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Abstract. This paper presents a model for signal compression, which consists of a piecewise uni-
form quantizer and a new lossless coder. The model is designed in a general manner, i.e. for any
symmetrical signal distribution; this general theory is applied to design models for Gaussian and
Laplacian distributions. Rigorous mathematical derivation of the expression for the bit-rate is pre-
sented. Forward adaptation of the model is done for non-stationary signals. Theory is proved by
simulations in MATLAB and by an experiment with a real speech signal. The most important ad-
vantages of the model are low complexity and good performances – it satisfies G.712 standard for
the speech transmission quality with 6.18 bps (bits per sample), which is significantly smaller than
8 bps required for quantizers used in PSTN (public switched telephone network) defined with G.711
standard.
Key words: piecewise uniform quantizer, lossless code, forward adaptation, Gaussian and Laplacian
distributions.

1. Introduction

Modern telecommunication systems are based on digital processing and transmission.
Quantization and source coding are main parts of the process of A/D (analog-to-digital)
conversion of analog signals. Hence, quantizers and source coders are very significant part
of modern telecommunication systems. Amount of data, transmitted over telecommunica-
tion systems or stored in data centres, has been rapidly increased, especially data obtained
from multimedia signals (speech, audio, pictures, video). Due to limited resources (chan-
nel capacity or memory capacity), data compression (i.e. decreasing of the bit-rate) be-
comes an important demand of digital transmission. It can be achieved by an appropriate
design of the quantizer and by using some lossless (entropy) source code.

Real signals can be modelled with some probability density function. According to
Jayant and Noll (1984), the most used probability density functions for the modelling of
real signals are symmetrical probability density functions (e.g. Gaussian, Laplacian and
uniform). Therefore, symmetrical probability density functions are of the most practical
importance.
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Two main types of scalar quantizers are uniform and nonuniform quantizers (Jayant
and Noll, 1984; Gersho and Gray, 1992). The uniform quantizer is very simple for realiza-
tion and optimal for signals with uniform distribution; hence, it is not optimal for the most
real signals (speech, images, etc.) which have some nonuniform distribution (Laplacian,
Gaussian, etc.). These signals should be quantized with the nonuniform quantizer (Jayant
and Noll, 1984; Na, 2008, 2011), where the density of quantization levels is proportional
to the probability density function (pdf) of the input signal. In this way, the nonuniform
quantizer is adjusted to the statistical characteristics of the input signal and achieves higher
SQNR (signal-to-quantizationnoise ratio) than the uniform quantizer for the same number
of levels, but its main drawback is high complexity.

The piecewise uniform quantizer (Kazakos and Makki, 2008; Jeong and Gibson, 1995;
Kuhlmann and Bucklew, 1988; Jovanović and Perić, 2011; Saito et al., 1996) consists of
several regions; in each region a different uniform quantizer is applied. The piecewise
uniform quantizer is a combination of the uniform and the nonuniform quantizers and it
takes good characteristics from both of them: its complexity is small (near to the com-
plexity of the uniform quantizer), but it can achieve values of SQNR near to the SQNR of
the nonuniform quantizer. It can be considered as a generalized quantizer, whose special
cases are uniform and nonuniform quantizers. It allows high flexibility: by choosing the
number of uniform regions and the number of levels in each uniform region, performances
of the piecewise uniform quantizer can be very well adjusted to the required performances
for some application.

Output quantization levels are coded, assigning one codeword to each level. For the aim
of compression, variable-length codes (also called entropy or lossless codes) can be used
for the coding of quantization levels. The main principle of lossless codes is to code highly
probable quantization levels with shorter codewords and less probable quantization levels
with longer codewords (Salomon, 2007). The most used lossless code is the Huffman code
(Salomon, 2007; Stabno and Wrembel, 2009; Wu et al., 2012; Qi et al., 2012; Polpetta
and Banelli, 2012), but its main drawback is high complexity, especially for high number
of quantization levels, since the code tree should be formed. Another drawback of the
Huffman code is the fact that probabilities of all quantization levels have to be known
before the coding process, which is not always easy to provide. Some simple lossless codes
were proposed in Perić et al. (2009, 2010, 2011). Lossless codes in Perić et al. (2009,
2010) use two overlapping coding ranges: one narrow range and one wide range equal
to the range of the quantizer. The lossless code presented in Perić et al. (2011) uses three
coding ranges: narrow, medium and wide (equal to the range of the quantizer). For all these
lossless codes, fixed-length codewords are used in each coding range. However, lengths of
codewords for different coding ranges are different, i.e. the length of codewords for some
coding range depends on the width of this coding range (longer codewords correspond to
wider coding ranges).

Most of real signals are non-stationary, which means that their variances are changed
in time. For these signals, the best solution is to use adaptive quantizers, whose parame-
ters are adapted to variance changes. There are two types of adaptive quantizers: forward
(Jayant and Noll, 1984; Perić et al. 2009, 2013) and backward (Jayant and Noll, 1984).
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In Perić et al. (2009) it was highlighted that the forward adaptive quantizers can achieve
about 1 dB higher SQNR compared to backward adaptive quantizers. Model in Perić et al.

(2013) consists of two ranges; two different companding functions are used in those two
ranges; in each range fixed-rate codewords are used but lengths of codewords for those
two ranges are different.

This paper introduces a model that consists of a piecewise uniform quantizer and a
new lossless code. This lossless code is very simple for realization and it represents an
improved modification of the lossless codes presented in Perić et al. (2009, 2011). This
lossless code uses two coding ranges: narrow (equal to the first segment of the piece-
wise uniform quantizer) and wide (equal to the range of the piecewise uniform quantizer,
which contains L coding intervals). There are several significant improvements compared
to lossless codes in Perić et al. (2009, 2011): i) the lossless code proposed in this paper
contains L coding intervals (L is an arbitrary integer), while the lossless codes in Perić et

al. (2009, 2011) have two and three coding intervals, respectively; therefore, the lossless
code proposed in this paper is much more general but also much more flexible (it gives
us the opportunity to choose the number of coding intervals which is the best for some
specific application) than lossless codes in Perić et al. (2009, 2011); ii) the lossless code
in this paper is designed for any symmetric distribution (Gaussian, Laplacian, etc.) while
codes in Perić et al. (2009, 2011) were designed only for Laplacian distribution; therefore,
the lossless code in this paper can be applied for much more types of signals than codes
in Perić et al. (2009, 2011); iii) for the wide coding range, variable-length codewords are
used which allows further decreasing of the bit-rate; iv) hierarchical coding is used which
significantly simplifies the decoding process. Furthermore, an important contribution of
this paper is a rigorous mathematical derivation of expression for the bit-rate. The design
of the model is done by minimization of the bit-rate under the condition that SQNR is
greater than some minimum value SQNRmin which is chosen based on the specific appli-
cation. The design of the model is performed in a general manner, i.e. for any symmetrical
probability density function of the input signal and for an arbitrary number of regions of
the piecewise uniform quantizer. After that, this general theory is applied to design the
model for signals with Gaussian and Laplacian distribution (since a large number of sig-
nals (speech, images, audio, etc.) can be modelled with these two distributions). A sim-
ulation of the model is performed in MATLAB for Gaussian and Laplacian distribution.
Performances obtained by the simulation are matched very well with the theoretically cal-
culated performances, which confirms the validity of the developed theory. The analysis
of performances of the model in a wide range of variances of the input signal is presented.
The forward adaptation of the model is done for non-stationary signals. An experiment
is performed, applying the model with the forward adaptation to the speech signal. It is
shown that the experimental results are matched very well with the theoretically obtained
results, which proves the correctness of the developed theory.

The main advantage of this model is small complexity (since both the piecewise uni-
form quantizer and the new lossless code have small complexity). Besides, this model
can achieve very good performances. For example, this model can satisfy the G.712 stan-
dard (ITU-T, 2001) for the quality of the speech transmission with 6.18 bps. Therefore,
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our model achieves the decreasing of the bit-rate of 1.82 bps compared to quantizers de-
fined with the G.711 standard (ITU-T, 1972), which are used in PSTN network. Also, our
model achieves the decreasing of the bit-rate for 0.49 bps compared to the model in Perić
et al. (2011), for 0.25 bps compared to the model in Perić et al. (2010) and for 0.12 bps
compared to the model proposed in Perić et al. (2013).

This paper is organized in the following way. In Section 2, the model which consists of
the piecewise uniform quantizer and the new lossless coder is described; rigorous mathe-
matical derivation of the expression for the bit-rate is presented and the model is designed
for an arbitrary symmetrical probability density function of the input signal; after that, this
general analysis is applied to design the model for signals with Gaussian and Laplacian
distributions; numerical and simulation results are presented; performances of the model
in the wide range of variances are analysed. In Section 3, the forward adaptation of the
model is done; also, an experiment is performed, applying the model with the forward
adaptation on the real speech signal. Section 4 concludes the paper.

2. The Description of the Model

Let p(x,σ ) denotes the probability density function of the input signal, where σ 2 denotes
the variance (power) of the signal. The analysis of the model will be done in the general
manner, i.e. for an arbitrary symmetrical probability density function p(x,σ ). The de-
sign of quantizers is always done for some referent variance, usually for the unit variance
σ 2 = 1, without loss of generality. Let p(x) ≡ p(x,σ = 1) denotes the probability density
function for the unit variance σ 2 = 1, which will be used during the design process. Quan-
tizer for any other variance σ 2 6= 1 can be easily obtained from the quantizer designed for
σ 2 = 1, multiplying thresholds and representation levels with σ (Jayant and Noll, 1984).

Signals with zero-mean value will be considered, without loss of generality. This is the
standard approach in the design of quantizers (Jayant and Noll, 1984). If the input signal
has a non-zero mean, we can remove it by subtracting mean-value from the input, and add
it back after quantization.

The model consists of the midrise piecewise uniform quantizer (with even number of
levels) and the new lossless coder.

2.1. The Piecewise Uniform Quantizer

The piecewise uniform quantizer has N quantization levels. These N levels are grouped
into L regions. In each region there is one uniformquantizer. Let xmax denotes the maximal
amplitude of the piecewise uniform quantizer and ti , i = 1, . . . ,L − 1, denote amplitude
boundaries between regions. It means that the first region is placed in the interval I1 =
[−t1, t1); the i-th region, i = 2, . . . ,L − 1, is placed in the interval li = [−ti,−ti−1) ∪
[ti−1, ti); the L-th region is placed in the interval I∗

L = [−xmax,−tL−1) ∪ [tL−1, xmax].
Let Ni , i = 1, . . . ,L denotes the number of levels in the i-th region. Values of Ni have
to be powers of two, i.e. Ni = 2ri , where ri , i = 1, . . . ,L, are integers. This condition
is important for the application of the new lossless code. We have that

∑L
i=1 Ni = N .
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Let 11 = 2t1/N1 denotes the stepsize of the uniform quantizer in the first region; 1i =
2(ti − ti−1)/Ni , i = 2, . . . ,L− 1 denotes the stepsize of the uniform quantizer in the i-th
region; 1L = 2(xmax − tL−1)/NL denotes the stepsize of the uniform quantizer in the
L-th region. Let Pi , i = 1, . . . ,L − 1, denotes the probability of the i-th region and P ∗

L

denotes the probability of the L-th region. These probabilities are defined as:

P1 = 2

∫ t1

0

p(x) dx, (1)

Pi = 2

∫ ti

ti−1

p(x) dx, i = 2, . . . ,L − 1, (2)

P ∗
L = 2

∫ xmax

tL−1

p(x) dx. (3)

A quantizer is defined with its thresholds and representation levels. Let xi,j (j =
0, . . . ,Ni/2) denote positive thresholds and yi,j (j = 1, . . . ,Ni/2) denote positive repre-
sentation levels in the i-th region (i = 1, . . . ,L) of the proposed quantizer. Positive thresh-
olds and representation levels can be calculated as x1,j = j ·11, (j = 0, . . . ,N1/2); xi,j =
ti−1 + j · 1i , (i = 2, . . . ,L; j = 0, . . . ,Ni/2); y1,j = (j − 1

2
) · 11, (j = 1, . . . ,N1/2);

yi,j = ti−1 +(j − 1
2
) ·1i , (i = 2, . . . ,L; j = 1, . . . ,Ni/2). We have that xi,Ni/2 = xi+1,0 =

ti , (i = 1, . . . ,L − 1) and xL,NL/2 = xmax. Since the pdf is symmetrical, negative thresh-
olds and representation levels are symmetrical to their positive counterparts. The area
|x|6 xmax is the granular region while the area |x| > xmax is the overload region.

During the quantization process, an irreversible error is made, which is expressed with
the distortion. The total distortion D is the sum of the granular distortion Dg (in the
granular region) and the overload distortion Dov (in the overload region). Based on Jayant

and Noll (1984), Dg can be expressed as Dg =
∑L−1

i=1

12
i

12
Pi + 12

L

12
P ∗

L . Hence, the total
distortion D can be expressed as:

D =
L−1∑

i=1

12
i

12
Pi +

12
L

12
P ∗

L + Dov. (4)

To calculate Dov we will consider the positive overload region x > xmax. All points x

from the positive overload region (x > xmax) are mapped to the last positive representation
level yL,NL/2 = tL−1 + (NL

2
− 1

2
) · 1L = tL−1 + NL

2
· 1L − 1L

2
= xmax − 1L

2
. For some

arbitrary x > xmax, power of the quantization error is (x − (xmax − 1L/2))2. The overload
distortion (as the averagepower of the quantization error in the overload region) is obtained
by the statistical averaging over all x from the overload region:

Dov = 2

∫ ∞

xmax

p(x)
(
x − (xmax − 1L/2)

)2
dx. (5)
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The term 2 in front of the integral denotes the contribution of the negative overload region.
The quality of the output signal of the quantizer is defined with the signal-to-quantization
noise ratio (SQNR). For the unit variance σ = 1, SQNR is defined as:

SQNR[dB] = −10log10D . (6)

Let us define the interval IL = (−∞,−tL−1) ∪ [tL−1,∞), whose probability is:

PL = 2

∫ ∞

tL−1

p(x)dx. (7)

We have that
∑L

i=1 Pi = 1.

2.2. New Coding Algorithm

Output levels of the piecewise uniform quantizer are coded with the new lossless code pre-
sented in this subsection. This lossless code is an improved version of the codes presented
in Perić et al. (2009, 2011); improvements are explained in Introduction. The lossless code
works on the frame-by-frame basis. Frames of M samples of the input signals are formed.
Let F = {x1, . . . , xM} denotes the set of samples of one frame. At the beginning of each
frame, one control bit C is transmitted. The new lossless coding algorithm is defined in
the following way:

If all M samples in one frame belong to the interval I1 (the probability of this event
is PM

1 ), then:

• The control bit C is set to zero, i.e. C = 0;
• All samples in the frame are coded with r1 = log2N1 bits.

If there is at least one sample xj in the frame F which does not belong to the
interval I1 (the probability of this event is (1 − PM

1 )), then:

• The control bit C is set to one, i.e. C = 1;
• An arbitrary sample xk from the frame F is coded with the hierarchical cod-

ing, in the following way. If xk belongs to the interval Ii , i = 1, . . . ,L, the
codeword for xk has the form 1 . . .1︸ ︷︷ ︸

i−1

0 x . . . x︸ ︷︷ ︸
ri

. The length of the codeword for

xk ∈ Ii , i = 1, . . . ,L, is (li + ri) bits, where li = i . The first li bits are used to
code the interval Ii , while the last ri bits represent the natural binary code of
the position of xk within the interval Ii (ri = log2Ni ). Zero after (i − 1) ones
is inserted to ensure that no codeword is a prefix of any other codeword.

The average bit-rate can be written as:

R = P(all M samples from F ∈ I1) · R1 + P(∃ at least one xj from F ∴ xj /∈ I1)

· R2 +
1

M
. (8a)
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Now, all terms from (8a) will be analysed. P(all M samples from F ∈ I1) is the probabil-
ity that all M samples from the frame F belong to the interval I1. We have that

P(all M samples from F ∈ I1) = PM
1 . (8b)

R1 is the average bit-rate (i.e. the average number of bits per sample) in the case that all M

samples from F belong to I1. In this case, all samples are coded with r1 bits, therefore the
average number of bits per one sample is:

R1 = r1. (8c)

P(∃ at least one xj from F ∴ xj /∈ I1) denotes the probability that there is at least one
sample xj from frame F which does not belong to the interval I1. We have that

P(∃ at least one xj from F ∴ xj /∈ I1) = 1 − PM
1 . (8d)

R2 is the average bit-rate (i.e. the average number of bits per sample) in the case that
there is at least one sample xj from F which does not belong to I1. In this case, as it was
explained above, if an arbitrary sample xk from F belongs to the interval Ii (the probability
of this event is equal to the conditional probability P(xk ∈ Ii |∃ at least one xj from F ∴

xj /∈ I1)), then xk is coded with (li + ri) bits, (i = 1, . . . ,L). The average number of bits
per one sample in this case (i.e. the average bit-rate R2) is obtained by averaging over all
L intervals, as:

R2 =
L∑

i=1

(li + ri)P (xk ∈ Ii |∃ at least one xj from F ∴ xj /∈ I1). (8e)

The last term 1/M in (8) represents the contribution of the control bit C to the bit-rate
increase. There is one control bit per frame of M samples, which is equal to 1/M bits per
one sample.

According to expressions (8a)–(8e), the following expression for the average bit-rate
R is obtained:

R = PM
1 r1 +

(
1 − PM

1

) L∑

i=1

(li + ri)P (xk ∈ Ii |∃ at least one xj from F ∴ xj /∈ I1)

+
1

M
. (8f)

Theorem 1. The conditional probabilities from (8f) are determined with the following

expressions:

P(xk ∈ I1|∃ at least one xj from F ∴ xj /∈ I1) =
P1(1 − PM−1

1 )

1 − PM
1

, (9)

P(xk ∈ Ii |∃ at least one xj from F ∴ xj /∈ I1) =
Pi

1 − PM
1

, i = 2, . . . ,L. (10)
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Proof. The conditional probabilities from (8f) can be expressed as:

P(xk ∈ Ii |∃ at least one xj from F ∴ xj /∈ I1)

=
P(xk ∈ Ii ∧ ∃ at least one xj from F ∴ xj /∈ I1)

P (∃ at least one xj from F ∴ xj /∈ I1)
, i = 1, . . . ,L. (11)

According to (8d), it follows that:

P(xk ∈ Ii |∃ at least one xj from F ∴ xj /∈ I1)

=
P(xk ∈ Ii ∧ ∃ at least one xj from F ∴ xj /∈ I1)

1 − PM
1

, i = 1, . . . ,L. (12)

Now, we have to find joint probabilities P(xk ∈ Ii ∧ ∃ at least one xj from F ∴ xj /∈
I1), i = 1, . . . ,L. Let us define the set Fk = F\xk = {x1, . . . , xk−1, xk+1, . . . , xM}, which
contains M − 1 samples. Let F l

k,i , l = 1, . . . ,M − 1; i = 1, . . . ,L, denotes the class of
all sets Fk where exactly l samples belong to the interval Ii and the rest of (M − 1 − l)

samples do not belong to the interval Ii . We have to choose l samples of (M −1) samples,
which can be done in (

M − 1

l ) ways. Probability that all l samples belong to Ii is P l
i and

probability that all the rest (M − 1 − l) samples do not belong to Ii is (1 − Pi)
M−1−l .

Therefore, it is obtained that:

P
(
Fk ∈ F

l
k,i

)
=

(
M − 1

l

)
P l

i (1 − Pi)
M−1−l . (13)

The following identity is valid:

M−1∑

l=0

P
(
Fk ∈F

l
k,i

)
=

M−1∑

l=0

(
M − 1

l

)
P l

i (1 − Pi)
M−1−l = 1. (14)

For i = 1 we have that:

P(xk ∈ I1 ∧ ∃ at least one xj from F ∴ xj /∈ I1)

= P(xk ∈ I1)

M−2∑

l=0

P
(
Fk ∈F

l
k,1

)

= P1

M−2∑

l=0

(
M − 1

l

)
P l

1(1 − P1)
M−1−l

= P1

(
1 −

(
M − 1

M − 1

)
PM−1

1 (1 − P1)
0

)

= P1

(
1 − PM−1

1

)
. (15)
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For i = 2, . . . ,L it is obtained that:

P(xk ∈ Ii ∧ ∃ at least one xj from F ∴ xj /∈ I1)

= P(xk ∈ Ii)

M−1∑

l=0

P
(
Fk ∈ F

l
k,1

)

= Pi

M−1∑

l=0

(
M − 1

l

)
P l

1(1 − P1)
M−1−l = Pi . (16)

Based on (12), (15) and (16), expressions (9) and (10) are obtained; hence, the theorem is
proved. �

Theorem 2. The average bit-rate can be expressed with the following expression:

R = PM
1 r1 + (l1 + r1)P1

(
1 − PM−1

1

)
+

L∑

i=2

(li + ri)Pi +
1

M
. (17)

Proof. Substituting expressions (9) and (10) for conditional probabilities into (8f), it is
obtained that:

R = PM
1 r1 +

(
1 − PM

1

)[
(l1 + r1)

P1(1 − PM−1
1 )

1 − PM
1

+
L∑

i=2

(li + ri)
Pi

1 − PM
1

]
+

1

M
.

(18)

After some basic mathematical steps we obtain (17), which proves the theorem. �

At the beginning of the design process, the minimal acceptable value of SQNR, de-
noted as SQNRmin, is defined. The value of SQNRmin depends on the application (e.g. for
speech transmission, SQNRmin = 34 dB). Also, the value of the parameter L is defined in
advance. The design of the model is performed by numerical minimization of the average
bit-rate R, with the constraint that SQNR > SQNRmin. As a result of the design process,
optimal values of parameters Ni (i = 1, . . . ,L), ti (i = 1, . . . ,L − 1), xmax and M are
obtained.

The model is designed for the signals with the unit variance, σ 2 = 1. If the variance of
the signal σ 2 is not equal to 1 (σ 2 6= 1), the model has to be designed for this value of the
variance. The good thing is the fact that if we need to design the quantizer for some σ 2 6= 1,
we can obtain this quantizer from the quantizer designed for σ 2 = 1, by multiplying all
thresholds and representation levels with σ .

2.3. Model Design for Gaussian and Laplacian Distributions and Numerical Results

The previously described theory was general, i.e. it was developed for an arbitrary sym-
metrical probability density function p(x). In telecommunications, the most used proba-
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bility density functions for signal modelling are Gaussian and Laplacian probability den-
sity functions. Therefore, in this subsection, the piecewise uniform quantizer and the loss-
less coder will be designed for those two probability density functions.

2.3.1. Model Design for the Gaussian Probability Density Function

The zero-mean Gaussian probability density function is defined with the expression:

p(x,σ ) =
1

√
2πσ

exp

(
−

x2

2σ 2

)
. (19)

The model is developed for the unit variance σ 2 = 1, using the following probability den-
sity function:

p(x) =
1

√
2π

exp
(
− x2/2

)
. (20)

Putting (20) into (1)–(3) and (7), the following expressions for probabilities are obtained:

P1 = erf(t1/
√

2 ), (21)

Pi = erf(ti/
√

2 ) − erf(ti−1/
√

2 ), i = 2, . . . ,L − 1, (22)

P ∗
L = erf(xmax/

√
2 ) − erf(tL−1/

√
2 ), (23)

PL = erfc(tL−1/
√

2). (24)

Putting (20) into (5), expression for the overload distortion Dov becomes:

Dov = 2

(
(−xmax + 1L)

√
2π

exp

(
−

x2
max

2

)
+

1

8

(
(−2xmax + 1L)2 + 4

)
erfc

(
xmax√

2

))
.

(25)

Using (21)–(25), (4), (6) and (17), performances of the model (SQNR and R) can be
calculated.

The design of the model for Gaussian distribution is done for different values of L

(L = 2, 3, 4) and SQNRmin (SQNRmin = 40 dB, 34 dB, 30 dB and 25 dB). Obtained
values of parameters (Ni , ti , xmax and M), as well as values of performances (SQNR and
R) calculated using the previously developed theory, are presented in Tables 1, 2 and 3.
Simulation of the model is done in MATLAB, using the generator of random numbers
for the Gaussian distribution. Values of SQNR and R obtained by the simulation are also
presented in Tables 1, 2 and 3.

2.3.2. Model Design for the Laplacian Probability Density Function

The zero-mean Laplacian probability density function is defined with the expression:

p(x,σ ) =
1

√
2σ

e−
√

2|x|
σ . (26)
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Table 1
Numerical results for the Gaussian distribution for L = 2.

SQNRmin N1 N2 t1 xmax M Theory Simulation

[dB] R [bps] SQNR [dB] R [bps] SQNR [dB]

40 128 128 2.21 4.53 7 7.32 40 7.33 40.06
34 64 64 2.21 4.28 7 6.32 34 6.31 34.05
30 32 32 1.70 3.72 4 5.56 30 5.57 30.04
25 16 16 1.44 3.30 3 4.72 25 4.72 25.04

Table 2
Numerical results for the Gaussian distribution for L = 3.

SQNRmin N1 N2 N3 t1 t2 xmax M Theory Simulation

[dB] R [bps] SQNR [dB] R [bps] SQNR [dB]

40 64 32 128 1.06 1.60 4.22 3 7.19 40 7.20 40.11
34 32 16 64 1.09 1.62 3.96 3 6.16 34 6.16 34.05
30 32 8 32 1.73 2.21 4.03 4 5.51 30 5.51 30.03
25 16 4 16 1.52 1.95 3.60 3 4.64 25 4.64 25.06

Table 3
Numerical results for the Gaussian distribution for L = 4.

SQNRmin N1 N2 N3 N4 t1 t2 t3 xmax M Theory Simulation

[dB] R [bps] SQNR [dB] R [bps] SQNR [dB]

40 64 16 32 128 1.08 1.38 1.91 4.37 3 7.12 40 7.12 40.05
34 32 8 16 64 1.09 1.40 1.91 4.11 3 6.11 34 6.12 34.08
30 16 8 16 32 0.91 1.34 2.00 3.90 3 5.48 30 5.50 30.05
25 16 4 8 16 1.56 1.99 2.58 4.01 4 4.63 25 4.63 25.02

Since the design of the model is done for the unit variance σ 2 = 1, the following proba-
bility density function should be used:

p(x) =
1

√
2
e−

√
2|x|. (27)

Putting (27) into (1)–(3) and (7) the following expressions for probabilities are obtained:

P1 = 1 − exp(−
√

2t1), (28)

Pi = exp(−
√

2ti−1) − exp(−
√

2ti), i = 2, . . . ,L − 1, (29)

P ∗
L = exp(−

√
2tL−1) − exp(−

√
2xmax), (30)

PL = exp(−
√

2tL−1). (31)

Putting (27) into (5), expression for the overload distortion Dov becomes:

Dov =
1

4

(
4 + 2

√
21L + 12

L

)
exp(−

√
2xmax). (32)
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Table 4
Numerical results for the Laplacian distribution for L = 2.

SQNRmin N1 N2 t1 xmax M Theory Simulation

[dB] R [bps] SQNR [dB] R [bps] SQNR [dB]

40 128 256 2.09 9.11 5 7.49 40 7.50 40.10
34 32 256 1.14 8.16 3 6.42 34 6.41 34.03
30 32 128 1.76 7.91 4 5.71 30 5.70 30.03
25 16 64 1.56 6.87 4 4.84 25 4.81 25.02

Table 5
Numerical results for the Laplacian distribution for L = 3.

SQNRmin N1 N2 N3 t1 t2 xmax M Theory Simulation

[dB] R [bps] SQNR [dB] R [bps] SQNR [dB]

40 64 64 256 1.04 2.10 9.12 3 7.20 40 7.23 40.16
34 32 32 128 1.07 2.10 8.26 3 6.18 34 6.22 34.05
30 32 16 64 1.69 2.69 7.99 4 5.61 30 5.60 29.97
25 16 8 32 1.48 2.35 6.83 3 4.73 25 4.74 25.07

Table 6
Numerical results for the Laplacian distribution for L = 4.

SQNRmin N1 N2 N3 N4 t1 t2 t3 xmax M Theory Simulation

[dB] R [bps] SQNR [dB] R [bps] SQNR [dB]

40 64 32 64 256 1.07 1.66 2.77 9.79 3 7.09 40 7.10 40.06
34 32 16 32 128 1.07 1.67 2.74 8.89 3 6.09 34 6.09 34.09
30 16 16 16 64 0.87 1.64 2.54 7.84 3 5.42 30 5.42 30.00
25 8 8 8 32 0.76 1.45 2.25 6.73 3 4.60 25 4.62 25.08

Using (28)–(32), (4), (6) and (17), performances of the model (SQNR and R) can be
calculated.

The model for Laplacian distribution is designed for different values of L (L = 2,3,4)
and SQNRmin (SQNRmin = 40 dB, 34 dB, 30 dB and 25 dB). Theoretically obtained val-
ues of parameters (Ni , ti , xmax and M) and performances (SQNR and R) are presented
in Tables 4, 5 and 6. Simulation of the model is done in MATLAB, using the generator
of random numbers for the Laplacian distribution. Values of SQNR and R obtained by
the simulation are also presented in Tables 4, 5 and 6. We can see from Tables 1 to 6 that
values of SQNR and R obtained by the theory and by the simulation are matched very
well, which proves the correctness of the developed theory.

From Tables 1–6 we can see that the bit-rate R decreases with the increase of L, for the
same SQNR. On the other hand, the complexity of the model increases with the increase
of L. Therefore, a compromise between the complexity and compression has to be found.
We propose the model with L = 4 regions as a very good solution.

2.4. The Performances of the Model in the Wide Range of Variances of the Input Signal

As it was said before, parameters of the model (Ni , ti , xmax, 1i and M) are determined
for the unit variance σ 2 = 1. Since the variance of the input signal can vary in time, it
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is important to calculate the performances of the model when the input signal variance
σ 2 is not matched to the variance for which the model is designed. Probabilities Pi(σ ),
i = 1, . . . ,L and P ∗

L(σ ) are obtained from (1)–(3) and (7), changing p(x) with p(x,σ ).
Based on (4), the expression for the total distortion D(σ) becomes

D(σ) =
L−1∑

i=1

12
i

12
Pi(σ ) +

12
L

12
P ∗

L(σ ) + Dov(σ ), (33)

where the overload distortion Dov(σ ) is calculated by changing p(x) with p(x,σ ) in (5).
The signal-to-quantization noise ratio is calculated with the expression:

SQNR(σ ) = 10 log10

σ 2

D(σ)
[dB]. (34)

Based on (17), the bit-rate is calculated with the expression:

R(σ) =
(
P1(σ )

)M
r1 + (l1 + r1) · P1(σ ) ·

(
1 −

(
P1(σ )

)M−1)

+
L∑

i=2

(li + ri) · Pi(σ ) +
1

M
. (35)

For the Gaussian distribution p(x,σ ) defined with (19), the following expressions are
obtained:

P1(σ ) = erf
(
t1/(

√
2σ)

)
, (36)

Pi(σ ) = erf
(
ti/(

√
2σ)

)
− erf

(
ti−1/(

√
2σ)

)
, i = 2, . . . ,L − 1, (37)

P ∗
L(σ ) = erf

(
xmax/(

√
2σ)

)
− erf

(
tL−1/(

√
2σ)

)
, (38)

PL(σ ) = erfc
(
tL−1/(

√
2σ)

)
, (39)

Dov(σ ) =
2σ(1L − xmax)√

2π
exp

− x2
max
2σ2 +

((
1L

2
− xmax

)2

+ σ 2

)
erfc

(
xmax√

2σ

)
. (40)

Putting (36)–(40) into (33)–(35) we can calculate SQNR(σ ) and R(σ) for the Gaussian
distribution, for any value of σ .

For the Laplacian distribution p(x,σ ) defined with (26), the following expressions are
obtained:

P1(σ ) = 1 − exp(−
√

2t1/σ), (41)

Pi(σ ) = exp(−
√

2ti−1/σ) − exp(−
√

2ti/σ), i = 2, . . . ,L − 1, (42)

P ∗
L(σ ) = exp(−

√
2tL−1/σ) − exp(−

√
2xmax/σ), (43)

PL(σ ) = exp(−
√

2tL−1/σ), (44)

Dov(σ ) =
1

4

(
4σ 2+2

√
21Lσ + 12

L

)
exp(−

√
2xmax/σ). (45)
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Fig. 1. D(α) and SQNR(α) in the wide range of input variances for the Gaussian distribution, for the model
with the following parameters: L = 4, N1 = 32, N2 = 8, N3 = 16 and N4 = 64.

Putting (41)–(45) into (33)–(35), we can calculate SQNR(σ ) and R(σ) for the Lapla-
cian distribution, for any value of σ .

Very often, the variance σ 2 is expressed in the logarithmic domain as α[dB] =
10log10(σ

2/σ 2
0 ), where σ 2

0 is the referent variance. Without losing the generality, we as-
sume that σ 2

0 = 1. In this case we have that α[dB] = 10 log10(σ
2), i.e. α is the power of

the signal in the logarithmic domain. Functions SQNR(α) and R(α) are obtained from
functions SQNR(σ ) and R(σ), putting that σ = 10α[dB]/20.

Figure 1 shows performances in the wide range of input variances for the Gaussian dis-
tribution, for the model with the following parameters: L = 4, N1 = 32, N2 = 8, N3 = 16

and N4 = 64. Figure 1(a) shows granular and overload distortions (Dg(α) and Dov(α)),
as well as the total distortion (D(α) = Dg(α) + Dov(α)) in the wide range of input vari-
ances. Dg(α) is constant in the wide range of negative α, then slightly increases when α

approaches 0 dB, continues to increase for very small values of positive α and then starts
to decrease and continues to decrease as α becomes more and more positive. On the other
hand, Dov(α) is almost zero for negative α, but when α becomes higher than 0 dB Dov(α)

starts rapidly to increase; this rapid increasing of Dov(α) is continued as α becomes more
and more positive.

Now, we will give the explanation of this behaviour. For very small α (α < −10 dB),
which means for very small variance σ 2, the power of the signal is very small, hence the
magnitude of the signal is very small, which means that almost all samples of the signal

belong to the first interval I1; therefore, only the first term
12

1
12

P1 in the expression for the

granular distortion (Dg =
∑L−1

i=1

12
i

12
Pi + 12

L

12
P ∗

L) has some non-zero value while all other
terms in this expression are negligible. Therefore, for very small α granular distortion is

constant and equal to
12

1
12

P1.
As α increases (roughly speaking, for −10 dB < α < 1.5 dB), the magnitude of sam-

ples increases; the most of samples are still in the interval I1 (since for Gaussian distribu-
tion (as well as Laplacian distribution) small values of samples have higher probability),
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but the number of samples in intervals I2, . . . , IL increases. The term
12

1
12

P1 is still domi-

nant, but with the increase of α other terms (
12

2
12

P2, . . . ,
12

L

12
P ∗

L) in the expression for Dg

start to increase, which results in slight increase of Dg . For α much smaller than 0 dB, the
number of samples in the overload region is negligible, therefore the overload distortion
Dov is equal to zero. However, as α approaches to 0 dB and becomes higher than 0 dB, the
magnitude of samples increases and hence the number of samples in the overload region
is getting bigger and bigger. Therefore, when α becomes positive, the overload distortion
Dov starts rapidly to increase. As α continues to increase, more and more samples are in
the overload region, which means that less and less samples are in the granular region,
hence the granular distortion Dg starts to decrease. For further increasing of α, Dov con-
tinues to rapidly increase while Dg continues to decrease.

The total distortion D is almost constant for α < 0 dB while for α > 0 dB starts to
increase rapidly. We can see that for α < 0 dB, total distortion D is almost equal to the
granular distortion Dg , since Dov is almost equal to zero for negative α. On the other
hand, for positive α, total distortion D is almost equal to the overload distortion Dov since
Dov rapidly increases and very quickly reaches high values. We can say that the granular
distortion Dg is dominant for negative α while the overload distortion Dov is dominant
for positive α.

According to the definition, SQNR(σ ) = 10log10
σ 2

D(σ)
= 10 log10 σ 2 + 10 log10

1
D(σ)

.

Therefore, SQNR(α) = α + 10 log10
1

D(α)
, where D(α) is obtained by putting that σ =

10α[dB]/20 into D(σ). Figure 1(b) shows SQNR(α) in the wide range of α, as well as its
components α and 10 log10

1
D(α)

. The behaviour of the second component (10 log10
1

D(α)
)

can be understood considering the behaviour of D(α), which is shown in Fig. 1(a). Term
10 log10

1
D(α)

is almost constant for negative α since D(α) is almost constant for negative

α. When α becomes positive, D(α) starts to increase rapidly; therefore 10 log10
1

D(α)
starts

to decrease rapidly.
For negative α, SQNR(α) increases since α increases and 10 log10

1
D(α)

is constant.

For positive α, the first term α continues to increase while 10 log10
1

D(α)
starts to rapidly

decrease. For some value of α (α∗), the decrease of 10 log10
1

D(α)
becomes more dominant

than the increase of α, therefore, SQNR(α) starts to decrease. α∗ is the point where the
behaviour of SQNR(α) is changed (from increasing to decreasing), hence α∗ is the point
where SQNR(α) has the maximum. For Fig. 1(d) we have that α∗ = 1.12.

Let (σ ∗)2 denotes the value of the variance where SQNR(σ ) has the maximum, i.e.
SQNR(σ ∗) = max(SQNR(σ )). The value of (σ ∗)2 depends on the parameters of the
quantizer: L, Ni , (i = 1, . . . ,L), xmax and SQNRmin. The following connection exists:
α∗[dB] = 10 log10((σ

∗)2/σ 2
0 ) = 10 log10((σ

∗)2) − 10 log10(σ
2
0 ). We can see that the ex-

pression for α∗ consists of two terms. The first term (10 log10((σ
∗)2

)) depends on the
parameters of the quantizer L, Ni (i = 1, . . . ,L), xmax and SQNRmin. The second term
(−10 log10(σ

2
0 )) is constant since σ 2

0 is constant. For example, all quantizers from Tables
1–6 are designed for the same value of σ 2

0 (σ 2
0 = 1), but all those quantizers have different

values of α∗ since they have different values of parameters L, Ni (i = 1, . . . ,L), xmax and
SQNRmin.
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Fig. 2. The block schema of the forward adaptive quantizer.

The model has to be used for variances α 6 α∗, since for α > α∗ we have that SQNR
rapidly decreases due to the overload distortion. For variances α 6 α∗ which are of inter-
est, SQNR(α) is an increasing function.

3. Forward Adaptation of the Model and Its Application to the Speech Signal

In this section, the forward adaptation of the model is performed for non-stationary signals.
After that, this forward adaptive model is applied to the speech signal.

3.1. Forward Adaptation of the Model

Forward adaptation is used to achieve almost constant SQNR in the wide range of input
variances α ∈ (αmin, αmax) [dB]. Let 1α [dB] = αmax − αmin denotes the width of the
variance range in the logarithmic domain where SQNR has to be constant.

Forward adaptive quantizer (Jayant and Noll, 1984; Nikolić and Perić, 2008; Perić et

al., 2013) consists of the adaptation part (which contains the input buffer, the block for
the variance calculation, the quantizer Qα for the variance quantization, the block for the
gain calculation and the divider) and the fixed part (which contains the fixed piecewise
uniform quantizer and the new lossless coder), which is presented in Fig. 2. The forward
adaptive quantizer works on the frame-by-frame basis. Frames of M1 samples of the input
signal (x1, . . . , xM1

) are loaded into the input buffer. The block for the variance calcu-
lation calculates the variance of samples in the input buffer as σ 2 = 1

M1

∑M1

q=1 x2
q . After

that, the variance in the logarithmic domain is calculated as α[dB] = 10 log10 σ 2. Using
quantizer Qα , uniform quantization of the variance α in the logarithmic domain is done,
hence quantizer Qα is called the log-uniform quantizer. Let Ng denotes the number of
levels of the quantizer Qα . Using Qα , the range of variances in the logarithmic domain
(αmin, αmax) [dB] is uniformly divided into Ng intervals, with the quantization stepsize
δα [dB] = 1α/Ng. Let α̂i = αmin + iδα, i = 0, . . . ,Ng , denote thresholds of the quantizer
Qα . If variance α belongs to the interval (̂αi−1, α̂i), the index i is obtained on the output
of the quantizer Qα . This index is transmitted to the receiver as side information (SI) with
log2 Ng bits. Also, based on the index i , the gain gi = 10α̂i/20 is calculated in the block
for the gain calculation. There are Ng different values of the gain gi . All samples from
the input buffer (x1, . . . , xM1

) are divided with the gain gi . After that, these samples pass
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through the fixed piecewise uniform quantizer. Output levels of this quantizer are coded
using new lossless code.

We have to clarify something. The proposed model can be used in two ways: without
adaptation and with adaptation. Model without adaptation is used for stationary signals
(whose power is constant or almost constant over the time), which was described in Sec-
tion 2. In the model without adaptation we have only one type of frame: coding frame
of the length M , where M usually takes small values. Model with adaptation is used for
non-stationary signals (whose power is significantly changed in time) and this model is
analysed in this section. Forward adaptation is applied. In the model with forward adap-
tation we have two types of frames: frames for the forward adaptation with M1 samples
and coding frames with M samples. The reason for this is the fact that both forward adap-
tation and lossless code works on frame-by-frame basis. Usually, adaptation frames are
much larger than coding frames, i.e. M1 ≫ M (M1 is of the order of several tens or hun-
dreds, while M is usually smaller than 10). Firstly, input samples are grouped into large
frames of M1 samples for the forward adaptation; after that, each large frame is subdi-
vided into small coding frames of M samples. The M1 has to be divisible with M . Let
us consider one example with M1 = 200 and M = 5; firstly, the large adaptation frame
of 200 samples is formed: (x1, . . . , x200); after that, this large frame is subdivided into 40
small coding frames of 5 samples: (x1, . . . , x5), (x6, . . . , x10), . . . , (x196, . . . , x200).

For the forward adaptive quantizer functions SQNR(α) and R(α) are periodic on the
interval of variances α ∈ (αmin, αmax), with the period δα . The average value of SQNR is
obtained by averaging SQNR(α) within the one period as:

SQNR =
1

δα

∫ αmax

αmax−δα

SQNR(α)dα [dB]. (46)

The average value of the bit-rate R is obtained by averaging R(α) within the one period
as:

R =
1

δα

∫ αmax

αmax−δα

R(α)dα +
log2Ng

M1
[bps], (47)

where the last term in (47) represents the rate increasing due to transmission of side in-
formation (SI).

Since SQNR(α) and R(α) are periodic with the period δα , it is enough to consider only
one period α ∈ (αmax − δα, αmax) [dB] for the design of the forward adaptive model. Input
parameters of the design process are SQNRmin, L, M1 and Ng , i.e. values of these parame-
ters are defined in advance. We use values of Ni (i = 1, . . . ,L), obtained for σ 2

0 = 1 for the
defined values of SQNRmin and L (for Gaussian and Laplacian distributions, these values
of Ni are given in Tables 1–6). The design is performedby the minimization of the average
bit-rate R with the condition that SQNR(α) > SQNRmin for α ∈ (αmax − δα, αmax) [dB].
Since SQNR(α) is the increasing function in the interval α ∈ (αmax − δα, αmax) [dB],
the previous condition becomes SQNR(α = (αmax − δα)) > SQNRmin. Therefore, the
design of the model with the forward adaptation can be described as minimization of
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R ∴ SQNR(α = (αmax − δα)) > SQNRmin. As a result of the design process, we obtain
values of parameters xmax, ti , (i = 1, . . . ,L − 1) and M .

3.2. Application of the Model with the Forward Adaptation to the Speech Signal

The model with the forward adaptation will be applied to the speech signal. Based on
(Jayant and Noll, 1984, Fig. 5.10, p. 241), where 33.9 dB is given as CCITT requirement
for the minimum value of SQNR (in the wide power range of almost 40 dB) in systems
for speech transmission where high quality of speech is required, we choose: SQNRmin =
34 dB (leaving the margin of 0.1 dB), αmin = −40 dB, αmax = 0 dB, 1α = 40 dB. During
the design of quantizer and coder, transmission errors are usually not considered (i.e. it is
supposed that transmission errors are small or that they are corrected with some techniques
for error correction (e.g. with retransmission of error-corrupted data or by using error
correction codes)). Therefore, the value of 34 dB for SQNRmin is used in systems with high
speech quality with negligible transmission errors (i.e. with negligible channel distortion).
Value SQNRmin = 34 dB was often used in literature about speech quantization (Perić et

al., 2010, 2013; Nikolić and Perić, 2008).
However, if transmission errors are not negligible, then some value of SQNRmin higher

than 34 dB has to be used (what that value would be, depends on the level of transmission
errors). On the other hand, maybe for some applications there is no need to achieve such
high quality of speech, i.e. some lower level of quality is acceptable. For such applications,
some value of SQNRmin smaller than 34 dB should be used. Also, for other types of sig-
nals, other values of SQNRmin should be used. Therefore, the value of SQNRmin depends
on the type of signal and on the specific application. This paper describes the design of
the model for any value of SQNRmin; the value of 34 dB is chosen just as an example.

It is known that short time statistics of the speech signal can be modelled with the
Gaussian distribution (Jayant and Noll, 1984). From this reason, the previously developed
theory for the Gaussian distribution will be used.

The model with the following parameters is considered: L = 4, M1 = 198, N1 = 32,
N2 = 8, N3 = 16 and N4 = 64 (these values of N1, N2, N3 and N4 are taken from Table 3,
for SQNRmin = 34 dB and L = 4). Values of parameters (t1, t2, t3, xmax and M) of the
model, obtained by the optimization process, are presented in Table 7 for different values
of Ng . Theoretical values of performances (SQNR and R) calculated using the previously
derived expressions for the Gaussian distribution are also shown in Table 7.

An experiment is performed, applying the model with the forward adaptation to the
real speech signal. Performances obtained by the experiment are also presented in Table
7. We can see that values of SQNR and R obtained by the theory and by the experiment
are matched very well, which proves the previously developed theory.

Figure 3 shows very small variations of SQNR (which means that SQNR is almost
constant) in the wide range of variances for the model with the forward adaptation for
Ng = 64. This is also evident from Table 7 where average SQNR, (SQNR) differs from
the minimal value of SQNR (34 dB) for only 0.25 dB.

Also, we can see from Table 7 that the proposed model can satisfy the G.712 standard
with the bit-rate of 6.18 bps. This model is much better than the model defined with the
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Table 7
Numerical and experimental results for the model with the forward adaptation.

Ng t1 t2 t3 xmax M Theory Experiment

SQNR R SQNR R

32 0.93 1.20 1.67 3.57 3 34.42 6.26 34.65 6.01
64 1.01 1.30 1.79 3.83 3 34.25 6.21 34.88 5.95

128 1.05 1.35 1.85 3.97 3 34.13 6.18 34.42 5.92
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Fig. 3. SQNR in the wide range of variances for the model

 
Fig. 3. SQNR in the wide range of variances for the model with the forward adaptation for Ng = 64.

G.711 standard (ITU-T, 1972) which requires 8 bps to satisfy the G.712 standard. Also, this
model is better than the models presented in Perić et al. (2010, 2011, 2013) which satisfy
the G.712 standard with the bit-rates of 6.67 bps, 6.43 bps and 6.30 bps, respectively.

4. Conclusion

The model for the quantization and coding of signals, which consists of the piecewise
quantizer and new lossless coder, was presented in this paper. One of main characteristics
of this model is low complexity, since both the piecewise uniform quantizer and new
lossless coder are very simple for realization (new lossless code is much simpler than
the Huffman code because it does not require the formation of the code tree or knowledge
of probabilities of quantization levels). Another important advantage of the model is its
flexibility, since it provides a great possibility of choice of the number of regions of the
piecewise uniform quantizer and numbers of levels of these regions; in this way, the model
can be adapted to the desired performances for any application.The design was done in a
general manner, i.e. for any symmetrical signal distribution and for an arbitrary number
of regions of the piecewise uniform quantizer. Rigorous mathematical derivation of the
expression for the bit-rate was performed. Developed theory was applied for Gaussian and
Laplacian distributions, since a lot of signals in telecommunications (e.g. speech, audio,



546 M.R. Dinčić et al.

images, video) can be modelled with those two distributions. Simulation of the model was
done in MATLAB for Gaussian and Laplacian distributions. It was shown that numerical
results obtained by theory and by simulation were matched very well. Since a lot of real
signals are non-stationary, the forward adaptation of the model was performed. The model
with the forward adaptation, designed for Gaussian distribution, was applied to the speech
signal. Also, an experiment was performed using a real speech signal. It was shown that
theoretical and experimental results were matched very well. The proposed model can
achieve very good performances. For example, this model can satisfy the G.712 standard
for the speech quality transmission with the bit-rate of 6.18 bps, achieving compression of
1.82 bps with respect to the model defined with the G.711 standard (ITU-T, 1972) which
requires 8 bps to satisfy the G.712 standard.
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Glaudinimo algoritmas, pagrįstas atkarpomis tolygaus kvantatoriaus
ir kintamo ilgio kodo naudojimu

Milan R. DINČIĆ, Zoran H. PERIĆ, Aleksandra Ž. JOVANOVIĆ

Straipsnio autoriai pristato pagerintą signalų glaudinimo algoritmą, pagrįstą nuosekliu kvantato-
riaus ir koderio naudojimu. Glaudinamasis signalas pirmiausia kvantuojamas atkarpomis tolygiuoju
kvantatoriumu, po to koduojamas autorių pasiūlytu nenuostolinguoju metodu su laisvai parenkamu
kodavimo intervalų skaičiumi. Toks glaudinimas leidžia minimizuoti signalo duomenų srautą esant
užduotai minimaliai galimai kvantavimo triukšmo ir naudingojo signalo santykio (KTNSS) vertei.
Esminiai pasiūlyto metodo privalumai yra paprastumas ir žemas KTNSS lygis. Lyginant su anks-
tesniame autorių darbe suformuluotu glaudinimo algoritmu pasiektas 0.12 bps mažesnis duomenų
srautas.

Straipsnyje analitiškai gaunama ir apibendrinama suglaudinto signalo duomenų srauto išraiška,
tinkanti bet kuriam simetriniu reikšmių tikimybių pasiskirstymo dėsniu pasižyminčiam signalui.
Nestacionariems signalams glaudinti suformuluota algoritmo versija su išankstinio adaptavimo tipo
kvantatoriumi. Eksperimentinė pasiūlyto metodo patikra atlikta MATLAB aplinkoje su simuliuo-
tomis Laplaso ir Gauso tipo sekomis bei su realiu šnekos signalu. Eksperimentų rezultatai atitinka
teorines prielaidas ir patvirtina autorių suformuluoto signalų glaudinimo metodo efektyvumą.


