for different functions (also with 
different points of global minima) if they only coincide at Zi. This 
contradicts to the statement of Pinter (1983, 1986a, 1986b, 1991), 

. that only limit points of Zj are the points of global minimum of an 
objective function. 

The latter type of convergence is characteristic for the case 
of more narrowthab T' dass of functions,e.g., Lipshitzian (with 
known constant) one. This case is considered in the specific al­
gorithms used. as the examples in papers of Pinter (1983, 1986a, 
1986b, 1991). It seems that namely this case (contrary to the for­
mulation) is meant in the cited papers since it is mentioned by 
Pinter (1991) that for an objective function the corresponding Lip­
shitz constant L = L(J) is meant. But this means that the Lipshitz 
constant is known and the usual Lipshitzian case but not a gener­
alization for the cpse of :F' is considered. -For the class of continues 
functions or T' ~herefore a safe constant for the algorithm could 
not he choosen. (The statement o.f Zilinskas (1989a, 1989b) on the 
everywhere dense convergence is valid only for a broad class of func-

. tions (continues or T' ) but not for FL. If the Lipshitz constant may 
be estimated automatically (e.g., by means of interval arithmetic) 
then the adaptation in the initial Lipshitzian class of functions FL 
is possible: to use different smaller than L constants for subsets of 
A, e.g., Torn and Zilinskas (1989). 

--Concluding our arguments we would like to repeat that an algo­
rithm converges to the global minimum of every objective fUnction 
from the broad -class (continues or T') iff it generates the every­
where dense in A sequence Zi. 
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