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Abstract. We present a new root cause analysis algorithm for discovering the most likely causes of

differences found in testing results of two versions of the same software. Problematic points in test

and environment attribute hierarchies are presented to a user in a compact way which in turn allows

saving time on test result processing. We have proven that for clearly separated problem causes our

algorithm gives an exact solution. Practical application of described method is discussed.
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1. Introduction

Testing results are an important indicator of overall application state regardless of whether

it is in active development or maintenance phase. During the active development phase,

testing results can help developers to understand if the current status is consistent with the

plan and manage required resources accordingly. However, during the maintenance phase,

testing results are necessary to verify if application after internal or external changes still

performs as expected. Software maintenance has been identified as the most costly and

difficult phase of software life cycle, so ability to measure a quality of the application is

critical for managing cost and time (Briski et al., 2008).

If an application has a simple structure and is designed for a single environment, then

testing can be performed, and testing results can be processed easily. We address large

applications, i.e. systems of a complex structure implementing a lot of different features

designed for various environments, e.g. multiple operating systems, browsers, architec-

tures. Testing of such applications on several environments demands coverage by huge

data sets and may produce a massive volume of testing results. This volume grows enor-

mously in software regression testing (SRT) (Dustin, 2002) when the same tests are run on

new builds of software frequently. Besides, to fulfill principle “any testing process should

include a thorough inspection of results of each test” (Myers et al., 2012) processing of

testing results inevitably has to be automated. Such automation is the subject of our paper.

*Corresponding author.
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It should be pointed out that we deal only with results of regression testing, not with

design and content of tests. Therefore, such approach is suitable for any software develop-

ment project regardless of programming language or software development methodology

as long as testing is performed in a reasonably frequent manner. Testing personnel can use

our approach on top of almost any testing process without essential additional effort.

Executing of individual tests in a particular environment results in execution status

where “successful” or “failed” are the most usual (see Section 3). Not all results of

failed tests are equally important. For example, failure of a particular test in all tested

environments after most recent changes in application points to a more serious problem

than the expected failure known for past month in one environment. To point out sig-

nificant failures we use technique known as root-cause analysis (RCA) (Wilson, 2014;

Rooney and Vanden Heuvel, 2004) including hierarchical structuring and higher abstrac-

tion level from orthogonal defect classification (IBM, 2013; Chillarege, 2013). We present

a new RCA algorithm of processing SRT results of two builds to suggest the most likely

causes of differences between test execution statuses.

RCA is developed and used in various contexts and fields (Wilson, 2014; Rundle,

2003) and comprises several phases. Our algorithm corresponds to root cause identifica-

tion phase (Rooney and Vanden Heuvel, 2004) and works with test hierarchies, attributed

hierarchies of testing environments, and test results acquired by executing test cases in

testing environments. Although test organization in hierarchies is not mandatory, such or-

ganization will allow the proposed algorithm to generalize problems by features. Similarly,

having multiple attributes for testing environments are not necessary, but providing them

to the algorithm will let it produce results that are more compact. So we offer a possibility

to automatically group outcomes of the testing process in the larger blocks representing

essential aspects of the developed software.

We also involve graph-based technique (GBT) to perform RCA since a graph is a well-

defined, well-studied structure appropriate to represent both hierarchies. We construct di-

rected acyclic graphs with attributed vertices representing objects on which failure may

take place. Arcs represent structural dependencies between objects and have direction

from more general objects to specific.

During RCA, we obtain a subgraph of a hierarchy of objects where the most important

failures appear. Source vertices of this subgraph give a clue to developers about the most

general features implementation of which cause failure. If the reported object seems too

general for a developer, we offer a possibility to drill down till the most specific objects

(Opmanis et al., 2016).

Altogether our algorithm allows speeding up a process of finding a cause of fail-

ure pointing immediately to the most significant deteriorations, therefore, avoiding time-

consuming routine work like examination of huge test logs. Such pointing helps the user

not to overlook serious deteriorations. This is especially important if the code is main-

tained by several developers when it may take weeks to find a proper cause of a failure in

unstructured testing outcomes. Therefore, overall time and cost of software development

and maintenance are reduced.

There are essentially different approaches which help to reduce time and cost of appli-

cation maintenance like still relevant software impact analysis (Bohner and Arnold, 1996)
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that investigates software to predict affected items to estimate required effort, cost, and

time to implement a new feature or make some adjustment in the existing software prod-

uct. However, this approach requires very thorough planning and continuous dependency

management that might not be available for large projects or projects that are handed over

between maintainers.

This paper is organized as follows: in Section 2 we look at related work, in Section 3

we define terms used in the paper, in Section 4 we give data model and a very detailed

description of algorithm along with proofs of two of its properties. In Section 5 results

of a practical application of our algorithm are discussed. Conclusions and directions of

possible future work are described in Section 6.

2. Related Work

The fields SRT, RCA, and GBT, are three cornerstones of our approach and are well de-

scribed in the literature. We use a combination of methods and concepts of all three fields

and to the best of our knowledge, there are no relevant publications for the entire triple

RCA-SRT-GBT. Therefore, in this Section, we focus on some publications where two of

the fields are represented.

In the context of our paper, an essential combination is the pair SRT-RCA. In general,

testing comprises of finding causes of failures that in its turn is an essence of RCA. In the

last decades RCA is successfully involved in software development and testing process

(Ruberto, 2013; Leszak et al., 2002; Kataoka et al., 2011). Usage of RCA methodology

in software development process is thoroughly described in Linders (2014).

This pair SRT-RCA is also represented in other approaches that are out of the scope of

our paper. Say, unlike (Zeller, 2002), we are not analysing source code but use only testing

results.

As we use graphs to reveal causes of unwilling software effects using structural re-

lations between involved hierarchy objects, we have special interest about another pair

RCA-GBT, which appears in various contexts.

Graph-like cause-and-effect diagrams (also known as Ishikawa diagrams) (Tague,

2005, pp. 247–249) are already used in RCA, though without direct referencing to graphs.

Also, general tools for RCA based on graph processing are developed by software industry

(Tom Sawyer Software, 2005).

RCA is used together with GBT exploiting graph drawing as a very powerful tool to

comprehend object structural dependencies. In a field of Internet security, this approach

is used to discover root causes of disruptions in Internet traffic (Ohrimenko et al., 2013).

To create attributed diagrams of object hierarchies in the next Sections, we also applied

graph drawing algorithms.

In Steinder and Sethi (2004), a graphical model, called a fault propagation model for

communication networks, is investigated. In Marvasti et al. (2013), graphs of anomaly

events with probability connections of complex IT infrastructures are used to reliably

predict root causes of problems. In these models, as in ours, RCA is performed on the

underlying graph of objects and relations among them.
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Interesting connection between graphs and analysis of failure causes in manufacturing

using digraph and matrix methods is presented in Rao (2010), Dev et al. (2014).

The third pair SRT-GBT in a context of software testing is well known when software

structure itself is represented by a graph (Biswas et al., 2011). However, this approach

completely differs from ours. As a consequence, there are no relevant publications also

for the entire triple RCA-SRT-GBT.

3. Preliminaries

Test is the smallest entity for a software product or module testing. Execution of software

artifact in some environment using data from a particular test ends with test execution

status: a value from a fixed non-empty set of available outcomes, e.g. “successful”, “not

completed”, “failed”, “predictably incorrect”, “inconclusive”, “unclear”, “runtime error

NNN”, “division by 0”, “crash”.

Tests are grouped in testgroups to test some feature or software component thought-

fully. Each testgroup may be either simple or composite. A simple testgroup consists of one

or more tests with similar characteristics for testing of a particular software component or

feature.

A composite testgroup consists of one or more testgroups and during testing is con-

sidered as a single object. From graph perspective, testgroups as nodes are organized in

tree-like hierarchical structure and altogether constitute a directed forest. Each simple test-

group is a leaf in this forest, and each composite testgroup is in a parent-child relation with

each of its immediate constituents. Further we use ‘simple testgroup’ and ‘leaf-testgroup’

as synonyms.

For example, in one leaf-testgroup there may be tests checking data import from XML

source, in another there may be tests checking data import from a database and these

testgroups may be included in a higher level testgroup checking data import in general.

Such approach allows to directly point to functional parts of tested software when some

erroneous testgroup is found out.

Environments are parameterized objects characterized by various attributes, e.g. oper-

ating system, and their values, e.g. ‘Windows’, ‘Linux’, ‘Mac OS’. For web applications,

one of the attributes may be a browser, for mobile devices – application. We assume that

several attributes do not share the same attribute value. Therefore, any attribute value is

enough to identify an attribute. Each environment is identified by an attribute value set

where each attribute is represented by at most one value. For different environments, these

attribute value sets may be of different size. Any non-empty subset of environments at-

tribute value set is called attribute bundle (bundle or subbundle for convenience).

Attribute bundles are organized hierarchically using relation be a subset of. In contrary

to testgroups establishing forest, sets of environment attributes as nodes constitute more

general structure – directed acyclic graph (DAG). Each attribute bundle is in a parent-child

relation with each superset containing one more attribute, and each child may have several

parents.
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We reference hierarchy of testgroups and hierarchy of attribute bundles as hierarchies

and their elements as hierarchy objects.

Build is one particular version of the same software product to be tested.

Testrun is an execution of a build using simple testgroup in a specified testing envi-

ronment to obtain testrun result: a tuple of integers, where each integer is the number of

tests having particular status for each of available test outcomes.

We are interested in a comparison of testrun results of two chosen builds called ref-

erence build and active build. The comparison makes sense just if the testgroup and the

environment are the same for the both testruns. This requirement is satisfied in regression

testing. Each comparison may report deterioration – an observation that the active build

testrun result is worse than the reference build testrun result. A simple way is to report a

deterioration if the number of failed tests increases.

Our purpose is to introduce a measure of deterioration significance for hierarchy ob-

jects separately for each hierarchy and using this measure to recognize deterioration ob-

jects. Such testgroups and/or attribute bundles must attract developer’s attention at first.

Therefore, we think unreasonable to report a large number of less significant deterioration

objects. Instead, we consolidate information about them into a smaller number of result-

ing deterioration objects of higher hierarchy levels. As the result of the proposed analysis

two collections of resulting deterioration objects – resulting deterioration testgroups and

resulting deterioration attribute bundles are provided.

4. Root Cause Analysis

We describe testing process by the following elements:

• sequence B of builds,

• set G of testgroups organized hierarchically,

• set E of environments,

• set R of testruns.

In addition, we denote by L the set of all leaf-testgroups of G; by avs(e) the attribute

value set of environment e ∈ E ; by A =
⋃

e∈E 2avs(e) − ∅ the set of all E subbundles

organized hierarchically.

For a chosen reference build b0 and active build b1 we consider two testrun sets R0

and R1, where R0 ⊆ R is a set of testruns using b0 and a subset of L× E , and R1 ⊆ R

is a set of testruns using b1 and a subset of L× E . Each testrun is characterized by tuple

(bld,grp, env, res), where bld is a build, grp is a leaf-testgroup, env is an environment,

res is a testrun result. Clearly, r.bld = bi for each r ∈ Ri (i = 0,1).

Results of every two coupled testruns r0 ∈ R0 and r1 ∈ R1 where r0.grp = r1.grp

and r0.env = r1.env are subjects of comparison which is performed by a special boolean

function isDeterioration(r0.res, r1.res) returning true when r1 result is worse than re-

sult of r0. The basis of our deterioration analysis is a deterioration set D consisting of

testruns r1 ∈ R1, that with respect to corresponding element r0 ∈ R0 have isDeteriora-

tion(r0.res, r1.res) = true.
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4.1. Algorithmic Principles of Deterioration Analysis

As said before, the hierarchies of testgroups and environment attribute bundles are repre-

sented by DAGs and aims of analysis are similar. Therefore, analysis of both hierarchies

will be carried out in a similar manner:

• calculating basic significance characteristics (Algorithm 1),

• thresholding significance values (Algorithm 2),

• calculating coverage of hierarchy objects within a deterioration set,

• DAG-based two-stage filtering (sink refining and source refining).

Each step is described below in details.

4.1.1. Calculating Basic Significance Characteristics

For all testgroups and attribute bundles, we introduce two functions det and com calculated

by Algorithm 1 which iterates through leaf-testgroups and environments.

Algorithm 1: Calculating basic data: deterioration set D, values of det and com.

Input: testgroup set G, environment set E ,

testrun set R0 corresponding to reference build b0,

testrun set R1 corresponding to active build b1

Output: deterioration set D, values of det and com

begin
D := ∅

for all G and A elements initialize det and com values to 0

foreach l ∈L do

foreach e in E do
r0 := a testrun of R0, built on pair (l, e)

r1 := a testrun of R1, built on pair (l, e)

if r0 exists and r1 exists then

foreach g ∈ predecessors(l) do increase com(g) by 1

foreach a ∈ predecessors(avs(e)) do increase com(a) by 1

if isDeterioration(r0.res, r1.res) then
add r1 to D

foreach g ∈ predecessors(l) do increase det(g) by 1

foreach a ∈ predecessors(avs(e)) do increase det(a) by 1

end if

end if

end foreach

end foreach

end



Root Cause Analysis of Large Scale Application Testing Results 825

For each leaf-testgroup l ∈ L the value det(l) indicates how many times the leaf-

testgroup l occurs as constituent of testruns of D and com(l) indicates the number of

coupled testruns (r0 ∈ R0, r1 ∈ R1) where r1.grp = r0.grp = l.

If a testgroup g ∈ G is not a leaf-testgroup, then the value det(g) is a recursive sum

of det values over all g children g1, g2, . . . : det(g) = det(g1) + det(g2) + . . . , and, anal-

ogously, com(g) = com(g1) + com(g2) + . . . .

In their turn, for each bundle a ∈ A the value det(a) indicates how many times a

occurs as a subbundle of the attribute value set avs(e) of an environment e, where e is

a constituent of a testrun of D. For each bundle a ∈ A the value com(a) indicates the

number of coupled testruns (r0 ∈ R0, r1 ∈ R1) where a occurs as a subbundle of avs(e)

and r1.env = r0.env = e.

Based on parent-child relation let’s by predecessors(n) denote the set of DAG nodes

being predecessors of node n together with n itself, and by successors(n) denote the set

of DAG nodes being successors of node n together with n itself. Let’s say that node n2

is reachable from node n1 if n2 ∈ successors(n1), and node n is reachable from a node

set N if n is reachable from some element of N .

We rely on the consideration that sources of deterioration should manifest themselves

via hierarchy objects that appear most frequently in the testrun set D. This consideration

is the basis for the proposed deterioration analysis.

For a hierarchy object x its significance sig(x) is characterized by its amount of deteri-

orations det(x), i.e. the number of testruns it is involved with and deterioration that occurs,

relate to the entire number of comparisons com(x) it is involvedwith: sig(x) =
det(x)
com(x)

(0, if

com(x) = 0).

Of course, besides this consideration of a statistical nature, object importance may be

taken into account. Say, the importance of tests for a customer or in comparison with allied

program products. As well more complicated expressions of already introduced functions

like det(x)
com(x)

×
det(x)
|D|

may be useful. However, investigation of such alternatives is quite

complicated and out of the scope of this paper.

4.1.2. Thresholding Significance Values

We use found deterioration significance values of objects of the both hierarchies to locate

the most problematic points of software tested.

Reasonably, problematic points are indicated by hierarchy objects with the maximum

sig value. However, usually there are just one or very few hierarchy objects having the

largest sig value and restricting our interest just to them, so we neglect objects with values

close to the maximum. To maintain also such cases as a base of analysis result we will

use object collection having sig values not lower than a particular threshold value found

by half-sum thresholding procedure based on Algorithm 2 that finds dominating greatest

values in a non-decreasing ordered sequence of sig values.

Figure 1 illustrates a bar diagram for 16 sig values: 0.077,0.25,0.294,0.333,0.357,

0.4,0.467,0.552,0.563,0.571,0.573,0.587,0.613,0.643,0.647,0.867.This is a typical

case with exactly one maximum sig value. On these data Algorithm 2 returns index 11,

so the corresponding threshold value is L[11] = 0.573 and the result of the half-sum
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Algorithm 2: Calculating dominating greatest values of an ordered nonnegative real

number list.
Input: A non-empty list L of non-decreasing nonnegative real numbers

Result: index of the first dominating value

begin

kmax := length(L) if kmax = 1 or (kmax = 2 and L[1] = L[2]) then
return 1

else
return greatest index k satisfying

L[1] + L[2] + · · · + L[k1] < L[k] + L[k + 1] + · · · + L[kmax]

end if

end

Fig. 1. Bar diagram of sig values for the example from Fig. 2.

thresholding procedure are six objects ensuring broader view of the analysed hierarchy

than using just a maximum.

There can also be thresholding approaches different from the described. One of them is

to look for the biggest increase between two consecutive values. In the described example

the corresponding threshold value is L[16] which is the maximum in L. However, deeper

analysis shows instability of such criterion – even in this example close to being a threshold

is the value L[2] splitting the list only formally.

Another approach is histogram-inspiredanalysis – find the longest subsequence of con-

secutive close enough values and split right after it (or right before if subsequence includes

the greatest value). In the given example such value is L[12]; however, this approach also

seemed not stable enough and to be relatively complicated.

Executing the selected thresholding procedure on a hierarchy, we get a thresholded set

of all hierarchy objects having sig value not less than the corresponding threshold value:

G′ from the testgroup hierarchy G and A′ from the attribute bundle hierarchy A.

It turns out that the thresholded sets still may retain comparatively many hierarchy

objects sometimes providing redundant information. Therefore, the final stage of the al-

gorithm is a specific refining procedure reducing redundancy and amount of reported de-

terioration objects.
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4.1.3. Calculating Coverage of Hierarchy Objects Within Deterioration Set

The refining procedure consists of two consecutive graph filters. The first one takes into

account an additional important parameter covering number: for a hierarchy object x cov-

ering number cov(x) denotes the number of deterioration objects reachable from x and

having no successors. For each testgroup g ∈ G′ the function value cov(g) is the number

of g successors that belongs to the set G′ and are leaf-testgroups. For each attribute bundle

a ∈ A′ the function value cov(a) denotes the number of A′ bundles that are attribute value

sets of environments from the deterioration set D containing a as a subbundle.

4.1.4. DAG-Based Two-Stage Filtering

The first, sink refining filter is defined for the both thresholded sets by the following rules:

• if g1 ∈ G′ is a parent of g2 ∈ G′ and cov(g1) = cov(g2), then g1 should be excluded

from G′.

• if a1 ∈A′ is a parent of a2 ∈A′ and cov(a1) = cov(a2), then a1 should be excluded

from A′.

The meaning of these rules: if an object x1 of a hierarchy is a predecessor of an ob-

ject x2 of the same hierarchy and from x1 are reachable exactly the same objects without

successors as from x2, this relation alone is not a reason to report x1 as a deterioration ob-

ject of the tested software since unnecessary generalization of a deterioration object takes

place. In other words, the procedure keeps the object x2 as more precise specialization if

compared with x1.

The second, source refining filter is defined for the both thresholded sets by the fol-

lowing rules:

• if testgroups g1 and g2 after applying the first filter still belong to G′ and g1 is a

predecessor of g2 in G, then g2 should be excluded from G′.

• if bundles a1 and a2 after applying the first filter still belong to A′ and a1 is a pre-

decessor of a2 in A, then a2 should be excluded from A′.

The meaning of these rules: if an object x2 from the hierarchy is a successor of an

object x1 from the same hierarchy, this relation alone is not a reason to report x2 as a dete-

rioration object of the tested software since unnecessary specialization of a deterioration

object takes place. In other words, the procedure keeps x1 because it consolidates deterio-

ration information about successor objects from the same hierarchy. For attribute bundles

it may also be explained: if an intersection of bundles is non-empty and is present in the

same attribute bundle set, then intersecting bundles are excluded, and only the intersection

is retained.

From graph perspective the first filter keeps sink objects of subgraphs of a particular

hierarchy determined by equality classes of function cov. The second filter in its turn keeps

source objects of the hierarchy determined by hierarchy objects remaining after the first

filter. So the corresponding implementations are straightforward.

4.1.5. Justification of the Proposed Approach

In the next sections processing of both hierarchies is discussed and the proposed approach

is justified by a formal proof for cases when deterioration sources are clearly located.
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Fig. 2. Example hierarchy of testgroups.

Clearly located sources are objects from some deterioration object set S having the

following properties:

• for any coupled reference build testrun r0 and active build testrun r1 all cases when

the value of isDeterioration(r0.res, r1.res) is true are caused by exactly one deteri-

oration object;

• each element of S belongs to a distinct connected component of the same hierarchy.

Under additional specified conditions depending on the hierarchy type, the set of

clearly located deterioration objects can be found precisely, and this is formally proved

in Sections 4.2.2 and 4.3.2.

When these conditions are not satisfied, e.g. failure of a particular testrun is caused by

more than one object from the same hierarchy and unique reason for the failure can not

be discovered, our analysis algorithms work as heuristics.

4.2. Root Cause Analysis of Testgroups

4.2.1. Processing of Testgroup Hierarchy

As stated above, a testgroup is an intrinsic element within the entire hierarchical structure

of the testgroup set G and is characterized by its relationship with other testgroups via

parent-child relations. Each testgroup is identified by a unique name. Every testgroup has

exactly one parent (if any), and some amount of children (if any).

In Fig. 2 an example hierarchy of testgroups is shown. Testgroup names are labels

placed on nodes. Values of det, com, and sig are added from the left above the corre-

sponding nodes in named order. Nodes of G′ testgroups are supplemented with the fourth

parameter: the covering number cov. These nodes are coloured gray.

The bar diagram in Fig. 1 illustrates all 16 sig values of the example depicted in Fig. 2.

The thresholding procedure based on Algorithm 2 returns index 11, so the found threshold

value is L[11] = 0.573.
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The final stage of processing procedure is two-stage filtering refining the of set G′.

In the example (Fig. 2), after applying the sink refining filter, testgroups that are ex-

cluded from G′ are g12 and g21. The testgroup g21 and its successor g211 belong to G′

and cov(g21) = cov(g211) = 1. There is no reason to blame the testgroup g21, even more

because it contains also the testgroup g212, within which tests that are performed give

relatively better results. Likewise the testgroup g12 and its successor g122 belong to the

thresholded set G′ and com(g12) = com(g122) = 1.

Further, after applying the source refining filter, also g112 and g122 as successors of g1

are excluded from G′. Therefore, in refined G′ there remain only testgroups g1 and g211.

These testgroups constitute the final result of our analysis and in Fig. 2 are emphasized by

bold frames.

We would like to add that in the first component of the example, before applying both

refining filters, the testgroup g1 together with its successors g12, g122, g112 were in the

thresholded set G′, but the analysis concludes that focus of attention must be paid to the

software aspect tested by g1.

4.2.2. Justification of the Proposed Procedure

Let leafs(g) = L∩successors(g) denotes the set of leaf-testgroups that are reachable from

g, and for an arbitrary testgroup set G ⊆ G denote by leafs(G) the set of leaf-testgroups

reachable from some element of G. By groups(D) denote the set of leaf-testgroups that

correspond to the testruns of a deterioration set D.

The following conditions are based on ones stated at Section 4.1.5. A set G ⊆ G is a

set of clearly located testgroups if

(1) all active build testruns r1 together with coupled testruns r0 have property

isDeterioration(r0.res, r1.res) ↔ r1.grp is reachable from G. Note that an equiva-

lent form of the right side is leafs(G) = groups(D);

(2) each element of G belongs to a distinct connected component of G. Note that for

each two distinct elements g1, g2 ∈ G: predecessors(g1) ∩ predecessors(g2) = ∅;

(3) all G elements are either leaf-testgroups or have at least two children.

Proposition 1. If for a deterioration set D there exists a testgroup set G satisfying con-

ditions (1), (2) and (3), then the result of the testgroup analysis procedure is exactly G.

Proof. Meaning of the fragment of Algorithm 1 calculating det and com values for leaf-

testgroups may be expressed as:

r0 = a testrun of R0, built on pair (l, e)

r1 = a testrun of R1, built on pair (l, e)

if r0 exists and r1 exists then

increase com(l) by 1

if l is reachable from G then increase det(l) by 1

end if
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Hence for all l ∈ leafs(G) is 0 6 det(l) 6 com(l). Moreover, for l which is not reach-

able from G, det(l) = 0 because increasing of det(l) is skipped. If l is reachable from G,

then com and det values during calculations grow simultaneously, hence det(l) = com(l).

Thus for significance values sig of l ∈ leafs(G) we have

sig(l) =

{

1, if l is reachable from G,

0, otherwise.
(1)

Now determine the sig values of composite testgroups.

If a testgroup g is not a leaf-testgroup, then it has children g1, g2, . . . , and from Sec-

tion 4.1.1 det(g) = det(g1) + det(g2) + . . . , and com(g) = com(g1) + com(g2) + . . . .

Hence

sig(g) =
det(g)

com(g)
=

det(g1) + det(g2) + . . .

com(g1) + com(g2) + . . .
. (2)

For each testgroup g the following cases are possible:

(a) g is reachable from some element of G,

(b) g is a predecessor of some element of G,

(c) g satisfies neither (a) nor (b).

In case (a), when the testgroup g is reachable from some element of G, leaf-testgroups

reachable from g are also reachable from this element of G, hence all such leafs belong

to leafs(G). If all children of g are leaf-testgroups, then det(gi) = com(gi), i = 1,2, . . . ,

and from (2) immediately follows sig(g) = 1. Recursively backtracking in direction of g

parents till g ancestor from G, we see that all testgroups on this predecessor path also have

sig values equal to 1.

In case (b), at least one leaf-testgroup is reachable from g and belongs to leafs(G), so

det(g) > 0, and hence sig(g) > 0.

And finally, in case (c), when the testgroup g is not a successor nor a predecessor of

elements of G, no leaf-testgroup from leafs(g) belongs to leafs(G), and hence sig(g) = 0.

So, summarizing all three cases we have:

sig(g) =







1, if g is reachable from some element of G,

0 < · · ·6 1, if g is a predecessor of some element of G,

0, otherwise.

(3)

Now, by the thresholding procedure based on Algorithm 2, all testgroups with sig

value 1 are included into the set G′ and there are no testgroups with sig value 0 in this set.

Due to condition (2) in order to complete the proof, it is enough to examine some

separate connected component of G that contains at least one testgroup with sig value

greater than 0. In any such component there exists exactly one testgroup from G. Denote

by C this component and consider the set G(1,2) = {g ∈ C | leafs(g) = leafs(C ∩ G′)}

every element of which satisfies conditions (1) and (2). Set G(1,2) is non-empty because
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Fig. 3. Testgroup hierarchy with all conditions satisfied, G = {g11, g22}.

it contains G element having sig value 1 and so belonging to G′. Note that cov value of

all G(1,2) testgroups is the same and the largest possible in C.

Let’s examine a particular element g ∈ G(1,2).

As in C ∩ G′ there are only testgroups with sig value greater than 0, every of them

belongs either to predecessors(g)/{g} or to successors(g).

For each testgroup ḡ ∈ C∩G′ if ḡ ∈ predecessors(g)/{g} then by definition ḡ ∈ G(1,2).

For the number of g children we distinguish three mutually exclusive cases:

• If g has exactly one child ḡ, then cov(ḡ) = cov(g) and by definition ḡ ∈ G(1,2).

During processing of the first refining filter, g will be excluded from G′.

• If g has at least two children, then for each child ḡ the set leafs(ḡ) is a proper subset

of leafs(g), hence cov(ḡ) < cov(g) and g is a sink of G(1,2).

• If g has no child, i.e. it is a leaf-testgroup, then cov(g) = 1 and g is a sink of G(1,2).

Thus, G(1,2) testgroups in C constitute a path having unique sink g0 which is also the

result of applying the sink refining filter.

Since all other testgroups from C ∩ G′ are g0 successors, the sinks of subgraphs of C

determined by cov values different from cov(g0) are reachable from g0. As the testgroup

g0 is predecessor of all other sinks in C, the second refining filter keeps g0 as the unique

result in C.

By construction, only g0 also satisfies condition (3) and is the only element in C∩G. �

Note that condition (3) was not used in the reasoning as a requirement. However, this

condition cannot be excluded because under just two first conditions there could be more

than one valid candidates for G and, therefore, the assertion of Proposition 1 would be

false.

We end the chapter with some examples demonstrating meaningfulness of Proposi-

tion 1.

The example in Fig. 3 with the set G = {g11, g22} illustrates the case when all con-

ditions of Proposition 1 are satisfied. In this example the threshold value for sig is 1.

Therefore, for each g from the thresholded set all leafs(g) in G belong to leafs(G) and the

union of all leafs(g) is exactly leafs(G).
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Fig. 4. Testgroup hierarchy with all conditions satisfied, threshold 0.667, G = {g11}.

Fig. 5. Testgroup hierarchy where result does not satisfy condition (1).

Fig. 6. Testgroup hierarchy where result does not satisfy condition (2).

The example in Fig. 4 illustrates the case when also all conditions of Proposition 1 are

satisfied and G = {g11}. In this case, although g11 parent g1 has sig value less than 1,

it has gotten into the thresholded set G′, and, therefore, cov(g1) = cov(g11). Only a part

of the testgroup hierarchy is depicted: in the entire graph, the testgroup g11 has nine

analogously attached predecessors.

Not always the result of the proposed analysis is a clearly located testgroup set. Fig-

ures 5 and 6 illustrate situations where a clearly located testgroup set cannot be found, as

the result of the analysis does not satisfy one of the considered conditions.

In the example in Fig. 5 the result of the analysis is the set {g1} and since leafs({g1}) =

{g121, g122, g111, g112} differs from groups(D) = {g121, g111}, this is a violation of

condition (1). Despite the fact that the result formally is not clearly located, the deterio-

ration object g1 is still useful as the least common testgroup covering all leaf-testgroups

pointing to problems.

In the example in Fig. 6 the result of the analysis is the set {g221, g222} and since the

both elements are from the same connected component, this is a violation of condition (2).

Also, in this case, the result of testgroup analysis formally is not clearly located. However,
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Fig. 7. Testgroup hierarchy illustrating necessity of condition (3).

g221 and g222 together covers all leaf-testgroups pointing to problems and at the same

time having no leaf-testgroup without deterioration as a constituent.

The example in Fig. 7 demonstrates that without condition (3) besides the result of the

analysis {g2}, also sets {g0} and {g1} satisfy the first two conditions, and the assertion

of Proposition 1 is false.

4.3. Root Cause Analysis of Environments

4.3.1. Processing of Attribute Bundle Hierarchy

As stated above, an environment is characterized by attributes and attribute values where

the same value is not used for more than one attribute. Objects of our analysis are attribute

bundles, i.e. subsets of environment attribute value sets constituting an attribute bundle

hierarchy.

To illustrate such hierarchy we use the following abstract environment attributes and

their values: operating systems os1, os2; computer architectures ar1, ar2; browsers br1,

br2, br3. Based on these values, we consider the example environment set E with corre-

sponding attribute value sets: {os1, br1}, {os2, ar2}, {os2, br2}, {os2, br1}, {os1, ar1,

br1}, {os1, ar1, br2}, {os1, ar1, br3}, {os1, ar2, br3}, {os2, ar1, br2}, {os2, ar1, br3},

{os2, ar2, br3}.

The purpose of analysis of environments is to point out those attribute bundles that

are common to the most significant deterioration. The pointed attribute bundle can be a

set of an existing environment attribute values, or it can be a subset of attribute values of

some defined environments meaning that we are referring to a generalized environment

which is not directly accessible for testing. For example, for attribute value sets {os1, ar1,

br2}, {os2, ar1, br2}, {os2, ar1, br3} the attribute bundle {ar1} generalizes three attribute

bundles into a single, more general attribute bundle. So as an analysis result either attribute

value sets or some of their generalizations, i.e. subbundles may be reported.

The main structure of our root cause analysis of environments is attribute bundle hier-

archy A. The example introduced above are brought in Table 1. The bundles are grouped

by attribute count and are represented by ordered tuples where asterisks denote absent

attributes.

A hierarchy corresponding to Table 1 is shown in Fig. 8. Asterisks in nodes allow to

follow relations between the attribute bundles easily. Namely, substituting an asterisk by

a value of the corresponding attribute we directly get the respective child of this bundle

in the hierarchy. Nodes corresponding to given environments are depicted as rectangles:

ordinary if deterioration is observed and rounded if there is no deterioration. All other

nodes are depicted as ovals. Nodes are supplemented with some bundle parameters, and

some of them are graphically highlighted, that is discussed further.
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Table 1

Example attribute bundles.

(os1 * *) (os1 ar1 *) (os2 ar1 *) (os1 ar1 br1)

(os2 * *) (os1 ar2 *) (os2 ar2 *) (os1 ar1 br2)

(* ar1 *) (os1 * br1) (os1 * br2) (os1 ar1 br3)

(* ar2 *) (os2 * br1) (* ar1 br1) (os1 ar2 br3)

(* * br1) (os2 * br2) (* ar1 br2) (os2 ar1 br2)

(* * br2) (os1 * br3) (os2 * br3) (os2 ar1 br3)

(* * br3) (* ar1 br3) (* ar2 br3) (os2 ar2 br3)

Fig. 8. Example attribute bundle hierarchy.

Values of det, com, and sig are added from the left above the corresponding nodes

in named order. Nodes of A′ bundles are supplemented with the fourth parameter: the

covering number cov. These nodes are coloured gray.

The bar diagram in Fig. 9 illustrates all 28 values of sig of the example in Fig. 8. The

threshold value found by using Algorithm 2 is L[19] = 0.52.

The final stage of our processing procedure is two-stage filtering refining of the set A′.

After applying the first refining filter the bundle {br2} is excluded from A′ because

the bundle {br2} and its successor {ar1, br2} belong to the initial A′ and cov({br2}) =

cov({ar1,br2}) = 2. Also bundles {os1, br2} and {ar1, br3} having child nodes with equal

cov value are excluded from A′.

Further, after applying the source refining filter also bundles {ar1, br2}, {os2, ar1},

{os1, ar1, br2}, {os2, ar1, br2} and {os2, ar1, br3} as successors of {ar1} are excluded

from A′. Therefore, in the refined A′ there remain only attribute bundles {ar1} and {os2,

br1}. This is the final result of our attribute bundle analysis and in Fig. 8 the corresponding

nodes are highlighted by bold frames.
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Fig. 9. Bar diagram of sig values for the example from Fig. 8.

4.3.2. Justification of the Proposed Procedure

The further needs some additional designations:

env(R) – the set of environments of a testrun set R;

avs(E) – the set of attribute value sets of environment set E;

V = avs(env(D)) – attribute value sets of environments of a deterioration set D.

The following conditions are based on ones stated at Section 4.1.5.

A set B ⊆ A is a set of clearly located attribute bundles if

(1) all active build testruns r1 together with coupled testruns r0 have the property isDe-

terioration(r0.res, r1.res) ↔ avs(r1.env) is reachable from B . Note that an equiv-

alent form of the right side is ∃b ⊆ avs(r1.env)(b ∈ B).

(2) each element of B belongs to a distinct connected component of A.

(3) for all environment attribute value sets having common subbundle b ∈ B , b is the

intersection of these sets.

Proposition 2. If for a deterioration set D there exists an attribute bundle set B satisfying

conditions (1), (2) and (3), then the result of the attribute bundle analysis procedure is

exactly B .

Proof. The fragment of Algorithm 1 calculating det and com values for attribute bun-

dles is:

r0 = a testrun of R0, built on pair (l, e)

r1 = a testrun of R1, built on pair (l, e)

if r0 exists and r1 exists then

foreach a ∈ predecessors(avs(e)) do increase com(a) by 1

if avs(e) is reachable from B then

foreach a ∈ predecessors(avs(e)) do increase det(a) by 1

end if

end if

Clearly, for all a ∈A is 0 6 det(a)6 com(a).

If a ⊆ avs(e) ⊆ V , i.e. from a some b ∈ V is reachable, then det(a) > 0 and vice versa.

Moreover, if additionally the bundle a is reachable from some b ∈ B , i.e. ∃b ∈ B(b ⊆ a),
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then det(a) = com(a), because for b ∈ B each bundle a with b ⊆ a is a subbundle of

some element of V and for such bundles com and det values during calculations grow

simultaneously.

Thus, for significance values sig of an attribute bundles of A we have

sig(a) =







1, if a is reachable from B,

0 < · · ·6 1, if some element of V is reachable from a,

0, otherwise.

(4)

Now, by the thresholding procedure based on Algorithm 2, all bundles with sig value 1

are included into the set A′ and there are no bundles with sig value 0 in this set.

Due to condition (2), each element of B belongs to a different connected component

of A. Thus, to complete the proof, it is enough to examine a separate A component com-

prising some bundle from B . Denote this component by C and consider the set B(1,2) =

{b ∈ C | all attribute value sets from C ∩ V are reachable from b, i.e. b is a subset of all

attribute value sets from C ∩ V } every element of which satisfies conditions (1) and (2).

The set B(1,2) contains B element having sig value 1 and so belonging to C ∩ A′.

Therefore, B(1,2) is non-empty. Let’s denote by b0 ∈ B(1,2) intersection of all attribute

value sets from C ∩ V . All other B(1,2) elements are subsets of b0, hence b0 is reachable

from them.

We express cov(a) for a bundle a ∈ C as |{s ∈ C ∩V | a ⊆ s}|. So for all B(1,2) bundles

cov value is cov(b0) which is the largest possible cov value in C. Since by B(1,2) definition,

there are no C elements with the same cov value outside B(1,2), so B(1,2) constitutes an

equality class with b0 as unique sink in it. Thus the result of the sink refining filter contains

b0 as the only representative from B(1,2).

For a ∈ C ∩ A′ and all b̄ ⊆ b0 holds cov(b̄ ∪ a) = cov(b0 ∪ a). Every equality class

of the function cov together with the bundle a contains also the bundle b0 ∪ a reachable

from b0. So in C every sink of every equality class of the function cov is reachable from b0.

Hence all attribute bundles constituting the result of the sink refining filter are reachable

from b0 which is kept as the unique result of the second refining filter in C.

By construction, only b0 also satisfies condition (3) and is the only element in C∩B . �

Note that condition (3) was not used in the reasoning as a requirement. However, this

condition is essential because under just two first conditions also b0 predecessors would

be valid candidates for B , and, therefore, the assertion of Proposition 2 would be false.

We end the chapter with examples demonstrating the meaningfulness of Proposition 2

for the both cases: when all conditions are completely satisfied, and when separate condi-

tions are violated.

Figure 10 demonstrates the example when all conditions of Proposition 2 are satisfied

and B = {{os1}, {br1}} is a clearly located attribute bundle set.

The example in Fig. 11 illustrates the case when also all conditions of Proposition 2 are

satisfied and B = {{os1,br1}}. In this case, although {os1, br1} parents {os1} and {br1}

have sig value less than 1, they have gotten into the thresholded set A′, and, therefore,

cov({os1}) = cov({br1}) = cov({os1,br1}).
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Fig. 10. Attribute bundle hierarchy with all conditions satisfied, B = {{os1}, {br1}}.

Fig. 11. Attribute bundle hierarchy with all conditions satisfied, threshold 0.83, B = {{os1,br1}}.

Fig. 12. Attribute bundle hierarchy where result does not satisfy condition (1).

In the example in Fig. 12 the only resulting deterioration attribute bundle is {os2}

and, in this case, the result is not clearly located because condition (1) of Proposition 2

is violated since the environment attribute value set {os2, ar1}, which is not deterioration

attribute bundle, is reachable from {os2}. However, all attribute value sets from V are

covered by {os2} and so pointing to it is reasonable.
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Fig. 13. Attribute bundle hierarchy where result does not satisfy condition (2).

Fig. 14. Attribute bundle hierarchy illustrating necessity of condition (3).

In the example in Fig. 13 the resulting deterioration attribute bundle set contains two

bundles {ar2} and {br1} violating condition (2) of Proposition 2. Note that {br1} itself is

an environment attribute value set. Despite the fact that the result formally is not clearly lo-

cated, found bundles are useful because they together cover all deterioration environment

attribute value sets.

In the example in Fig. 14, sets {os1} and {ar1} satisfy conditions (1) and (2), whilst

the result of the analysis is {os1, ar1}, so the assertion of Proposition 2 is false without

condition (3).

5. Practical Results

The proposed algorithm was tested both on generated and real data sets. In the first case,

all data elements must be created from scratch, and we are free to choose their structure

and size. Some generated simple examples illustrating various aspects of our analysis

are shown in the figures above. As small examples are not sufficient to judge about such

serious issue as the performance of our algorithm, we estimated performance theoretically

and developed series of timing experiments on an ordinary computer (2 core 2.10 GHz

Intel® Core™ i3-2310M CPU, 4 GB RAM).

For performance estimation we use hierarchies of homogeneous structure. At nL = |L|

assuming that there are nA attributes with mA values each, for one pair of builds rough

estimation of analysis time is O(nL(mA)nA (log(nL)+ 2nA)). Impact of the parameters nL

and nA for mA = 4 can be observed in Table 2 where cells without data denote that the

result of the analysis could not be obtained within 1 minute.
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Table 2

Time of analysis in seconds and the number of randomly generated testruns depending on nL leaf-testgroups

and nA attributes (mA = 4).

nL nA

3 4 5 6 7

50 0.2 (6063) 0.7 (24339) 1.3 (97304) 4.7 (389412) 49.6 (1556676)

100 0.3 (12156) 0.7 (48461) 2.0 (194536) 13.4 (778629) –

150 0.3 (18229) 0.7 (72956) 2.5 (291953) 15.1 (1167687) –

200 0.4 (24336) 0.8 (97296) 3.1 (389404) 24.3 (1556590) –

250 0.4 (30403) 1.1 (121626) 3.9 (486705) – –

300 0.5 (36483) 1.2 (145950) 4.6 (583939) – –

Table 3

Quantitative characteristics of the largest used real dataset.

Description Minimum Maximum Average

Number of testruns containing a build 1 971 111.0

Number of testruns containing a leaf-testgroup 3 83 43.6

Number of testruns containing an environment 4 608 351.5

Number of testruns containing a pair of a

leaf-testgroup and an environment

1 35 5.8

Number of coupled testrun pairs for a pair of builds 1 853 26.0

We see that theoretical analysis time grows rapidly with the growth of the number of

attributes. Fortunately, the number of attributes in our real data is not too large.

The origin of real data is a testing process of a large scale application maintenance

and updating. These data were collected during a longer period and were not adjusted

especially for needs of our analysis. So, besides clearly technical work like obtaining data

from an original database, adapting of environment attributes should be done.

In the used real data sets environment attributes were obtained from the given en-

vironment descriptions and four attributes: operating system, operating system version,

architecture, and browser with the corresponding number of values 6, 23, 2 and 3 that

were chosen. Such choice is not strictly predefined, as some attributes may be merged or

split into smaller ones. However, it is unreasonable to define attributes having just one

value, because the presence of such attributes does not influence results of our analysis,

just increasing a volume of data to be processed. Therefore, the number of attributes for

real environments is limited, and our analysis does not suffer from an exponential growth

of the number of attribute bundles built on attribute value sets. Moreover, some combina-

tions of attribute values may be incompatible or senseless, i.e. if such combination is not

presented in any real environment.

In the largest real dataset used for our algorithm testing, the number of real environ-

ment attribute value sets (18) was significantly smaller than the number of possible at-

tribute value sets (6 × 23 × 2 × 3 = 828). In total, there were 6327 testruns, 57 builds,

163 testgroups, 145 leaf-testgroups, 18 environments. The depth of the testgroup forest

was 3. Additional statistical characteristics of the used dataset are given in Table 3.

Values of characteristic det for the observed dataset were quite low, which is not sur-

prising because in the real software development process at mature phase we cannot expect
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a dramatic decrease of quality. As a result, also sig values are low (almost all values are 0

with very few less than 0.1) and, although we cannot observe the computational power of

our algorithm in full strength, obtained results are cogent.

Also, the performancewas acceptable and for the dataset discussed the time of analysis

for a pair of builds did not exceed 0.3 seconds, and regarding Table 2, characteristics of

our dataset lay in the top left corner giving hope that we will also be able to process other

real datasets. Moreover, the real attribute value distribution is far from homogeneous, so

that the total number of possible combinations would be lowered.

6. Conclusions

We have presented a new root cause analysis algorithm for discovering the most likely

causes of differences found in testing results of two software builds. The proposed algo-

rithm works with hierarchies of testgroups and attributes of testing environments. These

hierarchies allow generalizing found problems by tested features. Relevant assigning of at-

tributes produces compact analysis results and allows decreasing the duration of software

development cycle.

Obtained analysis results reach the initial goal: direct one’s attention to the most prob-

lematic points without a necessity to search inside a huge amount of data for any single

test case with an unexpected outcome. With the appropriate visualization (Opmanis et al.,

2016), these results give insight into quality dynamics of a sequence of builds and ensures

finding main deterioration places by a few clicks.

We emphasize that in the general case when the failure of a particular testrun is caused

by more than one object from the same hierarchy and a unique reason for a failure cannot

be discovered, our analysis algorithms work as heuristics. For clearly separated problem

causes, we have proven that our algorithm gives an exact solution.

In a case of a large number of uniformly scattered failures our algorithm reports the

most general hierarchy objects, therefore giving no focused direction of searching for a

cause of failures. Real causes must be investigated separately for smaller failure groups

by our visualization tool (Opmanis et al., 2016).

Our approach works with a limited number of attributes and their values. However,

practical application until now was not even close to these limits. Therefore, a part of

future work could be improving our method to allow using a larger number of attributes

and values, or ascertaining that the number of attributes of real applications will never be

too large. Another way to improve effectiveness is to calculate characteristics of composite

testgroups in advance before analysis, especially in cases when a structure of testgroup

hierarchy evolves over time. The interesting question is the possibility to obtain an exact

result by the actual algorithm also if condition (1) of the Propositions are substituted by

weaker ones.

The proposed analysis algorithm may be used during software development phase also

even if we have testing results only for the actual build: we can create mock reference

testing results in advance and compare our actual testing results to them. The simplest
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example of mock reference results is testing results where execution status for all tests is

“successful”. These results embody highest expected level of software where there are no

failed tests. Comparing actual results to such mock reference results is useful at the final

stages of the development indicating which parts are not completed.

Mock testing results may also describe real testing milestones, i.e. test results accord-

ing to a project plan, not asking to be perfect as in the example above. Then comparing real

testing results to the mock allows various groups of users (testers, developers, managers)

to see if the development is happening according to the plan, and if not, then which areas

are falling back the most.
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Didelio masto programų testavimo rezultatų esminių
priežasčių analizė

Rūdolfs OPMANIS, Paulis ĶIKUSTS, Mārtiņš OPMANIS

Pristatome naują esminių priežasčių analizės algoritmą atrasti labiausiai tikėtinoms skirtumų prie-

žastims, rastoms dviejų versijų tos pačios programinės įrangos testavimo rezultatuose. Glaustai var-

totojui pateikti probleminiai testavimo ir aplinkos atributų hierarchijos taškai savo ruožtu leidžia

sutaupyti laiko apdoroti testavimo rezultatams. Įrodyta, kad aiškiai atskirtoms problemų priežas-

tims šis algoritmas pateikia tikslų sprendimą. Aprašyto metodo praktinis taikymas yra aptartas.


