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Abstract. This paper investigates in a formal context some fundamental controllability properties
“from” and “to” the origin of probabilistic discrete-time dynamic systems as well as their uniform
versions and complete controllability in a class of probabilistic metric spaces or probabilistic normed
spaces, in particular, in probabilistic Menger spaces. Some related approximate probabilistic con-
trollability properties are also investigated for the case when a nominal controllable system is subject
to either parametrical perturbations or unmodelled dynamics. In this context, the approximate con-
trollability of a perturbed system is a robustness-type approximate controllability provided that the
nominal system is controllable. Some illustrative examples are also given.
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1. Introduction and Preliminaries

A clear discussion and characterization of the basic controllability properties of determin-
istic linear dynamic systems is given in Kailath (1980). A lack of their parallel character-
ization in the literature for the case of probabilistic dynamic systems is observed. Proba-
bilistic metric spaces and probabilistic Banach spaces are of important interest nowadays
in the context of Fixed Point Theory. See, for instance, Choudhury et al. (2011, 2012),
Beg et al. (2001), Beg and Abbas (2005) and Mihet (2004, 2009). In probabilistic metric
spaces, the deterministic notion of distance translates as follows. Given any two points x
and y of a metric space, a measure of the distance between them is a probabilistic met-
ric Fx,y(t), rather than the deterministic distance d(x, y), which is interpreted as the
probability of the distance between x and y being less than t (t > 0) (Pap et al., 1996;
Sehgal and Bharucha-Reid, 1972; Schweizer and Sklar, 1960). On the other hand, Menger
probabilistic metric spaces are a special case of probabilistic metric spaces which are en-
dowed with a triangular norm. See Pap et al. (1996), Sehgal and Bharucha-Reid (1972),
Choudhury et al. (2011, 2012), Beg and Abbas (2005), Mihet (2009), Khan et al. (1984),
Choudhury and Das (2008), Gopal et al. (2014). Several kind of contraction as the so-
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called B and C – type contractions have been proved to be useful for single and multival-
ued mappings. On the other hand, 2-cyclic φ-contractions on intersecting subsets of com-
plete Menger spaces were discussed in Choudhury et al. (2011) for contractions based
on control φ-functions. See also Beg and Abbas (2005). It was found that fixed points
are unique. Also, φ-contractions in complete probabilistic Menger spaces have been also
studied in Mihet (2009) through the use of altering distances. On the other hand, proba-
bilistic Banach spaces versus Fixed Point Theory were discussed in Beg et al. (2001). The
concept of probabilistic complete metric space was adapted to the formalism of Banach
spaces defined with norms being defined by triangular functions and under a suitable or-
dering in the considered space. A parallel background literature related to best proximity
points and fixed points in cyclic mappings in metric and Banach spaces is exhaustive. See,
for instance, Eldred and Veeramani (2006), De la Sen (2010), De la Sen et al. (2013), De
la Sen and Agarwal (2011), De la Sen (2013a, 2013b), Karpagam and Agrawal (2009),
Suzuki (2006), Di Bari et al. (2008), Rezapour et al. (2011), Derafshpour et al. (2010),
Al-Thagafi and Shahzad (2009), Sanhan et al. (2012), De la Sen and Karapinar (2013),
Chandok and Postolache (2013) and references therein.

It is well-known that Fixed Point Theory has also been widely applied to stability and
equilibrium problems, in particular, to the analysis of equilibrium points and related sta-
bility studies of discrete-time, continuous-time and hybrid dynamic systems since, even
based on intuitionist ideas, the convergence of trajectory-solutions of differential or dif-
ference equations or dynamic systems to an equilibrium point can be typically associated
to the convergence of sequences to fixed points, see, for instance, De la Sen and Karapinar
(2013), Takahashi and Takahashi (2007), Kim et al. (2014) and references therein, and
to ergodic processes (Kim et al., 2001). Several probabilistic approaches are also of rele-
vance for the appropriate treatment, appropriate selection and compacting of information
in large databases like, for instance, data-mining and network control. See, for instance,
Pragarauskaite and Dzemyda (2013), Rahim et al. (2010), Anrig and Baziukaite (2005)
and references therein.

It is well-known how important in the analysis and design of deterministic control
systems the controllability property is. See, for instance, De la Sen (2007), Marchenko
(2012, 2013), Louati and Ouzhara (2014), Karampetakis and Gregoriadou (2014), Shi et

al. (2012), Balasubramaniam et al. (2014) and Xu et al. (1995). In particular, and under
its most advantageous property versions of uniform complete controllability, it is known
that: (a) it is possible to transfer any state at any given time to any targeted one along a fi-
nite time interval; (b) it is possible to design model-matching stabilizing output-feedback
controllers with a fully free-design characteristic closed-loop equation, and then addition-
ally, with a prescribed closed-loop stability degree, if the given linear controlled object is
controllable and observable. It can be pointed out that optimal controllers for piecewise
affine systems with sampled-data switching strategies have been synthesized in Azuma
and Imura (2006) and some references therein, while model predictive control for con-
strained discrete-type Markovian switching systems has been proposed and investigated
in Patrinos et al. (2014) and some references therein. Also, an inverse adaptive control
scheme using learning techniques based on neural networks has been recently discussed
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and synthesized in Calvo-Rolle et al. (2014). The more precise purpose here is to char-
acterize several kinds of controllability properties in a probabilistic concepts in linear
discrete-time probabilistic metric spaces and with some extensions to the framework of
Menger probabilistic metric spaces, those last ones being endowed with a triangular norm.
We can point out that triangular norms operate in the probabilistic context in a close way
as the triangle inequality operates in normed spaces, the main difference being that the
first one manipulates inequalities of the type greater than or equal to since one is dealing
with increasing with time probabilities of achieving a zero distance in-between the cur-
rent state trajectory sequence and the prefixed targeted value tending to converge to one
(i.e. to reach the certainty). Note that the idea of increasing the probability towards the
certainty in computation processes is a useful computing tool, for instance, related to ge-
netic algorithms with random insertion which can preserve the stochastic characteristics
and main properties of the genetic algorithm while it preserves feasibility of generated
individuals and it increases the probability to find the global optimum. See, for instance,
Vaira and Kurasova (2014). In the above context, this paper investigates some fundamental
controllability properties of non-necessarily linear probabilistic discrete dynamic systems
from and to the origin as well as their uniform versions and complete controllability in
a class of probabilistic metric spaces or probabilistic normed spaces. Their extensions to
the approximate controllability properties for a class of linearized probabilistic perturbed
discrete dynamic system in the state and controls provided that the nominal system has
the corresponding property are also addressed in this research. The problem is intuitively
based on the following idea. If the system is controllable to or from the origin, then the
probability of the distance (or norm) from the targeted state (in particular, the zero-state
or any other predefined state) to the current state should be one for some injected admis-
sible control after a finite number of samples exceeding a certain lower-bound threshold.
Otherwise, we can say that the system is not controllable in a probabilistic context. The
paper body is organized in two main sections which follow this introductory one and a
final conclusion section. Section 2 is devoted to give the basic notions, revisited from the
deterministic context, together with their mathematical characterizations, of controllabil-
ity and reachability and their uniform counterparts of linear discrete-time systems in a
probabilistic context and a set of related fundamental results are established together with
some illustrative examples. Section 3 gives some approximate robustness-type extensions
to the case when the system is perturbed (roughly speaking, by parametrical perturba-
tions, unmodelled dynamics or both) while the nominal system keeps the corresponding
property. In this context, some approximate notions of controllability for the perturbed
probabilistic system are given and some associate results are established which are based
on the assumption of exact controllability of the nominal system together plus certain
contractive probabilistic conditions for the error dynamics caused by the perturbation.

We will denote by R0+ = {z ∈ R : z > 0} = R+ ∪ {0} and Z+ = {z ∈ Z : z >

0} = Z0+ ∪ {0}, n̄ = {1,2, . . . , n} and denote by L, the set of distribution functions
F : R → [0,1] which are non-decreasing and left continuous such that F(0) = 0 and
supt∈R F(t)= 1. Let X be a nonempty set and let F : X ×X → L be a mapping from
X × X, where X is an abstract set of elements, into the set of distribution functions L
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which are symmetric functions of elements Fx,y for every (x, y) ∈X ×X, referred to as
the probabilistic metric (or probability density). Then, the ordered pair (X,F ) is a proba-
bilistic metric space (PM), Pap et al. (1996), Sehgal and Bharucha-Reid (1972), Schweizer
and Sklar (1960), if

(1) ∀x, y ∈X
((

Fx,y(t)= 1; ∀t ∈ R+

)

⇔ (x = y)
)

,

(2) Fx,y(t)= Fy,x(t), ∀x, y ∈X, ∀t ∈ R,

(3) ∀x, y, z ∈X, ∀t1, t2 ∈ R+,
((

Fx,y(t1)= Fy,z(t2)= 1
)

⇒ (Fx,z(t1 + t2)= 1)
)

.

(1.1)

Note that an interpretation is that F : X × X → L is a set of distribution functions. A
particular distribution functionFx,y ∈ F is a probabilistic metric (or distance) which takes
values Fx,y(t) = H(t) identified with a mapping H : R → [0,1] in the set of all the
distribution functions L is denoted a probabilistic metric which is a mapping fromX×X

to a probability density function F : R → [0,1].
A Menger PM-space is a triplet (X,F,1), where (X,F ) is a PM-space which satisfies:

Fx,y(t1 + t2)>1
(

Fx,z(t1),Fz,y(t2)
)

, ∀x, y ∈X, ∀t1, t2 ∈ R0+, (1.2)

under 1 : [0,1] × [0,1] → [0,1] is a t-norm (or triangular norm) belonging to the set T
of t-norms which satisfy the properties:

(1) 1(a,1)= a,

(2) 1(a, b)=1(b,a),

(3) 1(c, d)>1(a,b) if c> a, d > b,

(4) 1
(

1(a,b), c
)

=1
(

a,1(b, c)
)

. (1.3)

A consequence of the above results is 1(a,0)= 0.

2. Controllability of a Probabilistic Discrete-Time Dynamic System

Consider the following probabilistic discrete dynamic system (PDDS) � := (X,U,Y,F )

by:

xn+1 = T (xn, un), ∀n ∈ Z0+, x0 ∈X, (2.1)

yn = f (xn, un), ∀n ∈ Z0+ (2.2)

whereU ,X and Y are Banach spaces, {un} ⊂U , {xn} ⊂X and {yn} ⊂ Y are, respectively,
the control, state and output sequences in the and T :X×U →X and f :X×U → Y are
mappings which, together with the PM space (X,F ), define the PDDS �. Each member
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of the control, state and output sequences is, respectively, referred to as a control, state
and output sample. A constant sequence {gn} of values g in any of the spaces U,X,Y is
denoted by ĝ for exposition simplicity. Assume that 0 ∈X and denote

ū(n,n+ 1)= (un, un+1)n ∈Z0+, so that

xn+2 = T 2
(

xn, ū(n,n+ 1)
)

= T 2(xn, un, un+1) := T
(

T (xn, un), un+1

)

, n ∈ Z0+.

In general, the control string of (m+ 1) controls ū(n,n+m)= (un, un+1, . . . , un+m),
for any n ∈ Z0+and m ∈ Z+, generates a state trajectory sequence which satisfies:

xn+m+1 := T m
(

xn, ū(n,n+m)
)

= T
(

T (xn+m−2, un+m−1), un+m
)

= T
(

T
(

T (xn+m−3, un−m−3), un+m−2

)

, un+m−1

)

= · · · = T
(

T
(

. . .

m
︸︷︷︸

(

T (xn, un), un+1

)

, un+2, . . . , un+m−1

)

, un+m
)

for all n ∈ Z0+ and m ∈ Z+ (2.3)

yn+m := f
(

xn+m, ū(n+m,n+m)
)

= f
(

T
(

. . .

m
︸︷︷︸

(

T (xn, un), un+1

)

, un+2, . . . , un+m−1

)

, un+m
)

for all n ∈ Z0+ and m ∈ Z+ (2.4)

with y0 = f (x0, u0). The semigroup property (or state-transition property) of the mapping
T :X×U →X defining the evolution state-trajectory sequence of the PDDS � becomes:

xn+m+j := T n+m(xj , ū(j, j + n+m− 1))

= T n
(

T m(xj , ū(j, j + n− 1)), ū(j + n, j + n+m− 1)
)

, ∀n,m, j ∈ Z0+

(2.5)

under the conventions u−1 = 0, ū(j, j − 1)= 0, ∀j ∈ Z0+ and T 0 being identity. Note
that ū(n,n)= un, ∀n ∈ Z0+.

Definition 1. (1) � is point-state controllable from the origin (p. s. c. f. o.) to a ∈X if
there are some integer pa = pa(a) ∈ Z+ and some control sequence {un} such that

Fa,T pa (0,ū(0,pa−1))(t)= 1, ∀t ∈ R+ (2.6)

(2)� is uniformly point-state controllable from the origin (u. p. s. c. f. o.) to a ∈X if there
are some integer p̂a = p̂a(a) ∈Z+ and some control sequence {un} such that

Fa,T p̂a (j,ū(j,j+p̂a−1))(t)= 1, ∀t ∈ R+, ∀j ∈ Z0+. (2.7)
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Note that the uniformity of Definition 1(2) refers to the controllability property being
just dependent on the sampling interval but not on the initial time instant and it guarantees
the point-state controllability from the origin of Definition 1(1). On the other hand, Defi-
nition 1(1) may be understood as a controllability property from the origin at zero initial
time instant. The idea can be directly extended to point-state controllability from the origin
at any initial sampling time instant j by replacing 0 → j and pa−1 → j+pa−1. Similar
considerations apply for the concepts of uniform controllability in the next definitions.

Definition 2. (1) � is point-state controllable to the origin (p. s. c. t. o.) from a ∈ X if
there are some integer qa = qa(a) ∈ Z+ and some control sequence {un} such that

F0,T qa (a,ū(0,qa−1))(t)= 1, ∀t ∈ R+ (2.8)

(2)� is uniformly point-state controllable to the origin (u. p. s. c. t. o.) from a ∈X if there
are some integer q̂a = q̂a(a) ∈ Z+ and some control sequence {un} such that

F0,T q̂a (a,ū(j,j+q̂a−1))(t)= 1, ∀t ∈ R+, ∀j ∈ Z0+. (2.9)

Note that uniformly point-state controllability to the origin guarantees point-state con-
trollability to the origin. Note that the controllability of Definitions 2 is guaranteed for a
finite control strip ū(0, qa − 1), irrespective of the remaining elements of the control se-
quence {un}. Therefore, it is said that � is p. s. c. t. o. in qa samples from a ∈X through
the control strip ū(0, qa − 1). Note also that, in deterministic linear dynamic systems,
point-state controllability from the origin is equivalent to reachability while being only
equivalent to point-state controllability to the origin if the matrix of dynamics is non-
singular.

Theorem 1. Assume that T (0, u∗) = 0 for some u∗ such that the constant control se-

quence û∗ = {u∗} ⊂ U (i.e. un = u∗, ∀n ∈ Z0+) and that � is p. s. c. t. o. in qa samples

from x = a(∈X) through a control strip ū(0, qa − 1). Then, � is also p. s. c. t. o. in q̄a

samples from x = a for any q̄a(∈ Z+)> qa .

Proof. Define q̄a(j) = qa + j for any given j ∈ Z0+. It turns out that � is p. s. c. t.
o. in q̄a(0) = qa samples from a ∈ X. Proceed by complete induction to prove that �
is p. s. c. t. o. in q̄a(j) samples from a ∈ X for any j ∈ Z+. It holds for q̄a(0) samples
and assume it also holds for q̄a(j) samples from a ∈ X and some given j ∈ Z+. Thus,
there is a control strip ū(0, q̄a(j)) such that F0,T q̄a (j)(a,ū(0,q̄a(j)−1))(t/2) = 1, ∀t ∈ R+.
Also, F0,T (0,u∗)(t/2) = 1, ∀t ∈ R+, since T (0, u∗) = 0, from the first property in (1.1)
of the PM-space (X,F ). From the semigroup property, one has for the control strip
ū(0, q̄a(j))= (ū(0, q̄a(j)− 1), u∗) that

T q̄a(j)+1
(

a, ū
(

0, q̄a(j)
))

= T
(

T q̄a(j)
(

a, ū(0, q̄a(j)− 1)
)

, u∗
)

, ∀t ∈ R+
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and, from the third property in (1.1) of the PM-space (X,F ), it follows that

F0,T q̄a (j)(a,ū(0,q̄a(j)−1))(t/2)= F0,T (0,u∗)(t/2)= 1, ∀t ∈ R+ implies that

F0,T q̄a (j)+1(a,ū(0,q̄a(j)))
(t)= F0,T (T q̄a (j)(a,ū(0,q̄a(j)−1)),u∗)(t)= 1, ∀t ∈ R+

so that if� is p. s. c. t. o. in q̄a(j) samples from a ∈X through the control strip ū(0, q̄a(j))
then it is also p. s. c. t. o. in q̄a(j) + 1 samples from a ∈ X trough the control strip
ū(0, q̄a(j)+ 1)= (ū(0, q̄a(j)), u

∗) and the proof follows by complete induction. �

A close proof to that of Theorem 1 is valid for its next stronger parallel uniformity
result:

Theorem 2. Assume that T (0, u∗) = 0 for some u∗ such that the constant control se-

quence û∗ = {u∗} ⊂U and that � is u. p. s. c. t. o. in qa samples along any discrete time

interval [j, j + q̂a], ∀j ∈ Z0+ from x = a(∈X) through a control strip ū(j, j + q̂a − 1),

∀j ∈ Z0+. Then, � is u. p. s. c. t. o. in q̄a samples from x = a for any ¯̂qa(∈ Z+)> q̂a .

Theorem 3. Assume that T (a,0) 6= 0 if a(∈X) 6= 0 and T (0, u∗)= 0 for some constant

sequence û∗ ⊂ U of value u∗. If � is p. s. c. t. o. from x = a(∈ X) through a control

sequence {un}, then qam ∈ Z+ exists (the minimum necessary length of a control strip for

controllability to the origin) such that:

(1) � is p. s. c. t. o. in qa samples from x = a through any admissible finite control

strip ū(0, qa − 1) if qa > qam;
(2) The control sequence {un} has the constraint un = u∗ for all n> qam.

Proof. If� is p. s. c. t. o. from a 6= 0, then it is not p. s. c. t. o. in 0 samples, then through the
control strip ū(0,−1)= 0 since T (a, ū(0,−1))= T (a,0) 6= 0. So, a minimum qam ∈ Z+

exists such that � is p. s. c. t. o. in qa > qam samples for some admissible control strip
ū(0, qa−1). From Theorem 1� is p. s. c. t. o. in any number of samples q̄a(> qam) ∈ Z+

with a control strip ū(0, q̄a)= (ū(0, q̄a − 1), u∗) since T (0, u∗)= 0. �

A case of important practical interest is when 0̂ ⊂U and T (0,0)= 0. In this case, the
origin is reached after a minimum finite number of samples with distribution function of
probability one for any t ∈ R+ and the state is kept with probability one for any t ∈ R+

for any greater number of samples under zero control.

Example 1. Define a set of constant controls U∗ = {û⊂ U}. If 0̂ ⊂ U∗, then the point-
state controllability to the origin in a deterministic controllability context holds for any
control strip of zero elements of the form ū(0, k) = u(u0, u1, . . . , uqam−1,0, . . . ,0) for
any integer k > qam. A parallel counterpart of a deterministic controllability to the ori-
gin problem can be visualized for the linear and time-invariant discrete-time n-th dimen-
sional system xk+1 = Axk + Buk , k ∈ Z0+, A ∈ R

n×n and B ∈ R
n×m for any given

nonzero x0 = a ∈ Rn ≡ X as follows. Assume that the pair (A,B) is controllable and
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that it has rank n, i.e. A is non-singular so that of rank n. Then the controllability ma-
trix C = (B,AB, . . . ,Aµ−1B) has rank n, where 1 6 µ6 n is the degree of the minimal
polynomial of A (Kailath, 1980; De la Sen, 2007). There is a control strip ū(0,µ− 1)=

u(u0, u1, . . . , uµ−1) such that xµ = 0 and any other control strip of larger size of the form
ū(0, k)= u(u0, u1, . . . , uµ−1,0, . . . ,0) keeps the state xk = 0, ∀k(> µ−1) ∈ Z0+. In this
simple case, it turns out that U∗ = {0̂} and that the point-state controllability to the origin
is uniform. If µ = n, the pair (A,b) is controllable and b ∈ R

n, then the minimum size
control strip ū(0, k − 1) for controllability to the origin is unique for any nonzero initial
state since the controllability matrix is square and non-singular.The minimum size control
strip is defined by the column vector ū(0,µ− 1)T = (u0, u1, . . . , uµ−1)

T = −C
−1
p A

µa,
where Cp is a permutation of C defined with its columns written in reverse order, so that
the initial state can be uniquely reconstructed as:

a = −A−µ
Cpū(0,µ− 1)T = −

(

A−1b,A−2b, . . . ,A−µb
)

ū(0 ,µ− 1)T

in the case when A ∈ R
n×n is non-singular. The necessary and sufficient condition for

point-state and uniform controllability from an initial state a ∈ X to a state b ∈ X by in
general non unique ū(0,µ− 1), is that rank(C)= rank(C, b −Aµa) from the Rouché–
Froebenius theorem from Linear Algebra. A sufficient condition for the property to hold
for any given a, b ∈ X is that rank(C) = n under which a unique control strip ū(0,µ−

1)T = C
−1
p (b−Aµa) achieves the control objective. Note that if b= 0 andA is nilpotent,

then b − Aµa = 0 for any a ∈ X so that the system is p. s. c. t. o. under zero control.
Detailed controllability results and associate discussions in a deterministic context are
given for various kinds of dynamic systems (linear continuous-time, linear discrete-time,
linear hybrid positive or not and some special non linear systems), for instance, in De
la Sen (2007), Marchenko (2012, 2013), Louati and Ouzhara (2014), Karampetakis and
Gregoriadou (2014), Shi et al. (2012, 2013) and some references therein.

Example 2. Consider the problem of Example 1 in a probabilistic context with proba-
bility density function Fx,y(t)= αt

αt+‖x−y‖ , ∀x, y ∈X, ∀t ∈ R+ and some given α ∈ R+

where the state control and output spaces are normed linear spaces. A state sequence
{xn} is driven from x = a to the origin x = 0 by some control strip ū(0,µ− 1) which
reaches it at the µ-th sample under the probability density function Fxj ,0(t) = αt

αt+‖xj‖
,

k = 0,1, . . . , , k, t ∈ R+ with k(> µ − 1) ∈ Z0+ and xk = Aka +
∑k−1
j=0A

k−1−juj ,

n ∈ Z0+ with ū(0,µ− 1)T = (u0, u1, . . . , uµ−1)
T = −C

−1
p Aµa, xk = 0 and uk = 0 for

k(> µ− 1) ∈ Z+. Then, Fxk,0(t)= 1, k(> µ− 1) ∈ Z0+, ∀t ∈ R+. By the property (1)
of the PM-space xk = 0, k(> µ− 1) ∈ Z0+ so that the system is p. s. c. t. o. and u. p. s. c.
t. o. Note that for the given probability density function, the PDDS � is p. s. c. t. o. if its
deterministic version has the same property.

Theorems 1 to 3 can be directly extended to controllability from the origin under sim-
ilar proofs and the changes a → 0, 0 → a, q̄a → p̄a . In particular the counterpart of
Theorem 3 is the following:
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Theorem 4. Assume that T (0, a) 6= 0 if a(∈X) 6= 0 and T (a,u∗)= a for some constant

sequence û∗ ⊂ U . If � is p. s. c. f. o. through a control sequence {un}, then pam ∈ Z+

exists (the minimum necessary length of a control strip for controllability from the origin

to x = a) such that:

(1) � is p. s. c. f. o. in pa samples from x = 0 to x = a through any admissible finite

control strip ū(0,pa − 1) if pa >pam;
(2) The control sequence {un} has the constraint un = u∗ for all n> pam.

Outline of proof. It is quite close to the proof of Theorems 1–3 based in the semigroup
property in terms of:

T p̄a(j)+1
(

0, ū(
(

0, p̄a(j)
))

= T
(

T q̄a(j)
(

0, ū(0, p̄a(j)− 1)
)

, u∗
)

, ∀t ∈ R+,

and, from the third property in (1.1) of the PM-space (X,F ) in terms of

Fa,T p̄a (j)(0,ū(0,q̄a(j)−1))(t/2)= Fa,T (a,u∗)(t/2)= 1, ∀t ∈ R+. �

Example 3. If the controllability matrix is non-singular, then Examples 1 and 2 can be
reformulated in terms of controllability from the origin under a control sequence driving
the origin to x = a obtained from the control strip ū(0,µ−1)T = −C

−1
p a. The probability

density function becomes

Fxj ,a(t)=
αt

αt + ‖xj − a‖
, j = 0,1, . . . , k, t ∈ R+

with k(>µ− 1) ∈ Z+ for x0 = a.

Definition 3. (1) � is point-state completely controllable from the origin (p. s. c. c. f.
o.) if it is p. s. c. f. o. for any a ∈X.

(2) � is uniformly point-state completely controllable from the origin (u. p. s. c. c. f.
o.) if it is u. p. s. c. f. o. for any a ∈X.

Definition 4. (1)� is point-state completely controllable to the origin (p. s. c. c. t. o.) if
it is p. s. c. t. o. for any a ∈X.

(2) � is uniformly point-state completely controllable to the origin (u. p. s. c. c. t. o.)
if it is u. p. s. c. t. o. for any a ∈X.

Definition 5. (1) � is completely controllable (c. c.) in Pa × Pb ⊂ X × X if, for any
given ordered pair (a, b) ∈ Pa × Pb , there are some integer zab = zab(a, b) ∈ Z+ and
some control sequence {un} such that

Fb,T zab (a,ū(0,zab−1))(t)= 1, ∀t ∈ R+. (2.10)
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(2)� is uniformly completely controllable (u. c. c.) if, for any given (a, b) ∈ Pa ×Pb ,
there are some integer ẑab = ẑab(a, b)∈ Z+ and some control sequence {un} such that

F
b,T ẑab (a,ū(j,j+ẑab−1))

(t)= 1, ∀t ∈ R+, ∀j ∈ Z0+. (2.11)

Note that controllable deterministic time-invariant dynamic systems are uniformly
controllable. A basic result in the probabilistic context follows:

Theorem 5. � is u. c. c. in Pa × Pb if and only if it is both u. p. s. c. c. f. o. in Pa × Pb

and u. p. s. c. c. t. o. in P .

Proof. If � is u. c. c. in Pa × Pb , then F
b,T ẑab (a,ū(j,j+ẑab−1))

(t) = 1, ∀t ∈ R+ for some
ū(j, j + ẑab − 1), ∀j ∈ Z0+, ∀a, b ∈ Pa × Pb for some ẑab = ẑab(a, b) ∈ R+, ū(j, j +

ẑab − 1). If b = 0 and ẑab = q̂a , then (2.9) holds and � is u. p. s. c. t. o. in Pa ×Pb . Also,
if a = 0 and ẑab = p̂b , then F

b,T p̂b (j,ū(j,j+p̂b−1))
(t)= 1, ∀t ∈ R+, ∀j ∈ Z0+, then (2.7)

holds and � is u. p. s. c. f. o in P . Thus, if � is u. c. c. in Pa × Pb , then it is both p. s. c.
c. f. o. in Pa ×Pb and p. s. c. c. t. o. in Pa ×Pb . Conversely, if � is both u. p. s. c. f. o. in
Pa × Pb and u. p. s. c. t. o. in Pa × Pb , then

F
b,T p̂b (0,ū(j,j+p̂b−1))

(t/2)

= F0,T q̂a (a,ū(j+q̂a,j+q̂a+p̂b−1))(t/2)= 1, ∀t ∈ R+, ∀j ∈ Z0+. (2.12)

Then, one gets from (2.12), the properties 2–3 of the PM space (X,F ) and the semigroup
property (2.5) that

F
b,T p̂b+q̂a (a,ū(j,j+q̂a+p̂b−1))

(t)= 1, ∀t ∈ R+, ∀j ∈ Z0+ (2.13)

so that� is u. c. c. in Pa ×Pb with ẑab = q̂a+ p̂b . Now, the first property of the PM space
and (2.13) imply that

b = T p̂b+q̂a
(

a, ū(j, j + p̂b + q̂a − 1)
)

= T p̂b
(

T q̂a (a, ū(j, j + p̂b − 1)), ū(j + p̂b, j + p̂b + q̂a − 1)
)

, ∀j ∈ Z0+.

(2.14)

Thus, the proof is complete. �

Definitions 1–5 can be directly extended to the parallel concepts of output controllabil-
ity and uniform output controllability in the probabilistic senses. In particular, Definition 5
is extended as Definition 6 below. The remaining Definitions 1–4 are directly extendable
in close senses of output controllability from or to the origin related to the amended fol-
lowing acronyms:
p. s. o. c. f. o., u. p. s. o. c. f. o., p. s. o. c. t. o., u. p. s. o. c. t. o., p. s. o. c. c. f. o., u. p. s.
o. c. c. f. o., p. s. o. c. c. t. o., u. p. s. o. c. c. t. o.
which are omitted in terms of explicit formal definitions for the sake of simplicity.
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Example 4. LetA ∈ R
n×n andB ∈ R

n×m be the matrices of the deterministic Example 1
and consider the subset of X ×X of ordered pairs defined as follows {(a, b) ∈ X ×X :

rank(B) = rank(b − Aa,B)} where Pa,Pb ⊂ X are defined by the elements of such
pairs. If the pair (A,B), then the controllability matrix C = (B,AB, . . . ,Aµ−1B) and
its column permuted matrix Cp have rank n and ū(0,µ− 1)T = (u0, u1, . . . , uµ−1)

T =

C
−1
p (b − Aµa) drives x = a to x = b in µ samples with µ being the degree of the

minimal polynomial of A. Since a, b are such that rank(B) = rank(b − Aa,B), one
has from the Rouché–Froebenius theorem from Linear Algebra that a constant control
uk = uµ = u∗ = u∗(a, b) exists for k > µ which guarantees T (a,u∗)= b and any, in gen-
eral non-unique (being unique if the controllability matrix is of full rank), control strip
ū(0, k)T = (u0, u1, . . . , uµ−1, u

∗, . . . , u∗)T = (C−1
p (b−Aµa),u∗, . . . , u∗) for any given

k(> µ− 1) ∈ Z+ guarantees that xk = b for any k(> µ− 1) ∈ Z0+ if x0 = a. Note that
such a constant control u∗(a, b) is not unique, in general, for the given a, b. In particu-
lar, we can choose Pa =X and Pb = {b ∈X : rank(B)= rank(b−Aa,B), ∀a ∈X} and
Pb =X and Pa = {a ∈X : rank(B)= rank(b−Aa,B), ∀b ∈X}. Note that, ifm> n (i.e.
there are non less number of inputs than the dimension of the system) and rankB = m,
then Pa = Pb =X. If m= n and B is non-singular, then u ∗ (a, b) is unique for each pair
(a, b).

The probabilistic counterpart behaves as follows based on Example 2. The probability
density function of Example 2 is

Fxj ,b(t)=
αt

αt + ‖xj − b‖
, k = 0,1, . . . , k, t ∈ R+

with k(> µ− 1) ∈ Z+ and x0 = a. Then, Fxk,b(t)= 1, k(> µ− 1) ∈ Z0+, ∀t ∈ R+. By
the property (1) of the PM-space xk = b, k(>µ− 1) ∈ Z+ so that the system is p. s. c. f.
o. and u. p. s. c. f. t. o. for the set of pairs {(a, b)∈X×X : rank(B)= rank(b−Aa,B)}

and the system is u. c. c. in Pa × Pb .

Definition 6. (1)� is completely output-controllable (c. o. c.) if, for any given a, b ∈X,
there are some integer zoab = zoab(a, b) ∈ Z+ and some control sequence {un} such that

Ff (b,uzoab),f T z0ab (a,ū(0,zoab−1))(t)= 1, ∀t ∈ R+. (2.15)

(2)� is uniformly completely output-controllable (u. c. o. c.) if, for any given a, b ∈X,
there are some integer ẑoab = ẑoab(a, b) ∈ Z+ and some control sequence {un} such that

F
f (b,uj+zoab),f (T

ẑoab (a,ū(j,j+ẑoab−1)),uj+ẑoab)
(t)= 1, ∀t ∈ R+, ∀j ∈ Z0+. (2.16)

Note that it turns out that if {un} exists such that its associate control string ū(j, j +

zoab − 1) leads to

F
b,T ẑoab (a,ū(j,j+ẑoab−1))

(t)= 1, ∀t ∈ R+, ∀j ∈ Z0+. (2.17)
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Then, one has from the output constraint (2.2) of � for any given uzoab ∈ U that

F
b,T ẑoab (a,ū(j,j+ẑoab−1))

(t)= 1

⇒ F
f (b ,uj+ẑoab

),f (T ẑoab (a,ū(j,j+ẑoab−1)),uj+ẑoab)
(t)= 1, ∀t ∈ R+ (2.18)

and the following result which is a consequence of Theorem 5:

Corollary 1. The following properties hold:

(1) If � is u. c. c., then � is u. o. c. c.;
(2) If � is u. p. s. c. c. f. o. and u. p. s. c. c. t. o., then � is u. o. c. c.;
(3) If � is u. p. s. o. c. c. f. o. and u. p. s. c. c. t. o., then � is u. o. c. c.;
(4) If � is u. p. s. c. c. f. o. and u. p. s. o. c. c. t. o., then � is u. o. c. c.

Proof. From (2.2), f (b,uj+ẑoab )= f (T ẑoab (a, ū(j, j + ẑoab − 1)), uj+ẑoab), ∀j ∈ Z0+

for any given a, b ∈X, thus, if � is u. c. c., then � is u. o. c. c. from (2.18) and the first
property of the corollary is proved. If� is u. p. s. c. c. f. o. and u. p. s. c. c. t. o., then � is
u. c. c. from Theorem 1, then the first property of the implication of (2.18) holds and the
second property of this corollary follows from the first assertion.

The third property of Corollary 1 can be proved by requiring to � to be u. p. s. o. c. c.
f. o., instead of the stronger condition of being u. p. s. c. c. f. o., and u. p. s. c. c. t. o. This
leads to

F
f (b,uẑoab

),f T ẑo0b (0,ū(j,j+ẑa0b−1),uj+ẑa0b
)
(t/2)= F0,T q̂a (a,ū(0,q̂a−1))(t/2)

= F
f (b ,uẑoab

),f T ẑoab (a,ū(0,q̂a−1),uj+ẑa0b
)
(t)= 1, ∀t ∈ R+, ∀j ∈ Z0+ (2.19)

for some control string ū(j, j+ ẑa0b)= (ū(j, j+ ẑa0b−1), uj+ẑa0b
) since f (b,uj+ẑoab)=

f (T ẑoab(a, ū(j, j+ ẑoab−1)), uj+ẑoab) from (2.2). The fourth property is proved closely
to the third one according to:

F
f (b,uẑoab

),f T ẑoab (a,ū(j,j+ẑoab−1))
(t/2)= Fa,T q̂a (0,ū(0,p̂a−1))(t/2)

= F
f (b,uẑoab

),f T ẑoab (a,ū(0,q̂a−1))
(t)= 1, ∀t ∈ R+, ∀j ∈ Z0+. � (2.20)

The converses of the properties of Corollary 1 are not true, in general.

3. Approximate Controllability of a Probabilistic Perturbed Linearized Discrete

Dynamic System

Consider the following perturbed probabilistic discrete dynamic system (PPDDS) �p :=

(X̄, Ū , Ȳ ,F ) defined by:

x̄n+1 = T̄n(x̄n, ūn)= S̄nx̄n + R̄nūn, ∀n ∈ Z0+, x̄0 ∈X, (3.1)

ȳn = f̄n(x̄n, ūn)= Q̄nx̄n + W̄nūn, ∀n ∈ Z0+ (3.2)
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of nominal version � := (X,U,Y,F ) being a particular case of (2.1)–(2.2):

xn+1 = Tn(xn, un)= Snxn +Rnun, ∀n ∈ Z0+, x0 ∈X, (3.3)

yn = fn(xn, un)=Qnxn +Wnun, ∀n ∈ Z0+. (3.4)

Define errors x̃n = x̄n − xn, T̃n = T̄n − Tn and S̃n = S̄n − Sn, ∀n ∈ Z0+. Direct calcu-
lations with (3.1)–(3.2) yield the following error description:

x̃n+1 = Snx̃n + gn = S̄nx̃n + hn, ∀n ∈ Z0+ (3.5)

where

gn = S̃nx̄n + R̃nūn, hn = S̃nxn + R̃nun. (3.6)

A case of particular interest for comparison of the perturbed system with its nominal
(unperturbed) one is that when T̃n = T̄n − T and S̃n = S̄n − T converge point-wise to
zero as n → ∞, simply denoted as T̃n → 0 and S̃n → 0 as n → ∞. Definitions 2 are
generalized for approximate controllability to the origin of �p as follows:

Definition 7. (1) A PDDS � is approximately point-state controllable to the origin (a.
p. s. c. t. o.) from a ∈X if, for any given real constants ε ∈ R+ and λ ∈ (0,1), there is a
positive integer na = na(a, ε, λ) and some control sequence {un} such that

F0,T n(a,ū(0,n−1))(ε) > 1 − λ, ∀n(> na) ∈ Z+. (3.7)

(2) A PDDS � is approximately point-state controllable to the origin (a. p. s. c. t. o.)
from a ∈X if, for any given real constants ε ∈ R+ and λ ∈ (0,1), there is a positive integer
n̂a = n̂a(a, ε, λ) and some control sequence {un} such that

Fj,T n(a,ū(j,j+n−1))(ε) > 1 − λ, ∀n(> n̂a) ∈ Z+, ∀j ∈ Z0+. (3.8)

The interpretation of the approximate point-state controllability to the origin from
a ∈X is that in a finite number of samples exceeding a certain minimum threshold n> na
the probability of ‖T n(a, ū(0, n− 1))‖ = d(0, T n(a, ū(0, n− 1))) < ε is close to one for
some admissible control sequence since we can chose both ε and λ to be arbitrarily small
positive real constants. The above definition and associated idea are now used in a prob-
abilistic robustness controllability context in the sense that it gives a sufficient condition
for �p (3.1)–(3.2) to be a. p. s. c. t. o. if � (3.3)–(3.4) is p. s. c. t. o.

Theorem 6. Consider the PDDS �, Eqs. (3.3)–(3.4), and the PPDDS �p, Eqs. (3.1)–
(3.2), and assume that:

(1) (X,F,1) is a Menger PM-space, where (X,F ) is a PM-space and 1 is the min-

imum triangular norm and the probability density function F :X×X→ L satis-

fies



516 M. De La Sen

(a) Fx+z,y+z(t)= Fx,y(t) for any x, y, z ∈X, ∀t ∈ R+,

(b) The contractive condition FSn+1x̃n+1,Snx̃n(Kt) > Fx̃n+1,x̃n(t) holds for some

real constantK ∈ [0,1), ∀n ∈ Z0+, ∀t ∈ R+ where {xn} is a solution sequence

of (3.1) for any x0 ∈X,

(2) 0̂ ⊂U and Sn0 = 0 and Rn0 = 0, ∀n(> qa − 1) ∈ Z0+,

(3) � is p. s. c. t. o. in qa samples from x = a(∈ X) through some control strip

ū(0, qa − 1) so that T (0, u∗) = 0 for some u∗ such that the constant control se-

quence û∗ = {u∗} ⊂U ,

(4) The sequence {gn} converges.

Then, �p is a. p. s. c. t. o. in any finite number of samples being non less than a

minimum lower threshold na > qa under control strips of the form ū(0, k + qa − 1) =

(ū(0, qa−1), u∗, u∗, . . .
k
︸︷︷︸ . . . , u∗), ∀k(> nqa−qa) ∈ Z0+ and with a prescribed guar-

anteed minimum probability error Fx̃n+1,x̃n(ε) > 1 − λ for any arbitrary given real con-

stants ε ∈ R+ and λ ∈ (0,1) and all integer n> nqa .

Proof. Note that Tn(0,0)= Sn0 +Rn0 = 0, ∀n(> µ− 1) ∈ Z0+. From Theorem 1, � is
p. s. c. t. o. in q̄a samples from x = a for any q̄a(∈ Z+) > qa and Fxn,a(t) = 1 for any
integer n> q̄a > qa through a control strip ū(0, q̄a − 1)= (ū(0, qa − 1),0, . . . ,0). Note
that

x̃n+m+1 = S̄(n,n+m)x̃n + ḡ(n,n+m); ∀n,m ∈ Z0+ (3.9)

where

S̄(n,n+m)=

m
∏

j=0

[Sn+j ], ḡ(n,n+m)=

m
∑

j=0

(
m
∏

i=j+1

[

Sn+i
]

)

gn+j . (3.10)

Then,

FS̄(n ,n+m+1)x̃n,S̄(n ,n+m)x̃n
(t)> F

x̃n+1 ,x̃n
(K−m−1t), ∀n,m ∈ Z0+, ∀t ∈ R+ (3.11)

and

F
x̃n+m+2 ,x̃n+m+1

(t)= F
S̄(n ,n+m+1)x̃n,S̄(n ,n+m)x̃n+ḡ(n,n+m)−ḡ(n,n+m+1)

(t) (3.12)

so that

F
x̃n+m+2 ,x̃n+m+1

(2t) > 1
(

FS̄(n,n+m+1)x̃n,S̄(n,n+m)x̃n
(t),Fḡn−ḡn+1,0(t)

)

> 1
(

Fx̃n+1,x̃n(K
−m−1t),Fḡ(n,n+m)−ḡ(n,n+m),0(t)

)

> 1
(

Fx̃n+1,x̃n(K
−m−1t),Fḡ(n,n+m),ḡ(n,n+m)(t)

)

, (3.13)

∀n,m ∈ Z0+, ∀t ∈ R+ since {gn} converges then {ḡ(n,n + m)} → 0 and
F
ḡ(n,n+m),ḡ(n,n+m)

(t) → 1 as n → ∞, ∀m ∈ Z0+, ∀t ∈ R+ and Fx̃n+1,x̃n(K
−m−1t) → 1
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as n,m→ ∞, ∀t ∈ R+, that is {x̃n+1 − x̃n} → 0 as n→ ∞ with probability one from
the first property of (1.1). Furthermore, for any given ε ∈ R+ and λ ∈ (0,1), there exists
n01 = n01(ε, λ) ∈ Z0+ such that

Fx̃n+m+2,x̃n+m+1
(2ε) > 1(Fx̃n+1,x̃n(K

−m−1t),F
ḡ(n,n+m+1),ḡ(n,n+m)(t))

> 1(1 − λ,1 − λ)= 1 − λ, (3.14)

∀n(> n0) ∈ Z0+, ∀m ∈ Z0+ so that {x̃n} is a Cauchy sequence which is, furthermore,
convergent. Since {xn} = a, ∀n(> qa), then for ∀n(> max(n01, qa)) ∈ Z+

Fx̄n+m+2,x̄n+m+1
(2ε) = Fxn+m+2,xn+m+1+x̃n+m+1−x̃n+m+2

(2ε)

> 1
(

Fxn+m+2,xn+m+1
(ε),Fx̃n+m+2,x̃n+m+1

(ε)
)

= 1
(

F0,0(ε),Fx̃n+m+2,x̃n+m+1
(ε)
)

= 1
(

1,Fx̃n+1,x̃n(ε)
)

= 1
(

1,1
(

Fx̃n+1,x̃n

(

K−m−1ε
)

,Fḡ(n,n+m+1),ḡ(n,n+m)(ε/2)
))

= 1
(

Fx̃n+1,x̃n

(

K−m−1ε
)

,Fḡ(n,n+m+1),ḡ(n,n+m)(ε/2)
)

> 1
(

Fx̃n+1,x̃n(K
−m−1ε),Fḡ(n,n+m+1),ḡ(n,n+m)

(

K−m−1ε
))

(3.15)

∀n(> max(n01, qa)) ∈ Z+ provided that m >
| ln2ε|
| lnK |

− 1 for any given real ε ∈ (0,1/2]

since thenm>
| ln2ε|
| lnK |

−1 is equivalent to 2k−m−1ε 6 1 and thenFḡ(n,n+m+1),ḡ(n,n+m)(ε/2)

> F
ḡ(n,n+m+1),ḡ(n,n+m)(K

−m−1ε). Thus, since the minimum triangular norm is continuous,

lim inf
n→∞

F
x̄n+m+2,x̄n+m+1

(2ε)

>1
(

lim inf
n→∞

Fx̃n+1,x̃n

(

K−m−1ε
)

, lim inf
n→∞

Fḡ(n,n+m+1),ḡ(n,n+m)

(

K−m−1ε
)
)

=1
(

lim inf
n→∞

Fx̃n+1,x̃n

(

K−m−1ε
)

, lim inf
n→∞

F0,0

(

K−m−1ε
)
)

=1
(

lim inf
n→∞

Fx̃n+1,x̃n

(

K−m−1ε
)

,1
)

> lim inf
n→∞

Fx̃n+1,x̃n

(

K−m−1ε
)

> 1 − λ (3.16)

for any given real constants ε ∈ (0,1/2], λ ∈ (0,1) and any nonnegative integer m >

max(n02, | ln 2ε|
| lnK |

− 1), for some existing nonnegative integer n02 = n02(ε, λ). The above
constraints lead to the existence of the limit below:

lim
n→∞

Fx̄n+2 ,x̄n+1

(

0+
)

= lim
n,m→∞

Fx̄n+m+2,x̄n+m+1
(ε)= lim

n→∞
Fx̃n+1,x̃n(∞)= 1 (3.17)
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and

Fx̄n+m+2,x̄n+m+1
(2ε)= Fx̃n+m+2,x̃n+m+1

(2ε)> Fx̃n+1,x̃n

(

K−m−1ε
)

> 1 − λ (3.18)

for any given real constants ε ∈ (0,1/2], λ ∈ (0,1) and any nonnegative integer n> na =

max(n01, n02, qa,
| ln 2ε|
| lnK |

− 1) and {x̄n − xn} = {x̃n} → 0 as n→ ∞ with probability one.

Thus, F0,0(ε) = F0,T (0,n̄)(a,ū(0,n̄−1))(ε) = 1 > 1 − λ, ∀n(> nqa > qa) ∈ Z+ if T (0,n) de-
notes the composite operator of the sequence {Tn} driving the initial state x = a of (3.3)
to x = 0 at n> nqa -th sample. Thus, one gets for n> nqa

Fx̄n+2,x̄n+1
(ε) = Fxn+2+x̃n+2,xn+1+x̃n+1

(ε)>1
(

Fxn+2,xn+1
(ε/2),Fx̃n+2,x̃n+1

(ε/2)
)

= 1
(

F0,0(ε/2),Fx̃n+2,x̃n+1
(ε/2)

)

=1
(

1,Fx̃n+2,x̃n+1
(ε/2)

)

> Fx̃n+2,x̃n+1
(ε/2) > 1 − λ. (3.19)

Then, �p is a. p. s. c. t. o. in some minimum finite number of samples n0 > nqa >

qa with a prescribed guaranteed minimum probability error Fx̃n+1,x̃n(2ε) > 1 − λ for
any arbitrary given real constants ε ∈ R+ and λ ∈ (0,1) and all integer n > nqa =

max(n01, n02, qa,
| ln 2ε|
| lnK | −1) under control strips of the form ū(0, k+qa−1)= (ū(0, qa−

1), u∗, u∗, . . .
k
︸︷︷︸ . . . , u∗), ∀k(> nqa − qa) ∈ Z0+. �

Remark 1. Theorem 6 invokes the hypothesis that Fx+z,y+z(t)= Fx,y(t), ∀x, y, z ∈X,
∀t ∈ R0+. This assumption is not restrictive in some standard cases. For instance, if X
is a linear space so that (X,‖ ‖) is a normed space, then ‖x − y‖ = ‖x + z − (y + z)‖

so that Fx+z,y+z(t) = Fx,y(t) = Fx,y(0
+) = 1, ∀t ∈ R+ if and only if x = y . This is

the probabilistic counterpart of the deterministic result ‖x − y‖ = ‖x + z− (y+ z)‖ = 0,
∀z ∈X if and only if x = y for any x, y ∈X. If (X,d) is a metric space for a homogeneous
and translation-invariant metric d : X × X → R0+, then the same property holds since
d(x, y)= d(x + z, y + z). Obviously, the same idea appears for a norm-induced metric
in a normed space since (X,‖ ‖)≡ (X,d) and also, in the case of a metric space (X,d)
under a homogeneous and translation-invariant metric since X can be endowed with a
metric-induced norm ‖ ‖ so that (X,d)≡ (X,‖ ‖) (De la Sen, 2013a).

In the same way, we can obtain the following parallel results, whose proofs are omitted,
for the approximate uniform controllability to the origin of the PPDDS �p:

Theorem 7. Consider the PDDS �, Eqs. (3.3)–(3.4), and the PPDDS �p, Eqs. (3.1)–
(3.2), and assume that the conditions (1) , (2) and (4) of Theorem 6 hold and, furthermore:
3′) � is u. p. s. c. t. o. in q̂a samples from x = a(∈X) through a control strip ū(j, j +

q̂a − 1) along the discrete time-interval [j, j + q̂a − 1] for any j ∈ Z0+ with T (0, u∗)= 0

for some u∗ such that the constant control sequence û∗ = {u∗} ⊂U .

Then, �p is a. u. p. s. c. t. o. in any finite number of samples being non less than a

minimum lower threshold n̂qa > q̂a under control strips of the form ū(j, j+k+ q̂a−1)=
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(ū(j, j + q̂a − 1), u∗, u∗, . . .
k
︸︷︷︸ . . . , u∗), ∀k(> n̂qa − q̂a) ∈ Z0+, ∀j ∈ Z0+ and with a

prescribed guaranteed minimum probability error Fx̃n+1,x̃n(ε) > 1 − λ for any arbitrary

given real constants ε ∈ R+ and λ ∈ (0,1) and all integer n> n̂qa .

The concept of approximate controllability from the origin is a direct “ad hoc” modi-
fication of Definitions 7 to the light of Definitions 1 for the nominal �. The approximate
controllability from the origin (a. p. s. c. f. o) of the perturbed system if the nominal one
is controllable to the origin is characterized in the next result with no specific proof since
it becomes quite close to that of Theorem 6:

Theorem 8. Assume that T (0, a) 6= 0 if a(∈X) 6= 0 and T (a,u∗)= a for some constant

sequence û∗ ⊂ U of value u∗. If � is a. p. s. c. f. o. through a control sequence {un},

then pam ∈Z+ exists (the minimum necessary length of a control strip for controllability

from the origin to x = a). Consider the PDDS �, Eqs. (3.3)–(3.4), and the PPDDS �p ,

Eqs. (3.1)–(3.2), and assume that the conditions (1), (2) and (4) of Theorem 3.1 hold and,

furthermore:
3′) Assume that T (0, a) 6= 0 if a(∈X) 6= 0 and T (a,u∗)= a for some constant sequence

û∗ ⊂ U of value u∗ and that � is p. s. c. f. o. in a number of pa samples through some

control sequence {un}.

Then, �p is a. p. s. c. f. o. in any finite number of samples being non less than a

minimum lower threshold npa > pa under control strips of the form ū(0, k + pa − 1)=

(ū(0,pa − 1), u∗, u∗, . . .
k
︸︷︷︸ . . . , u∗), ∀k(> npa − pa) ∈ Z0+ and with a prescribed

guaranteed minimum probability error Fx̃n+1,x̃n(ε) > 1 − λ for any arbitrary given real

constants ε ∈ R+ and λ ∈ (0,1) and all integer n> npa .

Also, if � is u. p. s. c. f. o. in any finite number of samples being non less than a

minimum lower threshold p̂a , then �p is a. u. p. s. c. f. o. in any finite number of samples

being non less than a minimum lower threshold n̂pa > p̂a under control strips of the form

ū(j, j + k + pa − 1)= (ū(j, j + pa − 1), u∗, u∗, . . .
k
︸︷︷︸ . . . , u∗), ∀k(> n̂pa − p̂a), j ∈

Z0+ and with a prescribed guaranteed minimum probability error Fx̃n+1,x̃n(ε) > 1−λ for

any arbitrary given real constants ε ∈ R+ and λ ∈ (0,1) and all integer n> n̂pa .

The definitions for approximate complete controllability and approximate uniform
complete controllability are also direct extensions for the perturbed system�p from those
given for the nominal system � in Section 2. Those definitions lead to very close results
to those in Theorems 6–8.

Example 5. Consider the nominal deterministic linear discrete-time system given by the
difference equation:

A
(

q−1
)

yk = B
(

q−1
)

uk, (3.20)

∀k ∈ Z0+ under any given initial conditions y−n0+1, y−n0+2, . . . , y0, where {yk} and {uk}

are, respectively, the output and input sequences and B(q−1) and A(q−1) are polynomi-
als of respective degrees m and n > m and q−1 is the one-step delay operator so that
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zk = q−1zk+1 for any discrete sequence {zk}. Since the nominal discrete transfer function
G(z−1) = B(z−1)/A(z−1) is realizable, then there are non-unique state-space descrip-
tion associated to (3.20). It is well-known that if the polynomials B(q−1) and A(q−1)

have no common polynomial factor, then any n0-th dimensional state-space realization
is completely controllable (“from” and “to” the origin for some finite control strip) and
observable and even if there is some polynomial transfer-function cancellation, there are
non-unique n0-th dimensional state-space realizations which can be chosen to be com-
pletely controllable, that is, their controllability matrix is full rank. Consider the following
time-varying perturbed version of (3.20):

Āk
(

q−1
)

ȳk = B̄k
(

q−1
)

ūk, ∀k ∈ Z0+ (3.21)

with

Āk
(

q−1
)

=A
(

q−1
)

+ δkÃk
(

q−1
)

,

B̄k
(

q−1
)

= B
(

q−1
)

+ δkB̃k
(

q−1
)

, ∀k ∈ Z0+, (3.22)

equivalently, the zero-state response of the perturbed system is:

ȳk =

(

1 +
δkÃk(q

−1)

A(q−1)

)−1(
B(q−1)

A(q−1)
+ δk

B̃k(q
−1)

A(q−1)

)

ūk

=
B(q−1)+ δkB̃k(q

−1)

A(q−1)+ δkÃk(q−1)
ūk, ∀k ∈ Z0+ (3.23)

where the coefficients of the perturbationpolynomial sequences {Ãk(q
−1)} and {B̃k(q

−1)},
∀k ∈ Z0+ are uniformlybounded, the bounded real sequence {δk} → 0 and the polynomial
degree constraint deg(B̃k(q

−1)) 6 max(degA(q−1),deg, (Ãk(q
−1))) holds, ∀k ∈ Z0+.

Note that such a constraint ensures that the constraint below also holds:

max
(

degB
(

q−1
)

,deg
(

B̃k
(

q−1
)))

6 max
(

degA
(

q−1
)

,deg
(

Ãk
(

q−1
)))

,

∀k ∈ Z0+ (3.24)

since m = degB(q−1) 6 n = degA(q−1) so that the perturbed system (3.23) is state-
space realizable. The output error response of the perturbed system with respect to the
nominal one, i.e. ỹk = ȳk − yk , ∀k ∈ Z0+is:

ỹk = ỹ0
k +

[(

1 + δk
Ãk(q

−1)

A(q−1)

)−1

− 1

](
B(q−1)

A(q−1)
uk + δk

B̃k(q
−1)

A(q−1)
uk

)

= ỹ0
k +

[(

1 + δk
Ãk(q

−1)

A(q−1)

)−1

− 1

](

y∗ + δk
B̃k(q

−1)

A(q−1)
uk

)

, ∀k(> nδ) ∈ Z0+

(3.25)
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provided that the input sequence for the perturbed system is identical to that injected to
the system so as to fulfil the given controllability objective for the nominal one where {ỹ0

k }

is the sequence error output response to initial conditions corresponding to the error state
free response {x̃0

k } (i.e. the zero-input sequence response), the second right-hand-side term
is the zero-state, or forced, sequence response and y∗ is the nominal output correspond-
ing to the controllability targeted nominal state x∗ reached in finite time by the nominal
system. In particular, x∗ = 0 for controllability to the origin from zero initial conditions
(in this case, {ỹ0

k } ≡ 0 and nδ = nqa if the initial condition of the state-space realization
is x0 = x̄0 = a) and some desired value distinct from zero in other cases. Note that a
way of choosing the nominal, perturbed and error state vectors from the respective out-
put sequences is simply xk = (yk, yk−1, . . . , yk−n+1)

T , x̄k = (ȳk, ȳk−1, . . . , ȳk−n+1)
T and

x̃k = (ỹk, ỹk−1, . . . , ỹk−n+1)
T . Since {Ãk(q

−1)} and {B̃k(q
−1)} are uniformly bounded,

∀k ∈ Z0+ and the bounded real sequence {δk} → 0, then limk→∞(ỹk − ỹ0
k ) = 0. If

{ỹ0
k } ≡ 0, if x∗ = 0 (nominal controllability to the origin) or if it converges to zero, then

{ỹk} is in a prescribed ball around zero after some sufficiently large time instant depend-
ing to the ball radius. If A(q−1) is a Hurwitz polynomial, then from (3.25), the state and
output error sequences, respectively, {x̃0

k } → 0 and {ỹ0
k } → 0, since the sequence of poly-

nomials {Āk(q
−1)} has a Hurwitz subsequence for k(> k0) ∈ Z0+ and some k0 ∈ Z0+

and the situation is similar.

Example 6. We now discuss a scalar probabilistic version of Example 5. Consider the
following scalar perturbedPPDDS �p and its corresponding nominal PDDS � given by:

x̄k+1 = (a + δk ã)x̄k + (b+ δk b̃)uk, ∀k ∈ Z0+, (3.26)

xk+1 = axk + buk, ∀k ∈ Z0+ (3.27)

where a, b( 6= 0), ã, b̃ ∈ R and {δk}(⊂ R)→ 0, X = Y = U = R, the initial conditions
are x̄0 ∈ R and x0 ∈ R and Fx,y(t) = t

t+d(x,y) , ∀x, y ∈ R, ∀t ∈ R+. Assume that the
Euclidean metric is chosen. Define the state error between both systems as x̃k = x̄k − xk ,
∀k ∈Z0+ so that one obtains from (3.26)–(3.27):

x̃k+1 = (a + δk ã)x̃k + δk(ãxk + b̃uk), ∀k ∈ Z0+ (3.28)

with x̃0 = x̄0−x0. The deterministic nominal version is uniformlycontrollable from and to
the origin since b 6= 0. If the targeted state is x∗, then u0 = b−1(x ∗−a x0), uk = b−1(1 −

a)x∗, ∀k ∈ Z+. If either a 6= 1 or x∗ 6= ax0, then the control sequence to keep the sate
xk = x∗, ∀k ∈ Z+ is non-zero. Define the error sequence {εk} by εk = δk − δk+1, k ∈ Z0+

x̃k+2 − x̃k+1 = (a + δk ã)(x̃k+1 − x̃k)+ δk
[

ã(xk+1 − xk)+ b̃(uk+1 − uk)
]

− εk(ãxk+1 + b̃uk+1), ∀k ∈ Z0+. (3.29)

If k = 0, then

x̃2 − x̃1 = (a + δ0ã)(x̃1 − x̃0)+ δ0

(

ã − b̃b−1a
)(

x∗ − x0

)

− ε0

(

ã + b̃b−1(1 − a)
)

x∗ (3.30)
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= (a + δ0ã)(x̃1 − x̃0)− ε0

[

ã − b̃b−1(a + 1)
]

x∗

+ δ0

(

b̃b−1a − ã
)(

x0 − x∗
)

, (3.31)

x̃k+2 − x̃k+1 = (a + δk ã)(x̃k+1 − x̃k)− εk
(

ã + b̃b−1(1 − a)
)

x∗, ∀k ∈ Z+ (3.32)

where, if {λk} is defined by λk = |(δk − δk+1)(ã + b̃b−1(1 − a))|, ∀k ∈ Z0+

εk =

{

0, if (ã + b̃b−1(1 − a))x∗ = 0,
λk |x̃k+1−x̃k |

|ã+b̃b−1(1−a)|
, otherwise,

∀k ∈ Z+. (3.33)

Then,

|x̃k+2 − x̃k+1|6K|x̃k+1 − x̃k|, ∀k ∈ Z+, (3.34)

Fx̃k+2,x̃k+1
(t)=

t

t + |x̃k+1 − x̃k|
>

1

1 +Kt−1|x̃k+1 − x̃k|

= Fx̃k+1,x̃k

(

K−1t
)

, ∀k ∈ Z+, ∀t ∈ R+, (3.35)

so that limk→∞ Fx̃k+1,x̃k (0
+) = limk→∞Fx̃k+1,x̃k (t) = Fx̃1,x̃0

(∞) = 1, ∀t ∈ R+, pro-
vided that lim supk→∞ |a + δkã + λk| 6 K < 1, ∀k ∈ Z+. A sufficient condition for
that condition to hold is |a| 6 K − δ for any given arbitrarily small δ ∈ R+ since
{δk} → 0 and {λk} → 0. Also, for any given ε ∈ R+ and λ ∈ (0,1), there is some finite
n0 = n0(ε, λ, a, b, ã, b̃, x0, x

∗) ∈ Z0+ such that Fx̃k+2,x̃k+1
(ε) > 1 − λ, ∀n(> n0) ∈ Z0+.

Thus, one gets approximate complete controllability for any given initial and final states
x0 = x0(t0) and x∗ = x∗(t0 + T ), respectively, which is uniform in the sense that it does
not depend on the initial time instant t0 ∈ R0+ and the minimum time interval to reach
the targeted x∗ is finite and independent from t0.

4. Conclusions

This paper has dealt with the problem of controllability of linear discrete-time systems
in a probabilistic context for metric spaces with some robustness-type extensions. Several
controllability types are revisited in such a framework mainly based on the determinis-
tic context of controllability to and from the origin. The idea is to achieve certainty of the
probability density for a zero distance in-between the trajectory and the targeted point. The
controllability robustness extensions are based on characterizing the approximate control-
lability in probabilistic terms to the nominally targeted point under perturbations of the
nominal system basically relying on the achievement of certainty in some small region
around the nominal targeted point. Worked examples are also discussed. The mathemati-
cal framework used for the problem statement and its solution relies on probabilistic metric
spaces for a certain distribution function associated with a metric and, for deriving some
of the obtained results, Menger probabilistic metric spaces, those ones endowed with tri-
angular norms as it is well-known.
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Apie kai kurias tiesinių diskrečiųjų sistemų valdomumo ypatybes
tikimybinėse metrinėse erdvėse

Manuel DE LA SEN

Šis darbas formaliame kontekste tiria tam tikras pagrindines valdomumo ypatybes „nuo“ ir „iki“ ti-
kimybinių diskrečiųjų sistemų ir jų vienarūšių versijų atsiradimo ir visiško valdomumo tikimybinėse
metrinėse ar tikimybinėse normuotose erdvėse, ypač tikimybinėse Mengerio erdvėse. Taip pat kai
kurios aproksimuotos tikimybinės valdomumo ypatybės yra ištirtos, kai nominali valdoma sistema
yra priklausoma arba nuo parametrinės perturbacijos, arba nuo nesumodeliuotos dinamikos. Šiame
kontekste aproksimuotas sutrikdytų sistemų valdomumas esti robustinio tipo, jei nominali sistema
yra valdoma. Taip pat yra pateikti tam tikri iliustruojantys pavyzdžiai.


