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Abstract. This paper investigates a kind of hybrid multiple attribute decision making (MADM)
problems with incomplete attribute weight information and develops a hesitant fuzzy program-
ming method based on the linear programming technique for multidimensional analysis of pref-
erence (LINMAP). In this method, decision maker (DM) gives preferences over alternatives by the
pair-wise comparison with hesitant fuzzy truth degrees and the evaluation values are expressed as
crisp numbers, intervals, intuitionistic fuzzy sets (IFSs), linguistic variables and hesitant fuzzy sets
(HFSs). First, by calculating the relative projections of alternatives on the positive ideal solution
(PIS) and negative ideal solution (NIS), the overall relative closeness degrees of alternatives associ-
ated with attribute weights are derived. Then, the hesitant fuzzy consistency and inconsistency mea-
sures are defined. Through minimizing the inconsistency measure and maximizing the consistency
measure simultaneously, a new bi-objective hesitant fuzzy programming model is constructed and
a novel solution method is developed. Thereby, the weights of attributes are determined objectively.
Subsequently, the ranking order of alternatives is generated based on the overall relative closeness
degrees of alternatives. Finally, a supplier selection example is provided to show the validity and
applicability of the proposed method.

Key words: multi-attribute decision making, hesitant fuzzy set, relative projection, hesitant fuzzy
programming.

1. Intoduction

Hybrid multiple attribute decision making (MADM) is a type of MADM with multiple
different types of assessment information. Due to the knowledge or preference of decision
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makers (DMs) and the nature of attributes, DMs may provide attribute values with differ-
ent formats in decision making. Therefore, hybrid MADM often occurs in many fields,
such as supply chain management (Wan and Li, 2015), risk investment (Sun et al., 2015;
Wan and Dong, 2014) and so on. For example, while selecting an appropriate supplier
for a car manufacturer, quality, price and delivery time are usually considered. Generally,
DMs express the quality as linguistic variables, describe price with crisp numbers and
represent the delivery time by intervals. In recent years, the hybrid MADM has received
more and more attention and many results about it have appeared. Roughly, these results
can be divided into two categories: those which do not consider the pair-wise comparison
between alternatives and those which consider these comparisons.

Aimed at the first category, two types of methods are usually employed, including
transforming different types of attribute values into the same type of attribute values (Her-
rera et al., 2001, 2005; Martinez et al., 2007) and extending classical decision making
methods, such as TODIM (an acronym in Portuguese for Interative Multi-criteria Deci-
sion Making), TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)
and VIKOR (Visekriterijumska Optimizacija i Kompromisno Resenje), to fuzzy environ-
ment (Fan et al., 2013; Zeng and Chen, 2015; Zeng and Xiao, 2016). As for the second
category, the truth degrees on the pairwise comparisons between alternatives are divided
into the crisp truth degree and the fuzzy truth degree.

For the crisp truth degree (i.e. the truth degree is crisp number 0 or 1), Srinivasan and
Shocker (1973) proposed a linear programming technique for multidimensional analysis
of preference (LINMAP) to solve MADM problems. In this method, the DM can not only
provide the attribute values but give the incomplete preference relations on pairwise com-
parisons of alternatives. The idea of LINMAP is to define consistency and inconsistency
measures based on pairwise comparisons of alternatives. According to the consistency
and inconsistency measures, a crisp linear programming model is constructed to derive
the ideal solution and attribute weights. Thus, the best compromise alternative that has the
shortest distance to the ideal solution is obtained. Though the LINMAP method is simple
and feasible, it is suitable only when the attribute values are crisp numbers and the truth
degree on the pairwise comparison between alternatives is 0 or 1. However, due to the un-
certainty and imprecision or the pressure of time often existing, the decision information
is vague, imprecise and uncertain by nature. The crisp number is not adequate to model
real-life decision problems. Thus, the LINMAP method has been extended to suit different
situations where the attribute values of alternatives are fuzzy variables and the truth degree
is still 0 or 1. For example, Xia et al. (2006) proposed the fuzzy LINMNAP method with
linguistic variables. Li et al. (2010) presented an intuitionistic fuzzy multi-attribute group
decision making method in the framework of LINMAP. Wang and Li (2012) extended the
LINMAP method under interval-valued intuitionistic fuzzy environment (Jin et al., 2014;
Wan et al., 2015a).

When the truth degrees on the pairwise comparisons between alternatives are fuzzy
numbers or intuitionistic fuzzy sets (IFSs) (Wan et al., 2015b, 2016a; Xu et al., 2016;
Zeng et al., 2016b), different methods were proposed. For example, Zhang and Xu (2014)
developed an interval programming approach in which the fuzzy truth degrees are inter-
vals and the attribute values of alternatives are hesitant fuzzy sets (HFSs) (Wu et al., 2013).
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Representing the fuzzy truth degrees as trapezoidal fuzzy numbers (TrFNs), Li and Wan
(2013) and Li and Wan (2014a) gave two different methods for solving hybrid MADM
with real numbers, intervals and TrFNs. The difference between them is that only PIS is
considered and unknown in the method of Li and Wan (2013), while PIS and NIS are con-
sidered simultaneously and given a priori in the method of Li and Wan (2014a). Li and
Wan (2014b) generalized the method (Li and Wan, 2014a) by adding the attribute values
with IFSs. Later, considering the alternative comparisons with IFSs and supposing that the
PIS is given, Wan and Li (2013) constructed an intuitionistic fuzzy programming model
and proposed a new heterogeneous MADM method. In this method, the fuzzy degrees
on alternative comparisons are expressed as IFSs and the heterogeneous information of
attribute values are represented as IFS, intervals, TrFNs and crisp numbers, respectively.
Further, Wan and Li (2014) proposed the other intuitionistic fuzzy programming method
in the situation that the PIS is not given and needed to be determined. Recently, Wan and
Dong (2015) developed an interval-valued intuitionistic fuzzy mathematical programming
method in the environment that the preference relations between alternatives are expressed
as interval-valued intuitionistic fuzzy sets (IVIFSs) and the attribute values are in the form
of IVIFSs, IFSs, TrFNs, linguistic variables, intervals and real numbers.

The aforementioned methods seem to be very effective for solving hybrid MADM
problems. However, there are following drawbacks:

(i) Methods (Herrera et al., 2001, 2005; Martinez et al., 2007) transformed different
types of information into the single one in the process of decision making. There-
fore, some decision information may be lost or distorted in transforming process.

(ii) The classical TOPSIS method requires that attribute weights are completely
given a priori, but the attribute weights are usually incomplete (Li et al., 2010;
Wan and Li, 2013, 2014). To determine the attribute weights, some existing LIN-
MAP methods (Wan and Li, 2013, 2014) only minimized the inconsistency mea-
sure and did not consider the consistency measure. However, only minimizing the
inconsistency cannot ensure that the consistency measure achieves the maximum.
Therefore, it is not perfect to only consider the inconsistency while determining
the attribute weights.

(iii) Existing LINMAP methods (Li et al., 2010; Wan and Li, 2013, 2014) only consid-
ered the PIS and ignored the NIS. Moreover, methods (Li and Wan, 2013, 2014a;
Wan and Li, 2013, 2014) did not consider the attribute values or fuzzy truth de-
grees represented with HFSs. Since the HFS can describe the uncertainty which
cannot be described by intervals, fuzzy sets or IFSs, HFSs are more useful in
real-life MADM problems.

As an example, in a supplier selection, three DMs evaluate the technology ability of a
candidate supplier. The first DM assigns 0.8, the second one assigns 0.5, and the last one
assigns 0.2. No consistency is reached among these DMs. In this case, the satisfactory
degrees can be represented by a hesitant fuzzy element (HFE), i.e. {0.8,0.5,0.2}, which
is obviously different from fuzzy number 0.5 (or 0.2), the interval [0.2,0.8] and an IFS
〈0.8,0.2〉.



866 G.-L. Xu et al.

To overcome above drawbacks, we propose a new hesitant fuzzy programming method
for hybrid MADM problems and apply it to supplier selection problems. In this method,
the truth degrees on the pairwise comparison between alternatives are expressed as HFSs,
and the types of attribute values of alternatives include real numbers, intervals, IFSs, HFSs
and linguistic variables. First, given the fuzzy positive and negative ideal solutions, the
relative projection is utilized to define the overall relative closeness degrees of alterna-
tives to the fuzzy PIS. Then, HFS-type fuzzy consistency and inconsistency measures
are defined employing the relative closeness degree and the alternative comparisons with
hesitant fuzzy truth degrees. By maximizing the consistency measure and minimizing the
inconsistency measure simultaneously, a new bi-objective hesitant fuzzy mathematical
programming model is constructed to derive attribute weights. Using the score functions
of HFSs, the constructed bi-objective programming model is transformed into a single
objective crisp programming model to be solved. Thus, the attribute weights can be ob-
jectively determined. Subsequently, the overall relative closeness degrees of alternatives
are calculated and used to rank alternatives. Finally, an example of a supplier selection is
provided to illustrate the proposed method.

Compared with existing research, the highlights of this method include the following
points:

(1) Considering the alternative comparisons with hesitant fuzzy truth degrees, we
firstly adopt HFSs to capture the fuzzy alternative comparisons. Since HFS gen-
eralizes fuzzy sets and all IFSs are HFSs, it is more suitable to express the fuzzy
truth degrees with HFSs.

(2) A bi-objective hesitant fuzzy programming model is constructed to determine the
weights of attributes. A notable characteristic of this model is that it can take the
inconsistency and consistency into account simultaneously. However, methods (Li
and Wan, 2013; Wan and Li, 2013) only minimized the inconsistency and ignored
to maximize the consistency.

(3) An effective method is technically developed to solve the bi-objective hesitant
fuzzy programming model. Thereby, the attribute weights are derived objectively.

The rest of this paper is organized as follows. In Section 2, some preliminaries for
IFSs and HFSs are reviewed and the relative projection is defined. In Section 3, the hybrid
MADM problems with hesitant fuzzy truth degrees and incomplete weight information are
described and the normalization methods are given. A novel hesitant fuzzy programming
method for such hybrid MADM problems is developed in Section 4. The proposed method
is illustrated with a real supplier selection example and comparative analysis is conducted
in Section 5. Section 6 shows the main conclusions.

2. Preliminaries

As a preparation for introducing our new method, some related concepts and operations
are illustrated in this section.
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2.1. Intuitionistic Fuzzy Sets and Hesitant Fuzzy Sets

Definition 1. (See Atanassov, 1986.) Let X be a finite universe of discourse, an IFS A

in X is defined as A = {〈x,µA(x), υA(x)〉|x ∈ X}, where the function µA(x) : X → [0,1]

and υA(x) : X → [0,1] are the degrees of membership and nonmembership of an element
x ∈ X, respectively, satisfying 0 6 µA(x) + υA(x) 6 1, ∀x ∈ X. πA(x) = 1 − µA(x) −

υA(x) is called the intuitionistic fuzzy index of x ∈ A. It represents the hesitation degree of
x ∈ A. For each x ∈ X, 0 6 πA(x)6 1. The pair (µA(x), υA(x)) is called an intuitionisitic
fuzzy value (IFV) and simply demoted by α = (µα, υα).

Definition 2. (See Wan et al., 2016b.) Let A = 〈µA, υA〉 and B = 〈µB , υB〉 be two IFVs.
We stipulate:

(1) A + B = 〈µA + µB − µAµB, υAυB〉;
(2) A ⊆ B if and only if µA 6 µB and υA > υB ;
(3) The complementary of an IFV A is Ac = 〈υA,µA〉.

Definition 3. (See Torra, 2010.) Let X be a finite universe of discourse, a HFS on X

is in terms of a function that when applied to X returns a subset of [0,1], which can be
expressed as the following mathematical symbol:

E =
{〈

x,hE(x)
〉∣

∣x ∈ X
}

,

where hE(x) is a set of some values in [0,1], denoting the possible membership degrees
of the element x ∈ X to the set E. For convenience, we call h = hE(x) a hesitant fuzzy
element (HFE).

Based on the relationship between HFSs and IFSs, Xia and Xu (2011) defined the
following new operations on HFSs. Let h, h1 and h2 be three HFEs, then

(1) hλ =
⋃

γ∈h{γ
λ};

(2) λh =
⋃

γ∈h{1 − (1 − γ )λ};
(3) The complementary of a HFE h is hc =

⋃

γ∈h{1 − γ };
(4) h1 ∪ h2 =

⋃

γ1∈h1,γ2∈h2
max{γ1, γ2};

(5) h1 ∩ h2 =
⋃

γ1∈h1,γ2∈h2
min{γ1, γ2};

(6) h1 ⊕ h2 =
⋃

γ1∈h1,γ2∈h2
{γ1 + γ2 − γ1γ2}.

Definition 4. (See Xia and Xu, 2011.) For a HFE h, s(h) = 1

lh

∑

γ∈h γ is called a score
function of h, where lh is the number of the elements in h. Moreover, for two HFEs h1

and h2, if s(h1) > s(h2), then h1 > h2; if s(h1) = s(h2), then h1 = h2.
Given a HFE h(x) = {γ1, γ2, . . . , γl}, where γ1, γ2, . . . , γl are listed in decending or-

der, Torra and Narukawa (2009) gave a method for transforming h into an IFS, that is

µ(x) = h−(x), v(x) = 1 − h+(x), (1)

where h−(x) = min(h(x)) = γl and h+(x) = max(h(x)) = γ1.
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Table 1
The relations between linguistic variables and TFNs.

Linguistic variables TFNs

Very strong (s4) (0.8,0.9,1.0)

Strong (s3) (0.6,0.7,0.8)

Medium (s2) (0.4,0.5,0.6)

Poor (s1) (0.2,0.3,0.4)

Very poor (s0) (0.0,0.1,0.3)

2.2. Linguistic Variables

For traditional MADM problems, DMs often express their preferences on alternatives with
numerical values. However, due to the fuzziness and uncertainty, DMs may be unable to
use numerical values for providing their assessment values of alternatives with respect
to some attributes, especially some qualitative ones. In this case, it is more suitable for
DMs to provide their assessment values by linguistic variables whose values are linguistic
terms (Merigó et al., 2016). For instance, while evaluating the technology ability of the
suppliers, it is more suitable and easier to use terms like “strong (or good)”, “medium”,
“poor” (Ju and Wang, 2012).

Suppose that S = {s0, s1, s2, . . . , sl} is a linguistic term set, where si represents a pos-
sible linguistic term for a linguistic variable, and l + 1 is called the granularity of the
set S. For example, a set S with five terms could be given as S = {s0, s1, s2, s3, s4} =

{very poor, poor, medium, strong, very strong}. In these cases, the following characteris-
tics should be satisfied (Merigó et al., 2016):

(i) A negation operator: Neg(si) = sj such that j = l − i;
(ii) The set is ordered: si 6 sj if and only if i 6 j ;
(iii) Max operator: Max(si , sj ) = si if si > sj ;
(iv) Min operator: Min(si , sj ) = si if si 6 sj .

Usually, linguistic values are represented using positive triangular fuzzy numbers
(TFNs) (Wan and Li, 2015; Wan and Dong, 2015). For example, “poor” and “strong”
can be represented by TFNs (0.2,0.3,0.4) and (0.4,0.5,0.6), respectively. In this paper,
the transformed relations between linguistic variables and TFNs are listed in Table 1.

2.3. Relative Projection

Definition 5. (See Xu and Liu, 2013). Let α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn)

be two n dimensions vectors, then

Pr jβ(α) = |α| cos(α,β) = |α|
αβ

|α||β|
=

αβ

|β|
=

∑n
j=1

αjβj
√

∑n
j=1

β2

j

(2)

is called the projection of the vector α on the vector β, where |α| and |β| are the modules
of vectors α and β , respectively. It is shown in Fig. 1.



A Hesitant Fuzzy Programming Method for Hybrid MADM with IAWI 869

!  

Pr j ( )!

 !

!

 2  Pr j ( ) 2

Pr j ( )! !  "

!  

!  

2

j

( , ,..., ) ( , ,..., ) n

Pr j ( )! j j

!  

  

R Pr j ( )! !  

R Pr j ( )!

!
Pr j ( ) !

!

Fig. 1. Projection of vector α on the β .

From Definition 5, the larger the value of Pr jβ(α), the closer the degree of vector α

is to vector β . When the module of vector α is less than or equal to that of vector β , the
conclusion is right. However, when the module of vector α is more than that of vector β ,
the conclusion is wrong. For example, let α = β and γ = 2β , then Pr jβ(α) = |β| and
Pr jβ(γ ) = 2|β|. Obviously, Pr jβ(γ ) is larger than Pr jβ(α). In fact, α is closer to β than γ .
Therefore, the projection cannot accurately describe the degree of how close vector α is
to vector β. It is necessary to seek new tools to measure the degree of how close vector α

is to vector β .

Fusing Eq. (2) and the expression |β| =
√

∑n
j=1

β2

j , a relative projection definition is

given below.

Definition 6. Let α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) be two n dimensional
vectors. Then

R Pr jβ(α) =
Pr jβ(α)

|β|
=

∑n
j=1

αjβj
∑n

j=1
β2

j

(3)

is called the relative projection of vector α on vector β .

Obviously, if α = β , then Pr jβ(α) = |β| should hold. Thus, we get
Pr jβ(α)

|β|
= 1. There-

fore, the closer R Pr jβ(α) is to 1, the closer vector α is to vector β . Accordingly, the
distance between R Pr jβ(α) and 1 can be used to characterize the closeness degree of
vector α to vector β .

Let a and b be two positive real numbers which can be considered as two one dimen-
sional vectors. Then the relative projection a on b can be defined as

R Pr jb(a) =
ab

b2
=

a

b
. (4)

Let ã = [oã, qã] and b̃ = [ob̃, qb̃] be two interval numbers, where 0 < oã 6 qã and
0 < ob̃ 6 qb̃. then the relative projection ã on b̃ is defined as

R Pr jb̃(ã) =
oãob̃ + qãqb̃

(ob̃)
2 + (qb̃)

2
. (5)
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Similarly, when ã1 = (a1, b1, c1) and ã2 = (a2, b2, c2) are two TFNs, where 0 < ai 6

bi 6 ci (i = 1,2), the relative projection ã1 on ã2 is represented as

R Pr jã2
(ã1) =

a1a2 + b1b2 + c1c2

(a2)2 + (b2)2 + (c2)2
. (6)

If ẽ1 = 〈µ1, υ1〉 and ẽ2 = 〈µ2, υ2〉 are two IFSs, then

R Pr jẽ2
(ẽ1) =

µ1µ2 + υ1υ2

(µ2)2 + (υ2)2
. (7)

If h̃1 = {h11, h12, . . . , h1l1} and h̃2 = {h21, h22, . . . , h2l2} are two HFSs, then

R Pr jh̃2
(h̃1) =

1

l

l
∑

k=1

h1k

h2k

, (8)

where l = max{l1, l2}.
In most cases, l1 6= l2. Without loss of generality, let l1 < l2. Xu and Zhang (2013)

pointed that h̃1 can be extended by adding any value in it, such as adding the minimum or
maximum value, until the number of the possible values in h̃1 is equal to l2. The pessimists
may choose the minimum value, while the optimists may choose the maximum value.
For example, let h̃1 = {0.5,0.4} and h̃2 = {0.6,0.5,0.3}, where l1 < l2. A pessimist can
extend h̃1 to h̃1 = {0.5,0.4,0.4}, and an optimist can extend h̃1 as h̃1 = {0.5,0.5,0.4}.
Although the results are different, they are reasonable because the decision makers’ risk
preferences can directly influence their final decisions. In this paper, DMs are considered
to be pessimistic (other situations can be researched similarly).

3. Hybrid MADM Problems with Hesitant Fuzzy Alternative Comparisons

In this section, the hybrid MADM problems considered in this paper are described and
the normalization methods are provided.

3.1. The Description of Hybrid MADM Problems

For hybrid MADM problems, let X = {x1, x2, . . . , xn} be the set of n feasible alterna-
tives, U = {u1, u2, . . . , um} be the set of m attributes, and w = (w1,w2, . . . ,wm)T be
the weight vector of attributes. Usually, the attribute weights are required to satisfy the
normalization conditions:

∑m
j=1

wj = 1 and wj > ε (j = 1,2, . . . ,m). For convenience,
denote D0 = {w|

∑m
j=1

wj = 1, wj > ε, for j = 1,2, . . . ,m}, where ε is a sufficiently
small positive number to ensure the weights obtained are not zeros. The incomplete infor-
mation structures of attribute weights are often given in the following five basic relations
among attributes (Li, 2011):

(1) A ranking with times: wk > ςklwl , 0 6 ςkl 6 1;
(2) A weak ranking: wk > wl ;
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(3) A strict ranking: 0 < akl 6 wk − wl 6 bkl , 0 6 akl, bkl 6 1;
(4) An interval-valued form: ξk 6 wk 6 χk , 0 6 ξk, χk 6 1;
(5) A ranking of differences: wk − wl 6wp − wq .

According to the characteristics of decision problems themselves or the capacities of
DMs, DMs may give partial information about attribute weights. The incomplete infor-
mation of attribute weights given by DMs, denoted by D, may consist of several or all of
five basic relations in D0.

Let P ′ = (p′
ij )n×m be a decision matrix given by DMs, where p′

ij (i = 1,2, . . . , n;
j = 1,2, . . . ,m) be the ratings of alternative xi on the attribute uj . Assume that:

(1) for j = 1,2, . . . , j1, p′
ij are real numbers denoted by f ′

ij ;
(2) for j = j1 + 1,2, . . . , j2, p′

ij are linguistic variables denoted by sij ;
(3) for j = j2 + 1,2, . . . , j3, p′

ij are IFSs denoted by 〈µij , vij 〉;

(4) for j = j3 +1, . . . , j4, p′
ij are HFSs denoted by h̃ij = {hij1, hij2, . . . , hij lij }, where

lij is the number of possible values in hij ;
(5) for j = j4 + 1, . . . ,m, p′

ij are intervals denoted by [o′
ij , q

′
ij ].

3.2. Normalization Methods

Generally, there are benefit attributes and cost attributes in MADM problems, the higher
the benefit attribute value, the better it will be. As for the cost attribute, it is opposite.
Let J1 and J2 be the sets of benefit attributes and cost attributes, respectively. In order to
measure all attributes in dimensionless units and to facilitate inter-attribute comparisons,
we need to normalize above attribute values. Denote the normalized values by pij , and the
normalized decision matrix by P = (pij )n×m . The normalizing formulas are as follows:

pij =

{

f ′
ij /maxi f

′
ij , if j ∈ J1, j = 1,2, . . . , j1,

mini f
′
ij /f ′

ij , if j ∈ J2, j = 1,2, . . . , j1,
(9)

pij =

{

sij , if j ∈ J1, j = j1 + 1, j1 + 2, . . . , j2,

Neg(sij ), if j ∈ J2, j = j1 + 1, j1 + 2, . . . , j2,
(10)

pij =

{

〈µij , vij 〉, ifj ∈ J1, j = j2 + 1, j2 + 2, . . . , j3,

〈vij ,µij 〉, if j ∈ J2, j = j2 + 1, j2 + 2, . . . , j3,
(11)

pij =

{

h̃ij , if j ∈ J1, j = j3 + 1, j3 + 2, . . . , j4,

(h̃ij )c, if j ∈ J2, j = j3 + 1, j3 + 2, . . . , j4,
(12)

pij =

{

[o′
ij /maxi q

′
ij , q

′
ij/maxi q

′
ij ], if j ∈ J1, j = j4 + 1, j4 + 2, . . . ,m,

[1 − q ′
ij/maxi q

′

ij ,1 − o′
ij /maxi q

′
ij ], if j ∈ J2, j = j4 + 1, j4 + 2, . . . ,m.

(13)
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4. A Novel Method for Hybrid MADM Problems with Hesitant Fuzzy Alternative

Comparisons

In this section, a new hesitant fuzzy programming method is developed for solving the
above hybrid MADM problems.

4.1. Computing the Relative Closeness of Alternatives Based on the Relative Projection

Denote the PIS and NIS by r+ = (r+
1

, r+
2

, . . . , r+
n ) and r− = (r−

1
, r−

2
, . . . , r−

n ), respec-
tively, where

r+
j =







































f +
j = maxi fij , if j = 1,2, . . . , j1,

(a+
j , b+

j , c+
j ) = (maxi aij ,maxi bij ,maxi cij ), if j = j1 + 1, j1 + 2, . . . , j2,

〈µ+
j , v+

j 〉 = 〈maxi µij ,mini vij 〉, if j = j2 + 1, j2 + 2, . . . , j3,

(h+
j1

, h+
j2

, . . . , h+
j lj

) = (maxi hij1,maxi hij2, . . . ,maxi hij lj ),

if j = j3 + 1, j3 + 2, . . . , j4, where lj = maxi{lij },

[o+
j , q+

j ] = [maxi oij ,maxi qij ], if j = j4 + 1, j4 + 2, . . . ,m

(14)

and

r−
j =







































f −
j = mini fij , if j = 1,2, . . . , j1,

(a−
j , b−

j , c−
j ) = (mini aij ,mini bij ,mini cij ), if j = j1 + 1, j1 + 2, . . . , j2,

〈µ−
j , v−

j 〉 = 〈mini µij ,maxi vij 〉, if j = j2 + 1, j2 + 2, . . . , j3,

(h−
j1

, h−
j2

, . . . , h−
j lj

) = (mini hij1,mini hij2, . . . ,mini hij lj ),

if j = j3 + 1, j3 + 2, . . . , j4, where lj = maxi{lij },

[o−
j , q−

j ] = [mini oij ,mini qij ], if j = j4 + 1, j4 + 2, . . . ,m.

(15)

According to the TOPSIS method, the closer the alternative xi is to the PIS r+ and, at
the same time, the farther is to the NIS r−, the better the alternative xi is. In this paper, the
closeness degree between alternative xi and the PIS or NIS is described by the distance
between the relative projection referred in Definition 5 and crisp number 1. Using Eqs.
(4)–(8), the relative projection between pij and r+

j as well as r−
j is computed as follows:

RPrr+
j
(pij ) =























































fij

f +
j

, if j = 1,2, . . . , j1,

aij a+
j +bij b+

j +cij c+
j

(a+
j )2+(b+

j )2+(c+
j )2

, if j = j1 + 1, j1 + 2, . . . , j2,

µij µ+
j +vij v+

j

(µ+
j )2+(v+

j )2
, if j = j2 + 1, j2 + 2, . . . , j3,

1

lj

∑lj
k=1

hijk

h+
jk

, if j = j3 + 1, j3 + 2, . . . , j4; lj = maxi lij ,

oij o+
j +qij q+

j

(o+
j )2+(q+

j )2
, if j = j4 + 1, j4 + 2, . . . ,m

(16)
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and

RPrr−
j
(pij ) =























































fij

f −
j

, ifj = 1,2, . . . , j1,

aij a−
j +bij b−

j +cij c−
j

(a−
j )2+(b−

j )2+(b−
j )2

, ifj = j1 + 1, j1 + 2, . . . , j2,

µij µ−
j +vij v−

j

(µ−
j )2+(v−

j )2
, if j = j2 + 1, j2 + 2, . . . , j3,

1

lj

∑lj
k=1

hijk

h−
jk

, if j = j3 + 1, j3 + 2, . . . , j4; lj = maxi lij ,

oij o−
j +qij q−

j

(o−
j )2+(q−

j )2
, if j = j4 + 1, j4 + 2, . . . ,m.

(17)

Denote θ+
ij = (R Pr jr+

j
(rij )−1)2 and θ−

ij = (R Pr jr−
j
(rij )−1)2. The relative closeness

of pij with respect to r+
j is defined as

RCij =
θ−
ij

θ+
ij + θ−

ij

. (18)

Let RC = (RCij )n×m be the relative closeness matrix. Therefore, the overall relative
closeness of alternative xi can be described as

Ti =

n
∑

j=1

wjRCij . (19)

If attribute weights are known in advance, then the alternatives can be ranked according
to the descending order of Ti , and the one with the maximum value of Ti is the best.
To determine attribute weights, a new bi-objective hesitant fuzzy programming model is
constructed in the sequel.

4.2. A New Bi-Objective Hesitant Fuzzy Programming Model for Determining Attribute

Weights

To estimate attribute weights, a new bi-objective hesitant fuzzy programming method is
developed in this subsection.

4.2.1. Hesitant Fuzzy Consistency and Inconsistency Measures

Under certain circumstances, DM may compare two alternatives directly without consider-
ation of particular attributes. For example, a DM may prefer supplier A to supplier B with-
out considering specific attributes of the suppliers. Assume that the DM gives the prefer-
ence relations between alternatives by a HFS of ordered pairs E = {〈(k, i), hE(k, i)〉|xk �

xi with hE(k, i)}, where 〈(k, i), hE(k, i)〉 represents an ordered pairs of alternatives xk

and xi that the DM prefers xk to xi (denoted by xk � xi ) with the hesitant fuzzy truth
degree hE(k, i), which is a HFE and denoted by hE(k, i) = {γ 1

ki, γ
2

ki, . . . , γ
lki

ki }, satisfying
γ

g
ki ∈ [0,1] for any g = 1,2, . . . , lki .
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For each pair of alternatives (k, i) ∈ E, alternative xk is closer to the PIS than alter-
native xi if Tk > Ti . Hence, it yields xk � xi . This ranking order is consistent with the
subjective preference relation given by DM. Conversely, if Tk < Ti , then xi � xk . Thus,
the chosen w is not proper since it results in that the ranking order of alternatives xk and
xi determined by Tk and Ti associated with w is inconsistent with the subjective prefer-
ence relation given by DM. Therefore, w should be chosen in order to make the ranking
order determined by Tk and Ti consistent with the subjective preference relation (k, i) ∈ E

provided by DM.
Bearing this idea in mind, we introduce the inconsistency measure

Yki =

{

hE(k, i)(Ti − Tk), if Tk < Ti,

0, if Tk > Ti
(20)

to measure inconsistency between the ranking order of alternatives xk and xi determined
by Tk and Ti and the preference relation (k, i) ∈ E.

In Eq. (20), Tk > Ti demonstrates that alternative xk is preferred to xi , which is in
accordance with the subjective preference relation (k, i) ∈ E. Hence, the inconsistency
measure Yki is equal to 0. Otherwise, the inconsistency measure Yki = hE(k, i)(Ti − Tk)

represents the expected value of the inconsistency degree between the ranking order of
alternatives xk and xi determined by Tk and Ti and the preference relation (k, i) ∈ E. In
order to unify the two expressions of consistency measure into one expression, we conduct
the following analyses.

If Tk < Ti , then Ti − Tk > 0. Thus, it is followed that max{0, Ti − Tk} =

Ti − Tk . Consequently, Yki = hE(k, i)(Ti − Tk) in Eq. (20) can be expressed as Yki =

hE(k, i)max{0, Ti − Tk}. If Tk > Ti , then we get max{0, Ti − Tk} = 0. Thereby, Yki = 0

in Eq. (20) can also be written as Yki = hE(k, i)max{0, Ti − Tk}. Accordingly, Eq. (20)
can be unified into the following equation:

Yki = hE(k, i)max{0, Ti − Tk}. (21)

Denote the total inconsistency measure by ICI. We derive

ICI =
∑

(k,i)∈E

Yki =
∑

(k,i)∈E

hE(k, i)max{0, Ti − Tk}. (22)

Similar to the inconsistency measure, the consistent measure can be defined as

Bki =

{

hE(k, i)(Tk − Ti), if Tk > Ti,

0, if Tk < Ti,
(23)

which can be rewritten as

Bki = hE(k, i)max{0, Tk − Ti}. (24)
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Hence, the total consistency index CI can be defined as

CI =
∑

(k,i)∈E

Bki =
∑

(k,i)∈E

hE(k, i)max{0, Tk − Ti}. (25)

4.2.2. Construction of a Bi-Objective Hesitant Fuzzy Programming Model

To determine the attribute weight vector w, a new bi-objective hesitant fuzzy mathematical
programming model is constructed as

max CI
min ICI
s.t. w ∈ D

(26)

where D is the incomplete information of the attribute importance given by the DM re-
ferred in Section 3.2. Eq. (26) intends to maximize the consistency measure CI and min-
imize the inconsistency measure ICI simutaneously.

According to Eqs. (22) and (25), Eq. (26) can be rewritten as

max

{

∑

(k,i)∈E

hE(k, i)max{0, Tk − Ti}

}

,

min

{

∑

(k,i)∈E

hE(k, i)max{0, Ti − Tk}

}

,

s.t. w ∈ D.

(27)

For each pair of alternatives (k, i) ∈ E, let ηki = max{0, Tk − Ti} and ξki =

max{0, Ti − Tk}, then ηki > 0, ξki > 0, ηki > Tk − Ti and ξki > Ti − Tk , i.e. Tk −

Ti − ηki 6 0 and Tk − Ti + ξki > 0. Furthermore, ηki and ξki satisfy the equation
ηki − ξki = Tk − Ti .

Thus, Eq. (27) can be transformed into a bi-objective hesitant fuzzy programming, i.e.

max

{

∑

(k,i)∈E

hE(k, i)ηki

}

,

min

{

∑

(k,i)∈E

hE(k, i)ξki

}

,

s.t.



























ηki − ξki = Tk − Ti, (k, i) ∈ E,

Tk − Ti − ηki 6 0, (k, i) ∈ E,

Tk − Ti + ξki > 0, (k, i) ∈ E,

ηki > 0, ξki > 0, (k, i) ∈ E,

w ∈ D.

(28)
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According to Eq. (19), one has

Tk − Ti =

n
∑

j=1

wj (RCkj − RCij ). (29)

Putting Eq. (29) into (28), we have

max

{

∑

(k,i)∈E

hE(k, i)ηki

}

,

min

{

∑

(k,i)∈E

hE(k, i)ξki

}

.

s.t.



























ηki − ξki =
∑n

j=1
wj (RCkj − RCij ), (k, i) ∈ E,

∑n
j=1

wj (RCkj − RCij ) − ηki 6 0, (k, i) ∈ E,
∑n

j=1
wj (RCkj − RCij ) + ξki > 0, (k, i) ∈ E,

ηki > 0, ξki > 0, (k, i) ∈ E,

w ∈ D.

(30)

4.2.3. The Resolution Method of the Bi-Objecitve Hesitant Fuzzy Programming Model

From operational rules of HFEs, the objective function
∑

(k,i)∈E hE(k, i)ηki and
∑

(k,i)∈E hE(k, i)ξki in Eq. (30) are HFEs, that is

∑

(k,i)∈E

hE(k, i)ηki =
⊕

(k,i)∈E

hE(k, i)ηki =
⋃

γ
g
ki∈hE (k,i)

{

1 −
∏

(k,i)∈E

(1 − γ
g
ki)

ηki

}

(31)

and

∑

(k,i)∈E

hE(k, i)ξki =
⊕

(k,i)∈E

hE(k, i)ξki =
⋃

γ
g
ki∈hE(k,i)

{

1 −
∏

(k,i)∈E

(1 − γ
g
ki)

ξki

}

. (32)

For the sake of convenience, suppose that

q̃ =
⋃

γ
g
ki∈hE (k,i)

{

1 −
∏

(k,i)∈E

(1 − γ
g
ki)

ηki

}

,
{

γ
q̃
1
, γ

q̃
2
, . . . , γ

q̃
Nq̃

}

(33)

and

θ̃ =
⋃

γ
g
ki∈hE(k,i)

{

1 −
∏

(k,i)∈E

(1 − γ
g
ki)

ξki

}

,
{

γ θ̃
1
, γ θ̃

2
, . . . , γ θ̃

N
θ̃

}

, (34)

where Nq̃ and Nθ̃ are the numbers of all possible values of HFEs θ̃ and q̃ , respectively,

and γ θ̃
t1

and γ
q̃
t2

are corresponding possible values, t1 = 1,2, . . . ,Nq̃ and t2 = 1,2, . . . ,N
θ̃
.
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According to the ranking relation of HFEs (see Definition 4), minimizing
∑

(k,i)∈E hE(k, i)ξki and maximizing
∑

(k,i)∈E hE(k, i)ηki in Eq. (30) are equivalent to
minimize the score function of the former and maximize that of the latter. Let s(q̃) and
s(θ̃ ) be respectively the score functions of the objective functions

∑

(k,i)∈E hE(k, i)ξki

and
∑

(k,i)∈E hE(k, i)ηki , then Eq. (30) can be converted by Eqs. (31)–(34) as follows:

max s(q̃),

min s(θ̃ ),

s.t.



























ηki − ξki =
∑n

j=1
wj (RCkj − RCij ), (k, i) ∈ E,

∑n
j=1

wj (RCkj − RCij ) − ηki 6 0, (k, i) ∈ E,
∑n

j=1
wj (RCkj − RCij ) + ξki > 0, (k, i) ∈ E,

ηki > 0, ξki > 0, (k, i) ∈ E,

w ∈ D.

(35)

To solve Eq. (35), it is needed to determine the score functions s(q̃) and s(θ̃ ). By
employing Definition 4, the two score functions are obtained as

s(q̃)=
1

Nq̃

Nq̃
∑

t1=1

γ
q̃
t1

(36)

and

s(θ̃ ) =
1

Nθ̃

N
θ̃

∑

t2=1

γ θ̃
t2
. (37)

By the operations on HFSs in Section 2 and Eqs. (33)–(34), it yields that

s(q̃) = 1 −
1

Nq̃

∑

γ
g
ki∈hE(k,i)

∏

(k,i)∈E

(1 − γ
g
ki)

ηki (38)

and

s(θ̃ ) = 1 −
1

Nθ̃

∑

γ
g
ki∈hE(k,i)

∏

(k,i)∈E

(1 − γ
g
ki)

ξki . (39)

Plugging Eqs. (38)–(39) into Eq. (35), we derive

max

{

1 −
1

Nq̃

∑

γ
g
ki∈hE (k,i)

∏

(k,i)∈E

(1 − γ
g
ki)

ηki

}

,

min

{

1 −
1

Nθ̃

∑

γ
g
ki∈hE(k,i)

∏

(k,i)∈E

(1 − γ
g
ki)

ξki

}

,
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s.t.



























ηki − ξki =
∑n

j=1
wj (RCkj − RCij ), (k, i) ∈ E,

∑n
j=1

wj (RCkj − RCij ) − ηki 6 0, (k, i) ∈ E,
∑n

j=1
wj (RCkj − RCij ) + ξki > 0, (k, i) ∈ E,

ηki > 0, ξki > 0, (k, i) ∈ E,

w ∈ D.

(40)

Clearly, Eq. (40) can be simplified as the following model:

min

{

z1 =
1

Nq̃

∑

γ
g
ki∈hE(k,i)

∏

(k,i)∈E

(1 − γ
g
ki)

ηki

}

,

max

{

z2 =
1

Nθ̃

∑

γ
g
ki∈hE(k,i)

∏

(k,i)∈E

(1 − γ
g

ki)
ξki

}

,

s.t.



























ηki − ξki =
∑n

j=1
wj (RCkj − RCij ), (k, i) ∈ E,

∑n
j=1

wj (RCkj − RCij ) − ηki 6 0, (k, i) ∈ E,
∑n

j=1
wj (RCkj − RCij ) + ξki > 0, (k, i) ∈ E,

ηki > 0, ξki > 0, (k, i) ∈ E,

w ∈ D.

(41)

By the linear weighted summation method, Eq. (41) can be transformed into a single
objective crisp programming model:

min

{

z = δ
1

Nq̃

∑

γ
g
ki

∈hE(k,i)

∏

(k,i)∈E

(1 − γ
g
ki)

ηki − (1 − δ)
1

Nθ̃

∑

γ
g
ki

∈hE(k,i)

∏

(k,i)∈E

d(1 − γ
g
ki)

ξki

}

,

s.t.



























ηki − ξki =
∑n

j=1
wj (RCkj − RCij ), (k, i) ∈ E,

∑n
j=1

wj (RCkj − RCij ) − ηki 6 0, (k, i) ∈ E,
∑n

j=1
wj (RCkj − RCij ) + ξki > 0, (k, i) ∈ E,

ηki > 0, ξki > 0, (k, i) ∈ E,

w ∈ D.

(42)

where the weighted coefficient 0 6 δ 6 1.
Specially, δ = 0 means that only minimizing the inconsistency measure is considered;

δ = 0.5 indicates that maximizing the consistency measure is as important as minimizing
the inconsistency measure; δ = 1 implies that only maximizing the consistency measure
is considered.

Solving Eq. (42), the vector of attribute weights, w = (w1,w2, . . . ,wm)T, can be de-
termined.

4.3. Decision Process and Algorithm for Hybrid MADM Problems

Based on the above analysis, the algorithm and decision process for hybrid MADM prob-
lems are summarized as follows:
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1x 2x 3x 4x 5x

Determine the PIS and NIS

Identify the feasible alternatives and evaluation attributes

Formulate the decision matrix  P , preference relations set E

and incomplete information D of the attributes importance

Normalize the matrix  P

Give the expression of general relative closeness
i
T

Derive the vector of attribute weights  

Compute the relative closeness
i
T

Rank the alternatives and select best one(s)

By using Eqs. (9)-(13)

According to Eqs. (14)-(15)

By using Eqs. (16)-(19)

Construct ICI and CI according to Eq. (22)

and Eq. (25), respectively

Build the bi-objective hesitant fuzzy programming

Eq. (30) and transform it into Eq. (42)

Solve Eq. (42)

Fig. 2. The decision making process for the hybrid MADM with hesitant fuzzy alternative comparisons.

Step 1. Identify all the feasible alternatives and evaluation attributes.
Step 2. Elicit the fuzzy decision matrix P ′ = (p′

ij )m×n, formulate the preference rela-
tions between alternatives by a HFS of ordered pairs E, and acquire the incomplete
information D of attribute weights.

Step 3. Normalize the matrix P ′ = (p′
ij )m×n into P = (pij )m×n via Eqs. (9)–(13).

Step 4. Determine the PIS and NIS by Eqs. (14)–(15).
Step 5. Give the expression of the overall relative closeness Ti using Eqs. (16)–(19).
Step 6. Derive the weight vector w by solving Eq. (42).
Step 7. Compute the overall relative closeness Ti by Eq. (19).
Step 8. Rank alternatives according to Ti and select the best one(s).

The above decision making process may be depicted by Fig. 2.
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5. A Real Supplier Selection Example and Comparative Analysis

In this section, a real supplier selection example is given to illustrate the application of
the proposed method. Meanwhile, the comparative analysis is also conducted to show the
superiority of the proposed method.

5.1. A Supplier Selection Problem and the Solving Process

Yutong Bus Co., Ltd. (YBC for short) is one of the biggest companies in Chinese bus
industry. In 1997, YBC became the first listed company among the bus industry in China.
In 2013, bus sales in YBC reached 56068 units. To increase its core competencies, YBC
needs to select a suitable supplier for its automotive upholstery. After preliminary screen-
ing, five candidate suppliers (alternatives) remain for further evaluation, denoted by x1, x2,
x3, x4 and x5. While evaluating these suppliers, eight attributes are considered, including
the price (u1), quality (u2), reputation (u3), technology ability (u4), general management
capability (u5), risk (u6), service performance (u7) and the delivery time (u8). The values
for evaluating u1 are certain and described by crisp numbers. Attributes u2 and u5 are
qualitative attributes and the evaluations for them are expressed easily by linguistic vari-
ables. The values of attributes u3 and u7 are usually represented by IFSs. The assessments
for attributes u4 and u6 are described in the form of HFSs. It is suitable to use interval
number to describe attribute u8. The DM evaluates candidate suppliers and provides the
decision matrix as follows:

P ′ = (p′
ij )6×8

=



















200 s2 〈0.60,0.20〉 {0.7,0.5,0.4} s3 {0.9,0.8,0.6} 〈0.10,0.80〉 [6,8]

217 s1 〈0.70,0.15〉 {0.8,0.6} s2 {0.9,0.7} 〈0.15,0.70〉 [8,10]

212 s4 〈0.80,0.10〉 {0.9,0.8} s2 {0.7,0.5,0.4} 〈0.05,0.75〉 [7,9]

232 s3 〈0.50,0.20〉 {0.7,0.6,0.5} s4 {0.8,0.7,0.6} 〈0.05,0.90〉 [5,7]

250 s0 〈0.90,0.05〉 {0.8,0.7,0.5} s3 {0.5,0.4} 〈0.20,0.70〉 [3,5]

227 s3 〈0.70,0.20〉 {0.9,0.7,0.6} s1 {0.4,0.3} 〈0.10,0.80〉 [8,10]



















.

Combining the opinions of domain experts, general manager, financial manager and
purchasing manager with DM’s comprehensive judgements, the DM gives the following
preference relations between candidate suppliers:

E =
{

〈(1,2), hE(1,2)〉, 〈(1,4), hE(1,4)〉, 〈(3,2), hE(3,2)〉, 〈(3,4), hE(3,4)〉,

〈(5,6), hE(5,6)〉, 〈(6,2), hE(6,2)〉
}

,

where hE(1,2) = {0.4,0.3,0.1}, hE(1,4) = {0.3,0.2,0.1}, hE(3,2) = {0.8}, hE(3,4) =

{0.7,0.6}, hE(6,2) = {0.3}, hE(5,6) = {0.2,0.1}.
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The attributes information supplied by the DM is

D =















w ∈ D0

∣

∣

∣

∣

∣

∣

∣

∣

w2 − w4 > 0.02;w2 − w3 6 0.05; 0.056 w2 6 0.15;

w2 − w3 < w1 − w7;w4 > 2w5;

w5 > 0.02;w6 − w8 > 0.06w7;w8 < 2w7;w8 > 0.08;

w1 + w2 + w6 + w8 > 0.5.















Step 1. Using Table 1 and Eqs. (9)–(13), the decision matrix P ′ = (p′
ij )m×n can be

normalized as

P =











1.00 (0.4,0.5,0.6) 〈0.60,0.20〉 {0.7,0.5,0.4} (0.6,0.7,0.8) {0.9,0.8,0.6} 〈0.80,0.10〉 [0.6,0.8]

0.92 (0.2,0.3,0.4) 〈0.70,0.10〉 {0.8,0.6} (0.4,0.5,0.6) {0.9,0.7} 〈0.70,0.15〉 [0.8,1.0]

0.94 (0.8,0.9,1.0) 〈0.80,0.15〉 {0.9,0.8} (0.4,0.5,0.6) {0.7,0.5,0.4} 〈0.75,0.05〉 [0.7,0.9]

0.86 (0.6,0.7,0.8) 〈0.50,0.20〉 {0.7,0.6,0.5} (0.8,0.9,1.0) {0.8,0.7,0.6} 〈0.90,0.05〉 [0.5,0.7]

0.80 (0.0,0.1,0.2) 〈0.90,0.05〉 {0.8,0.7,0.5} (0.6,0.7,0.8) {0.5,0.4} 〈0.70,0.20〉 [0.3,0.5]

0.88 (0.6,0.7,0.8) 〈0.70,0.20〉 {0.9,0.7,0.6} (0.2,0.3,0.4) {0.4,0.3} 〈0.80,0.10〉 [0.8,1.0]











.

Step 2. The PIS r+ and NIS r−are obtained by Eqs. (14)–(15), i.e.

r+ = (1.0, (0.8,0.9,1.0), 〈0.90,0.05〉, {0.9,0.8,0.8}, (0.8,0.9,1), {0.9,0.8,0.7},

〈0.90,0.05〉, [0.8,1.0]),

r− = (0.8, (0.0,0.1,0.2), 〈0.5,0.2〉, {0.7,0.5,0.4}, (0.2,0.3,0.4), {0.4,0.3,0.3},

〈0.7,0.2〉, [0.3,0.5]).

According to Eqs. (16)–(18), the relative closeness matrix RC of alternatives is de-
rived as

RC =



















1.0000 0.9674 0.3582 0.0000 0.9694 0.9987 0.4342 0.9118

0.7785 0.7671 0.834 0.6554 0.6647 0.999 0.0076 1.0000

0.8948 1.0000 0.9997 1.0000 0.6647 0.7443 0.0032 0.9866

0.2571 0.9963 0.0000 0.2200 1.0000 0.9872 1.0000 0.6713

0.0000 0.0000 0.9627 0.6273 0.9694 0.3083 0.0000 0.0000

0.4098 0.9963 0.9111 0.9091 0.0000 0.0000 0.4342 1.0000



















.

Step 3. A bi-objective hesitant fuzzy programming model is constructed by Eq. (30)
as follows:

max CI = {0.4,0.3,0.1}η12 ⊕ {0.3,0.2,0.1}η14 ⊕ {0.8}η32 ⊕ {0.7,0.6}η34

⊕ {0.2,0.1}η56 ⊕ {0.4}η62,

min ICI = {0.4,0.3,0.1}ξ12 ⊕ {0.3,0.2,0.1}ξ14 ⊕ {0.8}ξ32 ⊕ {0.7,0.6}ξ34

⊕ {0.2,0.1}ξ56 ⊕ {0.4}ξ62,
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s.t.



































































































































































































































































































































































η12 − ξ12 = 0.2215w1 + 0.2003w2 − 0.4758w3 − 0.6554w4 + 0.3047w5

− 0.0003w6 + 0.4266w7 − 0.0882w8

η14 − ξ14 = 0.7429w1 − 0.0289w2 + 0.3582w3 − 0.22w4 − 0.0306w5

− 0.0114w6 − 0.5658w7 − 0.2405w8

η32 − ξ32 = 0.1163w1 + 0.2329w2 + 0.1658w3 + 0.3446w4 + 0w5

+ 0.2547w6 − 0.0044w7 − 0.0134w8

η34 − ξ34 = 0.6377w1 + 0.0037w2 + 0.9997w3 + 0.78w4 − 0.3353w5

− 0.243w6 − 0.9968w7 + 0.3152w8

η56 − ξ56 = −0.4098w1 − 0.9963w2 + 0.0516w3 − 0.2818w4 + 0.9694w5

+ 0.3083w6 − 0.4342w7 − w8

η62 − ξ62 = −0.3687w1 + 0.2292w2 + 0.0771w3 + 0.2536w4 − 0.6647w5

− 0.999w6 + 0.4266w7 + 0 × w8

(0.2215w1 + 0.2003w2 − 0.4758w3 − 0.6554w4 + 0.3047w5 − 0.0003w6

+ 0.4266w7 − 0.0882w8) − η12 6 0

(0.7429w1 − 0.0289w2 + 0.3582w3 − 0.22w4 − 0.0306w5 − 0.0114w6

− 0.5658w7 − 0.2405w8) − η14 6 0

(0.1163w1 + 0.2329w2 + 0.1658w3 + 0.3446w4 + 0w5 + 0.2547w6

− 0.0044w7 − 0.0134w8) − η32 6 0

(0.6377w1 + 0.0037w2 + 0.9997w3 + 0.78w4 − 0.3353w5 − 0.243w6

− 0.9968w7 + 0.3152w8) − η34 6 0

(−0.4098w1 − 0.9963w2 + 0.0516w3 − 0.2818w4 + 0.9694w5 + 0.3083w6

− 0.4342w7 − w8) − η56 6 0

(−0.3687w1 + 0.2292w2 + 0.0771w3 + 0.2536w4 − 0.6647w5 − 0.999w6

+ 0.4266w7 + 0w8) − η62 6 0

(0.2215w1 + 0.2003w2 − 0.4758w3 − 0.6554w4 + 0.3047w5 − 0.0003w6

+ 0.4266w7 − 0.0882w8) + ξ12 > 0

(0.7429w1 − 0.0289w2 + 0.3582w3 − 0.22w4 − 0.0306w5 − 0.0114w6

− 0.5658w7 − 0.2405w8) + ξ14 > 0

(0.1163w1 + 0.2329w2 + 0.1658w3 + 0.3446w4 + 0 × w5 + 0.2547w6

− 0.0044w7 − 0.0134w8) + ξ32 > 0

(0.6377w1 + 0.0037w2 + 0.9997w3 + 0.78w4 − 0.3353w5 − 0.243w6

− 0.9968w7 + 0.3152w8) + ξ34 > 0

(−0.4098w1 − 0.9963w2 + 0.0516w3 − 0.2818w4 + 0.9694w5 + 0.3083w6

−0.4342w7 − w8) + ξ56 > 0

(−0.3687w1 + 0.2292w2 + 0.0771w3 + 0.2536w4 − 0.6647w5 − 0.999w6

+ 0.4266w7 + 0 × w8) + ξ62 > 0

ξ12 > 0; ξ14 > 0; ξ32 > 0; ξ34 > 0; ξ56 > 0; ξ62 > 0;

η12 > 0; η14 > 0; η32 > 0; η34 > 0; η56 > 0; η62 > 0;

w2 − w4 > 0.02; w2 − w3 6 0.05; 0.05 6 w2 6 0.15; w2 − w3 < w1 − w7;

w4 > 2w5; w5 > 0.02; w6 − w8 > 0.06w7; w8 < 2w7; w8 > 0.05w6; w8 > 0.08;

w1 + w2 + w6 + w8 > 0.5,

w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 = 1,

w1,w2,w3,w4,w5,w6,w7,w8 > 0.

(43)
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Table 2
The vectors of attribute weights and ranking orders of candidates for different values of parameter δ.

δ W1 W2 W3 W4 W5 W6 W7 W8 Ranking of candidates

0 0.1750 0.1500 0.2440 0.0040 0.0020 0.0950 0.2497 0.0800 x3 ≻ x1 ≻ x2 ≻ x6 ≻ x4 ≻ x5

0.1 0.1784 0.1500 0.3053 0.0040 0.0020 0.0916 0.1934 0.0080 x3 ≻ x1 ≻ x2 ≻ x6 ≻ x4 ≻ x5

0.2 0.1876 0.1500 0.4540 0.0040 0.0020 0.0824 0.0400 0.0080 x3 ≻ x2 ≻ x6 ≻ x1 ≻ x5 ≻ x4

0.3 0.2876 0.0500 0.4540 0.0040 0.0020 0.0824 0.0400 0.0080 x3 ≻ x2 ≻ x6 ≻ x1 ≻ x5 ≻ x4

0.4 0.2876 0.0500 0.4540 0.0040 0.0020 0.0824 0.0400 0.0080 x3 ≻ x2 ≻ x6 ≻ x1 ≻ x5 ≻ x4

0.5 0.2876 0.0500 0.4540 0.0040 0.0020 0.0824 0.0400 0.0080 x3 ≻ x2 ≻ x6 ≻ x1 ≻ x5 ≻ x4

0.6 0.2876 0.0500 0.4540 0.0040 0.0020 0.0824 0.0400 0.0080 x3 ≻ x2 ≻ x6 ≻ x1 ≻ x5 ≻ x4

0.7 0.2876 0.0500 0.4540 0.0040 0.0020 0.0824 0.0400 0.0080 x3 ≻ x2 ≻ x6 ≻ x1 ≻ x5 ≻ x4

0.8 0.2876 0.0500 0.4540 0.0040 0.0020 0.0824 0.0400 0.0080 x3 ≻ x2 ≻ x6 ≻ x1 ≻ x5 ≻ x4

0.9 0.2876 0.0500 0.4540 0.0040 0.0020 0.0824 0.0400 0.0080 x3 ≻ x2 ≻ x6 ≻ x1 ≻ x5 ≻ x4

1 0.1392 0.1259 0.1781 0.0836 0.0239 0.2150 0.1119 0.1221 x3 ≻ x2 ≻ x1 ≻ x4 ≻ x6 ≻ x5

Step 4. Utilizing Eq. (42), Eq. (43) can be transformed into a single objective crisp pro-
gramming model. We use Lingo Software Tool to solve it with δ = 0.5. Main components
for the optimal solution of the model are as follows:

η12 = 0.000, η14 = 0.371, η32 = 0.099, η34 = 0.605, η56 = 0.000,

η62 = 0.000, ξ12 = 0.134, ξ14 = ξ32 = ξ34 = 0.000, ξ56 = 0.215,

ξ62 = 0.125, w1 = 0.2876, w2 = 0.0500, w3 = 0.4540, w4 = 0.0040,

w5 = 0.0020, w6 = 0.0824, w7 = 0.0400, w8 = 0.0800.

Putting ηik and ξik into the objective functions of Eq. (43), the consistency and inconsis-
tency measures are obtained as CI = 0.5861 and ICI = 0.1159, respectively.

Step 5. The overall relative closeness of alternatives to PIS can be calculated by
Eq. (19) as follows:

T1 = 0.6731, T2 = 0.8075, T3 = 0.9069, T4 = 0.3017,

T5 = 0.4669, T6 = 0.6823.

Step 6. The ranking order of six candidate suppliers is x3 ≻ x2 ≻ x6 ≻ x1 ≻ x5 ≻ x4.
Therefore, supplier x3 is the best one.

In the same way, the attribute weights can be calculated when the parameter δ takes
different values between 0 and 1. The corresponding computation results and ranking
orders are listed in Table 2. Fig. 3 intuitively reflects the changes of attribute weights.

As shown in Fig. 3, when the values of the parameter δ vary from 0 to 0.3, some
attribute weights change apparently, whereas others vary slightly or remain unchanged.
For example, w1 and w3 increase remarkably, while w7 gradually decreases, w6 varies
slightly, and w5 remains unchanged. When the values of δ changes from 0.4 to 0.9, all the
weights of attributes are invariable when δ = 1, the weight of each attribute varies again.



884 G.-L. Xu et al.

0 5

0 2

0

0 1

0 3

0 4

0 0.2 0.4 0.6 0.8 1

w w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8
 

Fig. 3. The corresponding vectors of attribute weights according to different values of parameter δ.

Table 2 and Fig. 3 show that the weights of attributes and ranking orders of candidates
may depend on the values of parameter δ. In real application, the DM can choose the
appropriate value of parameter δ based on his/her preferences.

5.2. Comparison with Intuitionistic Fuzzy LINMAP Method

In this subsection, the comparision with fuzzy LINMAP method (Wan and Li, 2013) is
given. Before comparing the both methods, we first transform HFSs into IFSs via Eq. (1)
and use method (Wan and Li, 2013) to solve the above supplier selection problem again.

TransformingHFSs into IFSs by Eq. (1), the normalizeddecision matrix is transformed
into the following matrix:

P =











1.00 (0.4,0.5,0.6) 〈0.60,0.20〉 〈0.4,0.3〉 (0.6,0.7,0.8) 〈0.60,0.10〉 〈0.80,0.10〉 [0.6,0.8]

0.92 (0.2,0.3,0.4) 〈0.70,0.10〉 〈0.6,0.2〉 (0.4,0.5,0.6) 〈0.70,0.10〉 〈0.70,0.15〉 [0.8,1.0]

0.94 (0.8,0.9,1) 〈0.80,0.15〉 〈0.8,0.1〉 (0.4,0.5,0.6) 〈0.40,0.30〉 〈0.75,0.05〉 [0.7,0.9]

0.86 (0.6,0.7,0.8) 〈0.50,0.20〉 〈0.5,0.3〉 (0.8,0.9,1.0) 〈0.60,0.20〉 〈0.90,0.05〉 [0.5,0.7]

0.80 (0,0.1,0.2) 〈0.90,0.05〉 〈0.5,0.2〉 (0.6,0.7,0.8) 〈0.40,0.50〉 〈0.70,0.20〉 [0.3,0.5]

0.88 ((0.6,0.7,0.8) 〈0.7,0.20〉 〈0.6,0.1〉 (0.2,0.3,0.4) 〈0.30,0.60〉 〈0.8,0.10〉 [0.8,1.0]











.

Meanwhile, the elements of the preference relation set E are transformed into IFSs from
HFSs, i.e.

C̃ = {〈(1,2), C̃(1,2)〉, 〈(1,4), C̃(1,4)〉, 〈(3,2), C̃(3,2)〉, 〈(3,4), C̃(3,4)〉,

〈(5,6), C̃(5,6)〉, 〈(6,2), C̃(6,2)〉},

where C̃(1,2) = 〈0.1,0.6〉, C̃(1,4) = 〈0.1,0.7〉, C̃(3,2) = 〈0.8,0.2〉, C̃(3,4) =

〈0.6,0.3〉, C̃(5,6) = 〈0.1,0.8〉, C̃(6,2) = 〈0.3,0.7〉.
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Solving a fuzzy LINMAP programming Eq. (28) in Wan and Li (2013), we get the
following results:

ξ12 = ξ14 = ξ32 = ξ34 = 0.000, ξ56 = 0.395, ξ62 = 0.000,

w1 = 0.1745, w2 = 0.1500, w3 = 0.2364, w4 = 0.0040,

w5 = 0.0020, w6 = 0.0954, w7 = 0.2575, w8 = 0.0800, T1 = 0.6691,

T2 = 0.6285, T3 = 0.6785, T4 = 0.5962, T5 = 0.2331, T6 = 0.6285.

Therefore, the ranking order of six candidate suppliers is x3 ≻ x1 ≻ x2 ∼ x6 ≻ x4 ≻ x5.
From the expressions of decision information and the decision results, we compare

method (Wan and Li, 2013) with the proposed method and get the following conclusions:
(1) Method (Wan and Li, 2013) only considered four types of attribute values, includ-

ing crisp numbers, TrFNs, IFSs and intervals, while this paper adds the linguistic variables
and HFSs. Since HFS can describe the uncertainty which cannot be described by inter-
val, fuzzy sets, or IFS, adding HFS-type attribute values into consideration can make the
decision making more flexible.

(2) Although the best suppliers are the same (i.e. supplier x3), the proposed method
has stronger distinguishing power than method (Wan and Li, 2013). For example, the
overall relative closeness for alternatives x2 and x6 obtained by the proposed method
are T2 = 0.8075 and T6 = 0.6823, respectively, which shows that alternative x2 is ob-
viously superior to alternative x6, whereas the overall relative closeness of these two al-
ternatives obtained by method (Wan and Li, 2013) are the same, i.e. T2 = T6 = 0.6285,
which implies these two alternatives are considered indifference. In fact, as the DM
prefers x6 to x2 with the hesitant fuzzy truth degree hE(6,2) = 0.3 < 0.5, alternative
x6 is inferior to alternative x2. In other words, it is more reasonable to interpret the
alternative x2 to be superior to alternative x6, which verifies that the results obtained
by the proposed method are more consistent with the subjective preferences given by
the DMs.

5.3. Comparison with the Method without Considering Hesitant Fuzzy Truth Degree

In the above supplier selection example, if the hesitant fuzzy truth degrees are reduced
into crisp truth degrees 0 or 1. i.e. hE(k, i) = 1 for all (k, i) ∈ E. Then the above fuzzy
programming model is simplified to the following linear programming model:

max CI = η12 + η14 + η32 + η34 + η56 + η62, (44)

min ICI = ξ12 + ξ14 + ξ32 + ξ34 + ξ56 + ξ62, (45)
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s.t.











































































































































































































































































































































η12 − ξ12 = 0.2215w1 + 0.2003w2 − 0.4758w3 − 0.6554w4 + 0.3047w5

− 0.0003w6 + 0.4266w7 − 0.0882w8

η14 − ξ14 = 0.7429w1 − 0.0289w2 + 0.3582w3 − 0.22w4 − 0.0306w5

− 0.0114w6 − 0.5658w7 − 0.2405w8

η32 − ξ32 = 0.1163w1 + 0.2329w2 + 0.1658w3 + 0.3446w4 + 0w5

+ 0.2547w6 − 0.0044w7 − 0.0134w8

η34 − ξ34 = 0.6377w1 + 0.0037w2 + 0.9997w3 + 0.78w4 − 0.3353w5

− 0.243w6 − 0.9968w7 + 0.3152w8

η56 − ξ56 = −0.4098w1 − 0.9963w2 + 0.0516w3 − 0.2818w4 + 0.9694w5

+ 0.3083w6 − 0.4342w7 − w8

η62 − ξ62 = −0.3687w1 + 0.2292w2 + 0.0771w3 + 0.2536w4 − 0.6647w5

− 0.999w6 + 0.4266w7 + 0 × w8

(0.2215w1 + 0.2003w2 − 0.4758w3 − 0.6554w4 + 0.3047w5 − 0.0003w6

+ 0.4266w7 − 0.0882w8) − η12 6 0

(0.7429w1 − 0.0289w2 + 0.3582w3 − 0.22w4 − 0.0306w5 − 0.0114w6

− 0.5658w7 − 0.2405w8) − η14 6 0

(0.1163w1 + 0.2329w2 + 0.1658w3 + 0.3446w4 + 0w5 + 0.2547w6

− 0.0044w7 − 0.0134w8) − η32 6 0

(0.6377w1 + 0.0037w2 + 0.9997w3 + 0.78w4 − 0.3353w5 − 0.243w6

− 0.9968w7 + 0.3152w8) − η34 6 0

(−0.4098w1 − 0.9963w2 + 0.0516w3 − 0.2818w4 + 0.9694w5 + 0.3083w6

− 0.4342w7 − w8) − η56 6 0

(−0.3687w1 + 0.2292w2 + 0.0771w3 + 0.2536w4 − 0.6647w5 − 0.999w6

+ 0.4266w7 + 0 × w8) − η62 6 0

(0.2215w1 + 0.2003w2 − 0.4758w3 − 0.6554w4 + 0.3047w5 − 0.0003w6

+ 0.4266w7 − 0.0882w8) + ξ12 > 0

(0.7429w1 − 0.0289w2 + 0.3582w3 − 0.22w4 − 0.0306w5 − 0.0114w6

− 0.5658w7 − 0.2405w8) + ξ14 > 0

(0.1163w1 + 0.2329w2 + 0.1658w3 + 0.3446w4 + 0 × w5 + 0.2547w6

− 0.0044w7 − 0.0134w8) + ξ32 > 0

(0.6377ω1 + 0.0037w2 + 0.9997w3 + 0.78w4 − 0.3353w5

− 0.243w6 − 0.9968w7 + 0.3152w8) + ξ34 > 0

(−0.4098w1 − 0.9963w2 + 0.0516w3 − 0.2818w4 + 0.9694w5 + 0.3083w6

− 0.4342w7 − w8) + ξ56 > 0

(−0.3687w1 + 0.2292w2 + 0.0771w3 + 0.2536w4 − 0.6647w5 − 0.999w6

+ 0.4266w7 + 0 × w8) + ξ62 > 0

ξ12 > 0; ξ14 > 0; ξ32 > 0; ξ34 > 0; ξ56 > 0; ξ62 > 0;

η12 > 0;η14 > 0;η32 > 0;η34 > 0;η56 > 0;η62 > 0;

w2 − w4 > 0.02;w2 − w3 6 0.05;0.05 6w2 6 0.15;w2 − w3 < w1 − w7;

w4 > 2w5;w5 > 0.02;w6 − w8 > 0.06w7;w8 < 2w7;w8 > 0.05w6;w8 > 0.08;

w1 + w2 + w6 + w8 > 0.5,

w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 = 1,

w1,w2,w3,w4,w5,w6,w7,w8 > 0.

(46)

By the equal weighted summation method, Eq. (44) can be transformed into a sin-
gle objective linear programming model. Solving the transformed model with Simplex
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Method yields the main components of the optimal solution as follows:

η12 = 0.0000, η14 = 0.0349, η32 = η34 = 0.0000, η56 = 0.0850,

η62 = 0.0000, ξ12 = 0.025, ξ14 = 0.000, ξ32 = 0.160, ξ34 = 0.100,

ξ56 = 0.000, ξ62 = 0.698, w1 = 0.090, w2 = 0.050, w3 = 0.000,

w4 = 0.004, w5 = 0.002, w6 = 0.734, w7 = 0.040, w8 = 0.080.

Thus, the overall relative closeness of alternative to PIS can be acquired by Eq. (19)
as:

T1 = 0.9636, T2 = 0.9259, T3 = 0.7612, T4 = 0.8942,

T5 = 0.2307, T6 = 0.1877.

Therefore, the ranking order of six candidate suppliers is x1 ≻ x2 ≻ x4 ≻ x3 ≻ x5 ≻ x6

and the best supplier is x1 which is different from the results obtained by the above two
methods. In fact, the ranking result is scarcely trust-worthy because the weight of attribute
u3 obtained by Eq. (44) is 0 which means the attribute u3 completely does not work. In
fact, reputation (u3) plays a crucial role in the process of selecting suppliers for DMs in
many industries because the decision information is incomplete or asymmetric in decision
making. Therefore, the weight of attribute u3 (0.454) obtained by the method proposed in
this paper is closer to the reality. Since the ranking order of alternatives highly depends
on the attribute weights, the decision results in this paper are more reasonable.

This analysis indicates that it is reasonable and necessary to introduce the hesitant
fuzzy truth degrees to characterize the pairwise alternatives’ comparisons. The HFS can
flexibly reflect the fuzzy preference information of alternatives and the hesitant fuzzy truth
degrees play an important role in the decision results indeed.

The comparisons of ranking orders between the method with crisp truth degree and
the proposed method in this paper are also depicted in Fig. 4.

6. Conclusions

In this paper, a new hesitant fuzzy programming method is proposed to solve the hybrid
MADM problems with hesitant fuzzy alternative comparisons and incomplete attribute
weight information. In the proposed method, DM gave the preference relations between
alternatives with hesitant fuzzy truth degrees represented by HFSs. Considering PIS and
NIS simultaneously, the overall relative closeness is defined by the relative projection. Ac-
cording to the preference relations and the overall relative closeness degrees, the hesitant
fuzzy consistency and inconsistency were measured and a new bi-objective hesitant fuzzy
programming model was then constructed to determine attribute weights. Subsequently, a
novel method for solving such a model is proposed and the vector of attribute weights was
derived. Finally, the overall relative closeness degrees of alternatives were calculated and
used to rank alternatives. The main contributions of this paper are outlined as follows:
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(1) The fuzzy truth degrees of alternative comparisons are firstly represented by HFSs
which can express the uncertain information being not described by fuzzy numbers
or IFSs. The supplier selection example and comparison analysis show that using
HFSs can make the decision results much closer to the real decision situation.

(2) Minimizing the inconsistency measure and maximizing the consistency mea-
sure simultaneously, a new bi-objective hesitant fuzzy mathematical programming
model was constructed to objectively determine the weights of attributes.

(3) For solving the constructed bi-objective programming model, an effective method
was developed and the weights of attributes were obtained. Using the overall close-
ness of alternatives computed by the relative projection, alternatives were ranked
and the best one was selected.

The presented method in this paper can not only solve the supplier selection problem
but can be applied to other related fields, such as investment projects selection, personal
selection and material selection. Meanwhile, the proposed method may provide the DM
with more choices in decision making process and also contributes to the theoretical in-
vestigation of hesitant fuzzy programming.

However, the PIS and NIS in this paper are given a priori. If the PIS and NIS are un-
known in advance, how to effectively construct fuzzy programming models to determine
them is a valuable and interesting topic. In addition, extending the proposed method to
Pythagorean fuzzy set (Zeng et al., 2016a) is also worth researching. These two topics
will be investigated in the near future.
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Atspariojo neraiškiojo programavimo metodas hibridiniam
daugiakriteriniam vertinimui su nevisa kriterijų svorių informacija

Gai-Li XU, Shu-Ping WAN, Jiu-Ying DONG

Šiame straipsnyje nagrinėjama daugiakriterinio sprendimų priėmimo problema su nevisa informa-
cija apie kriterijų svorius. Pasiūlytas atsparaus neraiškiojo programavimo modelis, paremtas daugia-
metės pirmenybių analizės (LINMAP) metodu. Spendimų priėmėjai pateikia informaciją apie pir-
menybes alternatyvų atžvilgiu porinio palyginimo su atspariaisiais neraiškiaisiais skaičiais būdu,
o alternatyvos aprašomos realiaisiais skaičiais, intervaliniais skaičiais, intuitionistiniais skaičiais,
lingvistiniais kintamaisiais ir atspariaisiais neraiškiaisiais skaičiais. Remiantis alternatyvų projekci-
jomis į idealiuosius sprendinius, alternatyvoms nustatomi santykiniai atstumai. Tuomet apibrėžiami
atsparieji neraiškieji suderintumo ir nesuderintumo matai. Minimizuojant nesuderintumo ir maksi-
mizuojant suderintumo matus, pasiūlytas naujas dvitikslis atspariojo neraiškiojo programavimo mo-
delis. Taigi kriterijų svoriai nustatomi objektyviai. Alternatyvos ranguojamos pagal jų santykinius
atstumus. Tiekėjo pasirinkimo uždavinys pateikiamas kaip pasiūlyto metodo taikymo pavyzdys.


