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Abstract. Statistical modelling plays a central role for any prediction problem of interest. However,
predictive models may give misleading results when the data contain outliers. In many real-world
applications, it is important to identify and treat the outliers without direct elimination. To handle
such issues, a hybrid computational method based on conic quadratic programming is introduced
and employed on earthquake ground motion dataset. This method aims to minimize the impact of
the outliers on regression estimators as well as handling the nonlinearity in the dataset. Results are
compared against widely used parametric and nonparametric ground motion prediction models.

Key words: outlier detection procedure, mean shift outlier model, conic multivariate adaptive
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1. Introduction

Regression methods are well-known mathematical tools for investigating the relationship
between a dependent variable and independent variable(s) (Montgomery and Peck, 1992).
Among alternative regression methods, Linear Regression (LR) is usually preferred in
many studies because of its well-established form and available computer packages. This
method is based on certain assumptions which must be satisfied for valid results. However,
in real-world applications, these assumptions are not always validated due to outliers in the
data. Outliers, often seen as contamination to the data, reduce and affect the information
that we may get from the source. Therefore, for any prediction problem of interest, it is
essential to identify the existing outlier observations in the datasets (Barnett and Lewis,
1994).

During the construction of regression models on datasets with outliers, data transfor-
mation techniques are required. Such techniques may take time and typically need exper-
tise. To handle these problems, robust statistical techniques which are not easily affected
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by outliers have been introduced (Rousseeuw and Leroy, 1987). Robust regression meth-
ods aim to minimize the impact of the outliers on regression estimators, but still invoke
parametric assumptions after smoothing the influence of outliers on the regression line
(Lane, 2002).

In most of the real-world applications in fields such as finance, medicine, and en-
gineering, datasets contain outliers. Among these, one important specific application of
modelling in the existence of outlier observations is earthquake ground motion prediction
problem due to its random nature.

Earthquakes are among natural disasters with significant damage potential to urban
areas all over the world due to the ground shakings involved. It is important to estimate
potential ground motions due to possible future earthquakes for both seismic design and
analysis purposes. Ground Motion Prediction Equations (GMPEs) are equations that em-
ploy empirical data and express certain peak ground motion parameters (e.g. Peak Ground
Acceleration (PGA), Peak Ground Velocity (PGV) or spectral quantities) as functions of
earthquake magnitude, source to site distance, site conditions at the stations and other
physical parameters whenever available. Even though there is no physical form relating
peak ground motion parameters to independent variables such as magnitude, distance and
site conditions; most of the existing GMPEs are based on parametric regression techniques
where the form of the predicting model is assigned a priori (e.g. Spudich et al., 1999;
Boore and Atkinson, 2008). Recently, non-parametric approaches for ground motion es-
timation have also been implemented (e.g. Alavi and Gandomi, 2011; Perus̆ and Fajfar,
2010; Tezcan and Cheng, 2012). In a previous study (Yerlikaya-Özkurt et al., 2014), the
authors have introduced a novel non-parametric ground motion prediction model with the
use of Conic Multivariate Adaptive Regression Splines (CMARS).

Due to the inherent randomness in the temporal occurrences of earthquakes, the statis-
tical models for inclusion of uncertainties are well suited for ground motion predictions.
One of the most effective approaches is developed by Calvin and Žilinskas (2005). In this
study, a statistical model of an objective function is minimized over a continuous interval
to find the global minimum in the presence of uncertainties (outliers).

When the given problem originates from optimization, especially, from global opti-
mization, then smart approaches from statistics (or approximation theory) and from opti-
mization can be followed. In the paper by Žilinskas (2010), the author provides a careful
introduction and important comparison of these approaches and introduces a new method
based on data smoothing with radial basis function model and the least-squares approxi-
mation for noisy datasets. Based on this investigation, the author discloses a coincidence
between the two models, that we are led to identical algorithms which combine advantages
of statistical model and global optimization to find the best approximation in the presence
of outlier observations.

As a result of increasing seismic station networks all over the world, recently the
amount of ground motion data has increased. However, since catastrophic earthquakes
are rare events in nature, ground motion data from moderate to large events are still rare
and thus invaluable. This observation leads to ground motion models derived using all of
the available data. Thus, for robust estimations, outlier analyses are required on ground
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motion datasets that do not lead to any loss of data. For this purpose, in this study we
propose a computational approach that combines the robust outlier algorithm Mean Shift
Outlier Model (MSOM) (Cook, 1982; Kim et al., 2008) with CMARS (Weber et al., 2012)
to handle the nonlinearity in the dataset.

Our study and similar studies (Calvin and Žilinskas, 2005; Žilinskas, 2010) based on
statistical models and global optimization algorithms are crucial, since the ground motion
prediction problem remains at the heart of multiple disciplines ranging from earthquake
engineering to risk management.

The structure of this article is organized as follows: in Section 2, the proposed method-
ology is presented. Section 3 presents the ground motion dataset used in this study fol-
lowed by Section 4 which describes the specific application of the presented method. The
same section also includes comparison of our results against existing alternatives. Finally,
a summary and a discussion are given in Section 5.

2. Methodology

There are different approaches for outlier identification within a dataset of interest using
Linear Models (LMs) with n observations (response data), and p independent variables,
as given by:

Y = β0 +
p
∑

j=1

βjXj + ǫ.

Here, Y is the response variable and Xj (j = 1,2, . . . , p) are the random input variables
and X = (X1,X2, . . . ,Xp)

T represents the vector of predictors. The coefficient (or un-
known parameter) β0 is the intercept, the parameters βj are the regression coefficients
related with the independent variables Xj (j = 1,2, . . . , p), and ǫ is the random error
term, called noise. The data response values and input vectors yi , xi (i = 1,2, . . . , n) are
inserted into the model, the LM turns into the following linear system:

y = Xβ + ǫ. (1)

Here, y is an (n×1)-vector of the response variable, X is a full rank (n× (p+ 1))-matrix
of values of explanatory variables with (1 × (p + 1)) row vectors xi (i = 1,2, . . . , n),
β is a ((p+1)×1)-vector of unknown parameters. Furthermore, ǫ is an (n×1)-vector of
residuals, regarded to comprise realizations of independent, identically distributed random
errors, whose conditional mean and variance are given by E(ǫ | X)= 0 and Var(ǫ | X)=
σ 2In. Here, σ 2 is an unknown parameter and In is the identity matrix of order n. Assuming
n > p + 1, the least-squares estimates of β and σ 2 are given by β̂ = (XT X)−1XT y and
σ 2 = yT (I − H)y/(n−p− 1), where H := XT (XT X)−1XT is the so-called hat operator
(Rencher, 2000).

In order to detect outlier(s) for LMs, there are two approaches that use residuals from
the robust fit: direct approaches and indirect approaches. An indirect approach for out-
lier identification is given through robust regression. The aim of robust regression is to
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provide stable results in the presence of outliers. Three classes of problems have been
addressed with robust regression techniques: problems with outliers in the y-direction
(response direction), problems with outliers in the x-space, and problems with outliers
in both the y-direction and the x-space. The methods which are most recently used for
outlier detection and robust regression are M estimation (Huber, 2009), Least Trimmed
Square (LTS) estimation (Rousseeuw and Driessen, 2006) and MSOM (Cook, 1982;
Kim et al., 2008). In this paper, we employ the MSOM to identify the outliers in our
dataset which we describe next.

2.1. Mean Shift Outlier Model

The MSOM is given by:

Y = XT β +1δ+ ǫ,

where 1 ∈ {0,1} is a constant selection term, and δ is the unknown parameter for outlier
observation. In the presence of an outlier, 1 = 1, and the importance of an outlier are
represented by the value 1 · δ. The system after all data inserted into the model is as
follows:

y = Xβ + eiδ+ ǫ, (2)

where ei is the ith unit vector, i.e. ei = (0, . . . ,1,0, . . . ,0)T (i = 1,2, . . . , n). In this
system, it is assumed that either yi or xiβ deviates systematically from the model yi =
xiβ + ǫi by some value δ. Then, the ith observation (yi,xiβ) would have a different
intercept than the remaining observation, and (yi,xiβ) would hence be an outlier. To
check this fact, we test the hypothesis:

H0 : δ = 0 (i.e.,E(y)= Xβ),

against the alternative:

H1 : δ 6= 0 (i.e., E(y)= Xβ + eiδ),

using the likelihood-ratio test statistic (Rao et al., 1999):

Fi = (RSS(H0)− RSS(H1))/1

RSS(H1)/(n− p− 1)
. (3)

Here, RSS(H0) is the residual sum of squares in the model y = Xβ + ǫ, containing all the
n observations and RSS(H1) is the residual sum of squares in the model y = Xβ+eiδ+ǫ,
respectively, i.e.

RSS(H0) =
n
∑

i=1

(yi − xiβ)
2 = yT (I − H)y = (n− p)σ̂ 2,
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RSS(H1) =
n
∑

i=1

(yi − xiβ − δi)
2,

where δi will be δ or 0 according to the outlier variable. Also, the relationship between
RSS(H0) and RSS(H1) can be written as:

RSS(H1)= RSS(H0)−
ǫ̂2

i

1 − hii
,

where ǫ̂ = (I − H)y, ǫ̂i = eTi ǫ̂, and eTi Hei = hii . When the ith observation (yi,xi) is
omitted, then estimator of the σ 2

i is defined by:

s2

−i =
yT−i(I − H−i)y−i

n−p− 1
,

where H−i and y−i represent the hat matrix and the response vector after omission of the
ith observation, respectively; and σi is the standard deviation of the ith residual. If σi is
taken as σ̂i = s−i

√
1 − hii , then the test statistic in Eq. (3) may be written as:

Fi =
ǫ̂2

i

s2

−i(1 − hii)
= (r∗i )

2 (i = 1,2, . . . , n),

where r∗i is the ith externally Studentized residual (Rao et al., 1999).
For a given dataset of size nwithm outliers (m< n) that are detected by direct methods

such as the test statistic Fi , Cooks distance or Studentized residuals (Cook, 1982), MSOM
can be written as:

y = Xβ + Eδ+ ǫ, (4)

where X is a full rank (n× (p + 1))-matrix of explanatory variables, E is an (n×m)-
matrix withm indicator variables, and δ is an (m×1)-vector of the regression coefficients
of the indicator variables. Then, MSOM can be rewritten as:

y = X∗β∗ + ǫ, (5)

where X∗ = (X | E) is an (n× (p+ 1 +m)) block matrix constructed by the matrices X
and E, and β∗ = (βT , δT )T is an ((p + 1 +m)× 1)-vector constructed by the vectors β
and δ.

Since MSOM (as expressed in Eq. (5)) gives the same residual sum of squares as
the model fitted after omitting the relevant observations, it is particularly convenient for
studying the regression model in the presence of outliers (Taylan et al., 2014).
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2.2. Improvements on Mean Shift Outlier Model with Conic Multivariate Adaptive
Regression Splines

A major drawback of LM is that in spite of all corrective measures applied, in some
cases the constant error variance assumption may not be validated. In such a case, the
theory underlying LM fails, and it does not provide the best linear and unbiased esti-
mators for the model parameters anymore. For such datasets, CMARS is known to pro-
vide better predictions according to various comparison criteria (Weber et al., 2012;
Yerlikaya, 2008). Indeed, CMARS method performs as good as LM does (Yerlikaya-
Özkurt et al., 2013) when there are linear relationships between the response variable and
the explanatory variables of the given dataset. However, for high-dimensional datasets
including a large number of predictors with nonlinear relationships and stochastic depen-
dencies, the complex structure of the data may prevent LM from developing valid and
adequate statistical models. For these kinds of estimation problems, numerical evidence
indicates that CMARS method provides a better fit than traditional LM (Yerlikaya-Özkurt
et al., 2013).

In addition, LMs need human expertise in their use and it may take a longer time to
construct parametric models. In certain cases, it may not even be possible to develop LMs.
On the other hand, CMARS models are developed automatically and adaptively requiring
less human intervention. Finally, for complex datasets, the prediction algorithm should not
adapt a parametric form prior to modelling but rather should explore the inherent structure
of the dataset to propose a nonparametric form. Thus, for the outlier detection problem,
CMARS is employed as a novel and effective tool. Let us consider the following general
CMARS model on the relation between input and response:

Y = β0 +
Mmax
∑

m=1

βmψm
(

xm
)

+ ǫ, (6)

where Y is a response variable, xm = (xm
1
, xm

2
, . . . , xmp )

T is a vector of predictors for the
mth basis function and ǫ is an additive stochastic component which is assumed to have
zero mean and finite variance. Here, ψm (m= 1,2, . . . ,Mmax) is the mth basis function,
βm is the unknown coefficient for the mth basis function (m= 1,2, . . . ,Mmax) or for the
constant 1 (m= 0). The form of the mth basis function is as follows:

ψm(xm) :=
Km
∏

j=1

[

sκmj
·
(

xκmj
− τκmj

)]

+, (7)

where [q]+ := max{0, q}, Km is the number of truncated linear functions multiplied in
the mth basis function, xκmj is the input variable corresponding to the j th truncated linear
function in themth basis function, τκmj is the knot value corresponding to the variable xκmj ,

and sκmj is the selected sign +1 or −1. A special advantage of the form given in Eq. (7)
is lying in its ability to estimate the contributions of the basis functions so that both the
additive and the interactive effects of the predictors are allowed to determine the dependent
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variable. Interaction basis functions are created by multiplying an existing basis function
with a truncated linear function involving a new variable (Friedman, 1991). In a CMARS
approximation, both the existing basis functions and the newly created interaction basis
functions are used.

The linear system of equations for Eq. (6) is as follows:

y =ψ(d̃)β + ǫ, (8)

where β := (β0, β1, . . . , βMmax
)T , d̃ := (t1

i , t
2

i , . . . , t
Mmax

i )T (i = 1,2, . . . , n) andψ(d̃) :=
((1,ψ1(t1

1
), . . . ,ψMmax

(tMmax

1
))T , . . . , (1,ψ1(t1

n), . . . ,ψMmax
(tMmax

n ))T )T .
The following model is constructed to employ CMARS for removing the deficiency

of MSOM:

y =ψ(d̃)β + eiδ+ ǫ. (9)

We then use Penalized Residual Sum of Squares (PRSS) (Hastie et al., 2001) for Mmax

which is the maximum number of basis functions accumulated in the forward stepwise
algorithm of CMARS. For the MSOM with CMARS, PRSS has the following form:

PRSS =
n
∑

i=1

(

yi −ψ(d̃i)β − eiδ
)2

+
Mmax
∑

m=1

λm

2
∑

|α|=1

α=(α1,α2)
T

∑

r<s
r,s∈Vm

∫

Qm
β2

m

[

Dαr,sψm(t
m)
]2
dtm, (10)

where Vm := {κmj | j = 1,2, . . . ,Km} is the variable set associated with the mth basis

function ψm, tm = (tm
1
, tm

2
, . . . , tm

Km
)T represents the vector of variables which con-

tribute to the mth basis function ψm. Furthermore, we refer to

Dαr,sψm
(

tm
)

:= ∂ |α|ψm
∂α1 tmr ∂

α2 tms

(

tm
)

for α = (α1, α2)
T , |α| := α1 + α2, where α1, α2 ∈ {0,1}. Our optimization problem is

based on tradeoff between accuracy (i.e. a small residuals) and complexity. This tradeoff
is established through the penalty parameters λm and handled by penalty methods, such
as regularization techniques and by conic quadratic programming (Weber et al., 2012). To
approximate the multi-dimensional integrals:

∫

Qm
β2

m

[

Dαr,sψm
(

tm
)]2
dtm,
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a suitable discretization and model approximation are used. In fact, we approximate the
discretized form of the integrals by Riemann sums as follows (Yerlikaya, 2008):

∫

Qm
β2

m

[

Dαr,sψm(t
m)
]2
dtm

≈
∑

σ
κj

β2

m

[

Dαr,sψm
(

t̃mi
σ
κj ,κj

, . . . , t̃mi
σ
κj ,κj

)]2

Km
∏

j=1

(

t̃mi
σ
κj +1

,κj
− t̃mi

σ
κj ,κj

)

.

Here, (σ κj )j∈{1,2,...,p} ∈ {0,1,2, . . . , n+ 1}Km . We can rearrange PRSS in this form:

PRSS ≈
n
∑

i=1

(

yi −ψ(d̃i)β − eiδ
)2

+
Mmax
∑

m=1

λmβ
2

m

(n+1)Km
∑

i=1

(

2
∑

|α|=1

α=(α1,α2)
T

∑

r<s
r,s∈Vm

[

Dαr,sψm
(

t̂mi
)]2

)

1t̂mi . (11)

Moreover, t̂mi and 1t̂mi are the notations related with the sequence (σ κj ):

t̂mi =
(

t̃mi
σ
κj ,κj

, . . . , t̃mi
σ
κj ,κj

)

, 1t̂mi =
Km
∏

j=1

(

t̃mi
σ
κj +1

,κj
− t̃mi

σ
κj ,κj

)

.

For a short representation of PRSS, we can rewrite the approximate relation in Eq. (11)
as:

PRSS ≈
∥

∥y −ψ(d̃)β − Eδ
∥

∥

2

2
+
Mmax
∑

m=1

λm

(n+1)Km
∑

i=1

L2

imβ
2

m, (12)

where E is an n×m-matrix with m indicator variables, and δ is an m× 1-vector of the
regression coefficients of the indicator variables. Here, ‖ · ‖2 denotes the Euclidean norm
and the numbers L2

im are defined by their square roots:

Lim :=
[(

2
∑

|α|=1

α=(α1,α2)
T

∑

r<s
r,s∈Vm

[

Dαr,sψm
(

t̂mi
)]2

)

1t̂mi

]1/2

.

We consider the approximate formula in Eq. (12) and arrange it as follows, replac-
ing “≈” by “=” from now on:

PRSS =
∥

∥y −ψ(d̃)β − Eδ
∥

∥

2

2

+
Mmax
∑

m=1

λm
[

(L1mβm)
2 + (L2mβm)

2 + · · · + (L(n+1)Kmmβm)
2
]

,



A Hybrid Computational Method for Outlier Problems 901

PRSS =
∥

∥y −ψ(d̃)β − Eδ
∥

∥

2

2
+
Mmax
∑

m=1

λm‖Lmβm‖2

2
, (13)

where Lm = (L1m,L2m, . . . ,L(n+1)Kmm)
T (m = 1,2, . . . ,Mmax). However, rather than

a singleton, there is a finite sequence of the trade-off or penalty parameters λ =
(λ1, λ2, . . . , λMmax

)T thus this equation is not yet a Tikhonov regularization problem. For
this reason, let us make a uniform penalization by taking the same λ for each derivative
term. Then, our PRRS problem becomes a Tikhonov regularization problem (Aster et al.,
2012) with λ > 0, i.e. λ= ϕ2 for some ϕ ∈R, as follows:

PRSS =
∥

∥y − X∗β∗∥
∥

2

2
+ λ

∥

∥L∗β∗∥
∥

2

2
. (14)

Here, X∗ = (ψ(d̃) | E) is an (n× (Mmax +m+ 1)) block matrix constructed by the ma-
trices ψ(d̃) and E, and β∗ = (βT , δT )T is an ((Mmax +m+ 1)× 1)-vector constructed
by the vectors β and δ. Furthermore, β is an ((Mmax + 1)× 1)-parameter vector to be
estimated through the data points (Yerlikaya-Özkurt, 2013).

Let us introduce a block matrix L∗ = (L | R) as follows:

L∗ =
[

L(Mmax+1)×(Mmax+1) 0(Mmax+1)×m
0m×(Mmax+1) Rm×m

]

,

where L is a diagonal (Mmax + 1) × (Mmax + 1)-matrix with the first column L0 =
0(n+1)Km and the other columns being the vectors Lm (m = 1,2, . . . ,Mmax). Moreover,
R is an m×m-matrix whose entries are zeroth-, first- or second-order discrete derivative
of δ, the latter two of them complemented with row vectors 0T to a number of m rows.
These derivatives are given by δ itself, or by first- or second-order difference quotients
of δ, respectively (Aster et al., 2012).

Indeed, based on an appropriate choice of a bound z > 0, we state the following opti-
mization problem:

minimize
β∗

∥

∥y − X∗β∗∥
∥

2

2

subject to
∥

∥L∗β∗∥
∥

2

2
6 z2. (15)

Let us underline that this choice of z should be the outcome of a careful learning pro-
cess, based on statistical comparison or performance criteria, with the help of model-free
or model-based methods (Weber et al., 2012). In Eq. (15), we have the least-squares objec-
tive function ‖y − X∗β∗‖2

2
and the inequality constraint function −‖L∗β∗‖2

2
+ z2 which

is requested to be nonnegative for feasibility. Now, we equivalently write our optimization
problem as follows (Ben-Tal and Nemirovski, 2001):
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minimize
t,β∗

t,

subject to
∥

∥y − X∗β∗∥
∥

2

2
6 t2, t > 0,

∥

∥L∗β∗∥
∥

2

2
6 z2. (16)

or, equivalently again,

minimize
t,β∗

t,

subject to
∥

∥y − X∗β∗∥
∥

2
6 t,

∥

∥L∗β∗∥
∥

2
6 z. (17)

We use modern methods of convex optimization techniques, especially, from Conic
Quadratic Programming (CQP) where we employ the basic notation (Nesterov and Ne-
mirovski, 1994):

minimize
t,β∗

t,

such that

χ :=
[

0n×1 X∗

1 0T(Mmax+m+1)×1

]

+
[

t

β∗

]

+
[

−y
0

]

,

η :=
[

0(Mmax+m+1)×1 L∗

0 0T(Mmax+m+1)×1

][

t

β∗

]

+
[

0(Mmax+m+1)×1

z

]

,

χ ∈ Ln+1, η ∈ LMmax+m+2,

where Ln+1 , LMmax+m+2 are the (n+ 1)- and (Mmax +m+ 2)-dimensional second-order
(or Lorentz) cones. A primal-dual optimal solution is (t, θ ,χ ,η,ω1,ω2) (Weber et al.,
2012; Yerlikaya-Özkurt, 2013).

In this study, we are addressing a need for regularization and perform it in two ways
under different aspects (Yerlikaya-Özkurt, 2013):

1. We take into account possible outliers by identifying them through mathematical
modelling in terms of their impact on the model. This is a first way to make the
model “regular” with respect to the existence of outliers. By the basic settings of our
model, we “reach out” to possible outliers and represent their possible character and
contribution to the model by a parameter δ, which has to be assessed numerically.

2. In both a standard MSOM and a nonlinear CMARS model, we perform Tikhonov
regularization for addressing both model accuracy and complexity, too.

3. Dataset

We employed the recently compiled Turkish strong ground motion data (Akkar et al.,
2010; Gülerce et al., 2013) in this study. The dataset includes 290 strong ground motion
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Table 1
Number of records for different magnitude bins.

Mw > 7.0 6.0 6Mw < 7.0 5.0 6Mw < 6.0

# records 28 25 237

Table 2
NEHRP site class definitions and number of records per each site class for the given dataset.

NEHRP Soil profile Shear wave # Records for
site class name velocity (m/s) given dataset

A Hard rock Vs30 > 1524 0
B Rock 762<Vs30 6 1524 0
C Very dense soil soft rock 366<Vs30 6 762 172
D Stiff soil 183<Vs30 6 366 117
E Soft soil Vs30 < 183 1

records with a moment magnitude range of 5.0 6Mw 6 7.6 and Joyner–Boore distance
(Rjb) range of 0<Rjb < 200 km. In this study, we employed the processed dataset as pre-
sented in Yerlikaya-Özkurt et al. (2014), while the raw version of the data can be found on
the web page http://daphne.deprem.gov.tr:89/ operated by the Earthquake
Department of the Turkish Disaster and Emergency Management Agency. To identify the
local soil conditions at the stations, consistent with the current literature, we use the 30 m
average shear wave velocity (Vs30) as a direct measure in this study.

Table 1 displays the number of records in terms of different magnitude bins. Table 2
shows the different site classes with their definitions and number of records for each site
class in the dataset employed herein (the NEHRP site classes are taken from the site classi-
fications available in Section 1613.3.2 “Site Class Definitions” of the International Build-
ing Code, published in 2012 by the International Code Council). Finally, Fig. 1 displays
the PGA-distance distribution of the dataset with respect to different soil conditions for
different magnitude bins.

In this study only the earthquakes with a strike-slip fault mechanism, which is the
major faulting style on the North Anatolian Fault zone in Turkey, are used.

4. Application

In order to find the potential outliers for each magnitude bin, we apply the following outlier
detection procedure (Montgomery and Peck, 1992; Hadi and Simonoff, 1993):
Step 1: Multivariate linear model is constructed to fit the data.
Step 2: The fit values and ordinary residuals are computed by using the model from Step 1.
Step 3: Studentized residual, leverage, measure of influence such as Cooks distance and
measure of model performance such as scaled change in regression coefficients, scaled
change in fitted values, and change in covariance are computed. The definitions can be
found in Montgomery and Peck (1992).
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Fig. 1. Ground motion dataset in terms of different magnitude bins (a) 5.0 6Mw < 6.0, (b) 6.0 6Mw < 7.0,
(c) Mw > 7.0. Each soil condition is represented with a different data marker in the legend. Potential outliers
are represented by filling in the markers.
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Table 3
Number of potential outliers for each bin.

Mw > 7.0 6.0 6Mw < 7.0 5.0 6Mw < 6.0

# potential outliers 3 3 29

Step 4: The potential outlier is removed from the dataset and Steps 1 and 2 are repeated to
check for a better fit. (An observation is a potential outlier if the fit without that observation
is better than the fit including the observation.)
Step 5: In order to find and remove the other potential outlier observations, Steps 1–4 are
repeated until all of the outlier observations are identified.

After applying these steps to each magnitude bin, we obtain the number of potential
outliers for each bin as presented in Table 3. We note that potential outliers for each magni-
tude bin are studied one by one and they are confirmed to be out-of-range values given the
magnitude, distance and soil conditions. When Fig. 1 is studied carefully, it is possible to
see that around the same/similar magnitude and same/similar distance (Rjb) levels within
each Mw bin; some PGA values corresponding to stiff soil conditions are smaller than
PGA values corresponding to “very dense soil and soft rock” conditions. This is physi-
cally not expected as the stiff soil conditions generally have larger amplifications than very
dense soil and soft rock. Thus, these data are interpreted as the potential outliers. It must
be stated that some observations in our dataset might not be correctly measured due to
potential instrumental failures during earthquake shakings. Such erroneous data points
were removed prior to the application of the outlier detection algorithm.

After the detection of potential outliers, we constructed three alternative models on
our standardized dataset (with logarithmic response) which are namely: MSOM, CMARS
and MSOM-CMARS. In our application, MARS basis functions are built by using the
Salford MARS software program; indeed, the R package “Earth” can also be used for the
construction of basis functions (Milborrow, 2009). The CMARS model parameters are
constructed by running a MATLABr code via the optimization software MOSEKTM.
In the near future, CMARS algorithm will be provided in R program to the interested
researchers.

We note that these models are constructed on the complete dataset including the previ-
ously identified outliers. To evaluate the comparative efficiency of these models, we com-
pute a set of performance measures. In addition, we place two well-known and widely
accepted parametric GMPEs to compare the non-parametric GMPEs we propose in this
paper. The selected parametric GMPEs are the predictive equations by Boore and Atkin-
son (2008), Akkar and Çağnan (2010). These models are represented as BA08 and AC10,
respectively, from this point onward.

Through a comparison of performancemeasures such as Mean Absolute Error (MAE),
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Correlation Coeffi-
cient (r), Multiple Coefficient of Determination (R2), Adjusted R2 (Adj-R2), and Mean
Absolute Percentage Error (MAPE) in Table 4, non-parametricmodel (CMARS) performs
better than the parametric ground motion prediction models (BA08, AC10 and MSOM).
On the other hand, among the parametric models, MSOM shows a better performance than
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Table 4
Performance results of the models built for the given dataset.

Performance BA08 AC10 MSOM CMARS MSOM-CMARS
measure

MAE 1.0037 0.6725 0.2345 0.2364 0.1854
∗

MSE 1.6230 0.7527 0.1098 0.0997 0.0797
∗

RMSE 1.2740 0.8676 0.3313 0.3158 0.2823
∗

r 0.8020 0.8216 0.8803 0.8856 0.9222
∗

R2
0.6433 0.6751 0.7750 0.7842 0.8504

∗

Adj-R2
0.6383 0.6717 0.7410 0.7647 0.8120

∗

MAPE 114.2122 50.1166 47.2743 31.9453 30.4293
∗

∗Indicates better performance.

BA08 and AC10, since it considers the outliers in the dataset. Finally, MSOM-CMARS is
observed to yield the smallest misfits among all models. This is because this hybrid model
combines the power of CMARS in capturing the data structure with the effective outlier
modelling of MSOM.

It is important to verify that there is no systematic bias in model residuals with respect
to each independent variableMw , Rjb and Vs30.

In the model form of MSOM-CMARS presented in Appendix A, it is observed that
all basis functions for this dataset have a main effect (without any interaction effects). We
also observe that the coefficients of the potential outliers are smaller than those of basis
functions indicating a smaller influence of the outliers on the final model. Therefore, we
construct a model which takes into account by quantifying the effects of outliers without
eliminating them.

5. Summary and Discussion

The fundamental objective of this study was to develop a robust computational method
for the data prediction problem with the help of convex optimization within the existence
of outliers in the dataset. For this purpose, we proposed a hybrid approach that takes ad-
vantages of CMARS, MSOM and CQP. The motivation for using a CQP is due to appeal-
ing properties of the model and fast algorithms that are available to solve such a model.
Specifically, the set of feasible solutions of the CQP problem is convex, which guarantees
convergence to a globally optimal solution.

To assess the performance of the proposed approach, we compared our results against
other models. The results indicated that since the optimal levels of process parameters
yield desired responses in the application, the hybrid MSOM-CMARS model performed
the best among its current alternatives that include parametric models and also a non-
parametric model, CMARS.

The proposed study is a novel approach to handle outliers within the ground motion
prediction framework in a systematic and effective way. A major advantage of this model
over other available robust estimation algorithms is the non-existence of assumptions that
should be validated for effective modelling in the existence of outliers.
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It is always possible to improve the MSOM-CMARS models in future applications.
Several suggestions can be summarized as follows:

• In this study, we worked on a relatively limited ground motion dataset in terms of
total number of records per each magnitude bin and site class. Since CMARS works
effectively for high-dimensional data, for more complete ground motion datasets the
results would indicate an even better performance compared to other models that do
not handle outliers.

• As the studied dataset (Turkish ground motion database) expands with records from
future earthquakes, it is possible to test the proposed model for the prediction of the
newly added data. It is also possible to predict the anticipated ground motion levels
in potential scenario earthquakes whenever necessary.

Acknowledgements. The first author, F. Yerlikaya-Özkurt, was supported by the
TUBITAK Domestic Doctoral Scholarship Program.

Appendix A

The model form of MSOM-CMARS for given dataset is presented next:

YPGA = −0.3371 − 13.6579 ·ψ1 + 6.2582 ·ψ2 − 9.3666 ·ψ3 − 4.6509 ·ψ4

− 21.15875 ·ψ5 + 14.3226 ·ψ6 + 49.7243 ·ψ7 − 3.9772 ·ψ8

− 42.0155 ·ψ9 + 2.6307 ·ψ10 − 2.6703 ·ψ11 + 2.5886 ·ψ12

+ 2.36177 ·ψ13 + 9.6167 ·ψ14 + 5.8253 ·ψ15 − 22.3286 ·ψ16

+ 10.9114 ·ψ17 + 16.6962 ·ψ18 − 15.9818 ·ψ19 + 12.6404 ·ψ20

+ 10.8503 ·ψ21 − 9.3256 ·ψ22 + 6.2780 ·ψ23

− 1.3084 ·ψ24 + 0.3408 · e1 + 0.8214 · e2 + 0.6297 · e3 + 0.4141 · e4

+ 0.4257 · e5 + 0.6856 · e6 + 0.5296 · e7 + 0.6834 · e8 + 0.8725 · e9

+ 1.0976 · e10 + 0.4252 · e11 + 0.3065 · e12 + 0.5124 · e13 + 0.6292 · e14

+ 0.6182 · e15 + 0.8642 · e16 + 0.5494 · e17 + 0.9180 · e18 + 0.4899 · e19

+ 0.3350 · e20 + 0.4296 · e21 + 0.7997 · e22 + 0.4787 · e23 + 0.3114 · e24

+ 0.1509 · e25 + 0.3048 · e26 + 0.5317 · e27 + 0.8511 · e28 + 0.7057 · e29

+ 0.3488 · e30 + 0.5918 · e31 + 0.4542 · e32 + 0.2671 · e33 + 0.7499 · e34

− 0.0946 · e35 + ǫ,
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where YPGA is the PGA prediction of CMARS model. The corresponding basis functions
(ψm =ψm(xm) (m= 1,2, . . . ,24)) are given as follows:

ψ1 = max{0,Rjb − 0.2540}, ψ2 = max{0,0.2540 −Rjb},

ψ3 = max{0,Mw − 0.0654}, ψ4 = max{0,Vs30 − 0.8512},

ψ5 = max{0,Rjb − 0.4945}, ψ6 = max{0,Rjb − 0.3486},

ψ7 = max{0,Vs30 − 0.4213}, ψ8 = max{0,Vs30 − 0.5345},

ψ9 = max{0,Vs30 − 0.4073}, ψ10 = max{0,Vs30 − 0.7341},

ψ11 = max{0,Mw − 0.4615}, ψ12 = max{0,Mw − 0.8077},

ψ13 = max{0,Mw − 0.2308}, ψ14 = max{0,Mw − 0.0192},

ψ15 = max{0,Rjb − 0.0936}, ψ16 = max{0,Vs30 − 0.4613},

ψ17 = max{0,Vs30 − 0.4896}, ψ18 = max{0,Rjb − 0.5101},

ψ19 = max{0,Rjb − 0.3183}, ψ20 = max{0,Rjb − 0.2841},

ψ21 = max{0,Vs30 − 0.3717}, ψ22 = max{0,Vs30 − 0.2925},

ψ23 = max{0,Vs30 − 0.2511}, ψ24 = max{0,Vs30 − 0.2056}.
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Iškilios optimizacijos pagrindu sudarytas hibridinis skaitmeninis
metodas, skirtas išskirčių problemoms: taikymai prognozuoti žemės
drebėjimų sukeliamam grunto judėjimui

Fatma YERLİKAYA-ÖZKURT, Aysegul ASKAN, Gerhard-Wilhelm WEBER

Daugelis praktinių prognozavimo uždavinių sprendžiami statistinio modeliavimo metodu. Tačiau
prognostiniai modeliai gali duoti klaidingų rezultatų esant išskirtims. Daugelyje praktinių uždavi-
nių svarbu neeliminuoti išskirčių – jas identifikuoti ir nagrinėti. Tam ir skirtas hibridinis metodas,
pagrįstas kūginiu kvadratiniu programavimu, kuris pritaikytas nagrinėti žemės drebėjimo duome-
nims. Šiuo metodu siekiama minimizuoti išskirčių įtaką regresijos įverčiams, taip pat atsižvelgti į
duomenų netiesiškumus. Gauti rezultatai palyginti su rezultatais, gautais plačiai taikomais paramet-
riniais ir neparametriniais žemės drebėjimo prognozavimo metodais.


