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Abstract. The aim of this paper is twofold. Firstly, to discuss a clustering of a given set of the
European banks into groups based on their performance during 1999–2013. Secondly, to compare
different dissimilarity measures and to determine which of them suits best for clustering banking
ratios. Six ratios that reveal profitability, efficiency, stability and loan portfolio quality of the banks
were used. The similarity/dissimilarity between banks was estimated using measures that are based
on time series or functional data properties. Two dissimilarity measures that are not commonly used
in the literature are proposed and two measures are extended from univariate into multivariate case.
The results of our study show that there is no dissimilarity measure which would provide the best
clustering results for all ratios. However, dissimilarity measures based on functional data properties
in many cases outperfomed measures based on time series properties. The choice of the number
of clusters is not that clear. According to different banking ratios, it is found that banks could be
grouped into 6–12 clusters.

Key words: banking ratios, dissimilarity, time series clustering, functional data clustering,
clustering comparison.

1. Introduction

In recent years cluster analysis, aiming to discover group structures among a set of obser-
vations, gains much popularity in the literature. Partitioning of the time series data helps to
detect characteristic patterns, to forecast future performance, etc. The methods used in the
cluster analysis can be divided into three categories: the methods based on (1) similarity of
raw data; (2) features extracted from raw data and (3) models build from raw data. Recall
that a measure D of dissimilarity (or equivalently similarity) of objects X and Y is sym-
metric: D(X,Y ) = D(Y,X), non-negative D(X,Y )> 0, and such that D(X,X) = 0. Sim-
ilarity measure can be, but not necessarily is, a metric, i.e. D(X,Z)6 D(X,Y )+D(Y,Z).
One of our goals of this paper is to consider various dissimilarity measures and apply them
to the data under investigation.

After the Global financial crisis in 2007–2008 the financial sector and especially banks
gained much attention. Authorities which are responsible for safeguarding the stability of
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the banking system, realized that microprudential supervision, where focus is on an indi-

vidual institution, is not enough to maintain banking sector stable. Therefore, macropru-

dential supervision, which focused on the banking system as a whole, began to be actively
used. A large number of the macro-level instruments were introduced and those are ap-

plied to all banks. However, the banking sector is heterogeneous and some tools could be
ineffective to some banks. It would be useful to find groups of banks which have simi-

lar characteristics and design or calibrate some macroprudential instruments that would
become appropriate for that group. Therefore, our goal is to discuss a clustering of the

banks.

We exploited distance measures based on time series as well as on functional data
properties. In addition to univariate clustering, where banks are grouped into clusters ac-

cording to one bank-specific ratio, we applied multivariate clustering, where banks are
clustered based on their several ratios. Since in cluster analysis data are unlabelled, a re-

lated issue is to find appropriate number of clusters that are the most proper for the data.
The resulting clusters should not only have good statistical properties, but also give results

that are, in our case, economically explainable.
In our study we used six ratios that reflect banks’ profitability (return on average as-

sets, return on average equity, net interest margin), efficiency (cost to income), stability

(capital adequacy ratio) and portfolio credit risk (loan losses over loan portfolio). We ap-
plied twelve different dissimilarity measures. Ten of these measures are commonly used.

We proposed two new distance measures, based on functional data properties, that, to
our knowledge, were not used in the clustering literature. Furthermore, we extended two

univariate distance measures to multivariate case. The results of the univariate clustering
show that there is no dissimilarity measure which would be the best to all ratios. How-

ever, in many cases clustering methods based on functional data properties outperfomed
distance measures based on time series properties. Estimation also shows that simple Eu-

clidean distance is a relatively good distance measure for clustering banking data. Average

silhouette width mostly suggested small number of clusters, usually the highest value was
when banks were divided into 2 groups, and sometimes into 4 clusters. Other clustering

validity indices give mixed results, especially if the profitability ratios are considered. If
one considers bigger number of clusters, e.g. 20 clusters, then the results of the clustering

show that there are 6–12 larger groups and other clusters are formed from few banks only.
Clusters with low number of banks could be treated as outliers. The results of the mul-

tivariate clustering revealed that it is important to take into account not only how close

banks’ ratios are, but how similarly they change over the years.
The remainder of this paper is structured as follows. Section 2 gives a brief liter-

ature review related to the time series cluster analysis. Section 3 describes data and
time series dissimilarity measures. Section 4 and Section 5 introduce functional data

and multivariate clustering methodology, respectively. Section 6 describes clustering al-
gorithm and clustering validation indices that were used in this study. Section 7 gives

clustering results and their interpretation. Finally, Section 8 summarizes main find-
ings.
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2. Review of the Related Literature

There has been an increased interest in time series clustering as more time dependent data
in various fields became available. The results of cluster analysis depend on many choices
which must be fixed during the clustering process. In general, cluster analysis consists of
few basic steps (Halkidi et al., 2001). The first step is to select the features of time series on
which clustering is going to be performed. The features should contain all possible infor-
mation related to the task of interest. The second step is to define a dissimilarity measure
between time series. A dissimilarity or distance measure quantifies and compares similar-
ities of two time series. The next step is to choose the clustering algorithm which groups
data into clusters. Since the precise number of clusters is not known a priori, clustering
results must be evaluated using appropriate criterion. The final step is the interpretation
of results. Expert judgement is also important when drawing the conclusion of cluster
analysis.

One of the key elements in cluster analysis is determining an appropriate dissimilar-
ity/similarity measure between two time series. Since time series are of dynamic charac-
ter, the concept of similarity is complex. The two most widely used dissimilarity measures
work with raw data. Conventional Euclidean distance measures the distance between two
time series at each point in time. According to dynamic time warping distance (Berndt
and Clifford, 1994), two time series are close if there exists a mapping, expressing a time
distortion by a deceleration or acceleration so that the maximum length between all cou-
pled observations is minimized. However, these two dissimilarity measures do not take
into account the growth behaviour of the time series. Chouakria and Nagabhushan (2007)
proposed dissimilarity measure which accounts for both closeness of values and behaviour
of time series.

Given that time series usually are high dimensional data which could be noisy, various
methods are used to extract some features of data. Dissimilarity is then measured based
on these features. Some distance measures take into account the properties of time series
such as correlation (Golay et al., 2004), autocorrelation (Bohte et al., 1980) or partial au-
tocorrelation. Other distance measures proposed in the literature transform raw data and
then estimate closeness based on transformed data. Chan and Fu (1999) among others
used discrete wavelet transform, Faloutsos et al. (1994) employed discrete Fourier trans-
form, Keogh et al. (2001) proposed piecewise aggregate approximation, Lin et al. (2003)
introduced symbolic aggregate approximation. Many other representations are also used
in the literature.

A different approach, which is used in the time series clustering literature, is to as-
sume that time series are generated from particular parametric model. For example, Pic-
colo (1990) defined a distance measure in the class of invertible ARIMA processes as
the Euclidean distance between the AR(∞) operators approximating the correspond-
ing ARIMA structures. For the class of invertible and stationary ARMA processes,
Maharaj (1996) proposed measure based on hypothesis testing to determine whether
data generating processes significantly differ between two time series. Another group
of dissimilarity measures are based on comparing levels of complexity of time series.
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This category of distances includes normalized compression distance, proposed by Li
et al. (2004) and complexity-invariant dissimilarity measure introduced by Batista et al.

(2011, 2014).
Many authors working on time series clustering or comparing different dissimilar-

ity measures make an assumption that time is discrete (e.g. Ding et al., 2008). However,
there is another field of research in which dissimilarity is measured using functional data
or their properties. There are several approaches which are used in the literature. Filter-
ing approach consists of a first step in which curves are expanded into a some finite basis
of functions and a second step in which clustering is performed using the basis expan-
sion coefficients. For example, Abraham et al. (2003) considered B-splines and Peng and
Müller (2008) used principal component scores. Adaptive methods perform simultane-
ously dimensionality reduction and clustering as they consider that the functional form
of data depends on clusters. James and Sugar (2003) assumed that the basis expansion
coefficients of the curves into a spline basis are distributed according to a mixture of
Gaussian distribution with different mean for each cluster and common variance. Samé
et al. (2011) assumed that the curves come from a mixture of regressions on a basis of
polynomial functions, with possible changes in regime. Another approach considers dis-
similarity or distance between curves. Examples of this method could be found in Ferraty
and Vieu (2006) and Ieva et al. (2013). Meanwhile, Jacques and Preda (2014) provide a
good survey on methods used for the functional data clustering.

Once the initial distance matrix is computed, a clustering algorithm can be used to
divide data into clusters. There are many different clustering algorithms that are used to
cluster time series. The literature provides several categories of algorithms and methods
in each category. The clustering is crisp if each element belongs to only one cluster, or the
partition is fuzzy if one element could be in more than one cluster to a different degree.
A popular category of crisp clustering are partitional algorithms. This category includes
methods like k-means (MacQueen, 1967), where mean of the elements in the cluster repre-
sents each cluster, and partitioning around metoids (PAM) (Ng and Han, 1994), where the
most centrally located element in a cluster represents each cluster. The similar methods of
fuzzy clustering are the fuzzy c-means (Bezdek et al., 1984), modified fuzzy c-means (He-
manth et al., 2016) and fuzzy c-metoids (Krishnapuram et al., 1993). A second commonly
used category is hierarchical clustering.There are two types of hierarchical algorithms: ag-
glomerative where each element is placed in its own cluster and then elements are merged
to form larger clusters until there is one cluster, and divisive method, which works in oppo-
site direction. Other category of clustering algorithms is density-based algorithms, which
include methods like DBSCAN (Ester et al., 1996). In this clustering algorithm cluster is
extended as long as the density (number of elements) in the neighbourhood exceeds some
threshold. The main idea of grid-based clustering algorithms (methods like STING, Wang
et al., 1997) is to quantize the element space into a finite number of cells that form a grid
structure on which clustering operations are performed.

Since clustering algorithms divide unlabelled data into significant groups, it is impor-
tant to evaluate clustering results and find partitioning that fits data the best. There are
three basic criteria on which clustering evaluation is usually performed. First is the com-
pactness of a cluster which should be minimized, i.e. the members of each cluster should
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be as close to each other as possible. The second is the connectedness of a cluster, i.e.
to what extent elements are placed in the same cluster as their nearest neighbours. The
third is the separation of clusters which should be maximized, i.e. the clusters should be
widely spaced. There are many validity assessment methods provided in the literarure,
which combine measures mentioned above. An example of validity indices are the Dunn
index (Dunn, 1974), Davies and Bouldin Index (Davies and Bouldin, 1979) or Silhouette
Width (Rousseeuw, 1986; Kaufman and Rousseeuw, 1990).

Time series clustering problems arise in a wide range of fields, including business
and economics, physics, medicine, meteorology and many others. Liao (2005) provided
a good survey on time series clustering which includes many references. Meanwhile, an
interesting overview on recent time series data mining methods and algorithms can be seen
in Fu (2011). As was pointed out by Liao (2005), there are not so many studies comparing
different time series dissimilarity measures. Few examples of papers that compared several
distance measures are works by Ding et al. (2008) and Díaz and Vilar (2010).

To summarize, existing literature provides many choices of methods or algorithms in
each step of the cluster analysis. Some methods may produce good clustering results in
one instance, while in other cases a different method would do better. So the choice of a
particular method may influence final results significantly. Therefore, expert judgement is
also an important step in conducting the clustering of a given dataset.

3. Time Series Clustering Methodology

In this section we present time series data under consideration and describe some measures
of dissimilarities of time series that are used to cluster the data.

3.1. Data

Six bank-specific variables were taken in our clustering exercise. We included three prof-
itability measures: return on average assets (ROAA), return on average equity (ROAE), net
interest margin (NIM); operational efficiency measure – cost to income ratio (CIR); credit
quality measure – loan loss provisions over total gross loans (LLP) and bank riskiness
measure – total capital ratio (CAR). These bank-specific measures are the main variables,
which describe situation in the banking sector.

In this study we used annual unconsolidated bank accounts data covering time period
from 1999 to 2013. Dataset is obtained from Bureau van Dijk Bankscope database and
includes all commercial, savings and cooperative banks from European Union countries.
These institutional bank types are mainly focused on financial intermediation. Therefore,
we do not include data from investment banks or other bank types as their business model
is essentially different from commercial, savings and cooperative banks. The preliminary
sample consists of six bank-specific variables from 2800 banks.

We needed to edit our data in the following ways. First of all we excluded all banks with
missing data entries, i.e. we left only those banks which had complete data for the years
1999–2013. Secondly, we excluded banks that had extreme values or large unexplained
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Fig. 1. Capital adequacy ratio.

shifts in the values of variables. The final dataset varied from 260 banks for capital ade-
quacy ratio to 1332 banks for ROAA variable. For example, Fig. 1 shows our sample of
capital adequacy ratio.

The return on average assets usually is used as the main bank profitability variable. The
ROAA is calculated as the ratio of net profits over average total assets. This ratio shows
bank’s ability to generate profits from all activities related to their assets. Average assets
are used to calculate ratio, because they help to capture any changes in assets that occured
during the fiscal year. Golin (2001) describes ROAA as the key measure to evaluate bank’s
profitability.

The second measure of profitability is the return on average equity. ROAE is the net
profits expressed as percentage of average equity. This ratio gives information about the
return to shareholders on the equity. Banks usually report both ROAA and ROAE ratios
to indicate their profitability. The main difference between these two ratios is that ROAE
does not take into account the risk that is associated with higher leverage. Thus banks with
a higher equity (lower leverage ratio) generally report a lower ROAE but a higher ROAA.

The third measure of profitability is the net interest margin. The NIM ratio is defined
as interest income minus interest expense divided by the average of interest-bearing assets.
This ratio is narrower than the other two profitability measures as it only focuses on the
profit earned on interest rate related activities.

In our study we also include cost to income ratio, which shows the efficiency of the
bank performance. The CIR is calculated as operating costs divided by total generated
revenue. This ratio is a measure of bank’s ability to turn resources into revenue. Changes
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Table 1
Descriptive statistics.

Mean Median Standard deviation Min Max

ROAA 0.41 0.29 0.76 −18.8 11.21

ROAE 5.10 4.46 6.77 −91.70 95.91

Net interest margin 2.74 2.65 0.98 −0.70 15.68

Cost to income ratio 67.80 68.25 12.43 5.26 186.36

Loan loss provisions/gross loans 0.71 0.60 1.09 −7.69 17.62

Capital adequacy ratio 17.62 15.67 7.88 0.13 79.60

in CIR can highlight potential problems: if costs are rising at a higher rate than income,
CIR will rise from one period to the next.

Credit portfolio quality is an important aspect of overall bank performance. Therefore
we analyse loan loss provisions over total gross loans ratio. The loan loss provisions are
taken from a bank’s income statement. A higher LLP ratio indicates problems in credit
portfolio and also potential problems for bank’s stability.

Capital adequacy ratio is defined as bank’s total capital expressed as a percentage of
its risk-weighted assets. CAR determines the capacity of the bank to meet potential losses
from credit risk, market risk, operational risk and others. This ratio ensures that the banks
do not expand their business without having adequate capital. Capital adequacy ratio helps
to measure the riskiness on the banking sector. A higher CAR implies a more stable bank-
ing system.

Descriptive statistics of the data are presented in Table 1. The descriptive statistics
indicates the need to cluster banks as data show high standard deviations compared to
mean values, e.g. ROAA, ROAE. Cost to income ratio has min and max values greater
than 3σ , which also motivates to separate banks into several groups.

The data under investigation have the form:

x
(i)
t =

(
x

(i)
1,t , . . . , x

(i)
d,t

)
, t = 1, . . . , T ; i = 1, . . . ,N.

Here index i = 1, . . . ,N corresponds to a bank whereas index t corresponds to time (years
in our case) and d corresponds to a bank-specific ratio. Since not all banks in our data set
have all six ratios, we will mostly consider univariate clustering, i.e. we will cluster banks
according to each ratio separately. In addition, we will take profitability and efficiency
ratios and consider multivariate clustering based on four ratios.

3.2. Dissimilarity Based Time Series Clustering

As was pointed out by Liao (2005) and Batista et al. (2014), dissimilarity measure between
two time series is one key choice in clustering that has to be made. The choice of distance
measure is more important than the choice of clustering algorithm. In this section, we
review six dissimilarity measures used in time series clustering studies.

Euclidean distance

In general, any metric of the finite dimensional Euclidean space could be used as a mea-
sure of dissimilarities of two time series. In this research we used conventional Euclidean
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distance based measure as a starting method for clustering. Ding et al. (2008) showed that
simple Euclidean distance could outperform other dissimilarity measures in many cases.

Suppose that x = (x1, . . . , xT ) represents values of some ratio of the bank i and y =

(y1, . . . , yT ) represents values of some ratio of the bank j (i, j = 1, . . . ,N and i 6= j ). In
our study t = 1, . . . ,15. Euclidean distance is then described as:

Dλ,EUCL(x, y) =

(
T∑

t=1

(
(xt − λxt−1) − (yt − λyt−1)

)2
)1/2

, (1)

where λ is weighting parameter. A classical approach is to take λ = 0. Then the proximity
depends on the closeness of the values at the corresponding point of time. However, the
distance DEUCL(x, y) := D0,EUCL(x, y) does not take into account the growth rates of
the vectors x and y . Therefore, we also considered dissimilarity with λ = 1. To be more
precise, we applied D1,EUCL = D0,EUCL(x, y) + D1,EUCL(x, y) in this study.

Adaptive dissimilarity index

Chouakria and Nagabhushan (2007) introduced dissimilarity index, which is based on
an adaptive tuning function and addressed to cover both behaviour and values proximity
measures. They used first order temporal correlation coefficient to evaluate the proximity
between the dynamic behaviour of the series. This coefficient is defined as follows:

CORT (x, y) =

∑T −1
t=1 (xt+1 − xt )(yt+1 − yt )√∑T −1

t=1 (xt+1 − xt )2

√∑T −1
t=1 (yt+1 − yt )2

.

Temporal correlation coefficient belongs to the interval [−1,1]. The value CORT(x, y)

= 1 means that the series x and y at any time point show a similar dynamic behaviour, i.e.
series decrease or increase with a similar growth rate and direction (similar behaviour).
The value CORT (x, y) = −1 means that both series have a similar growth rate but di-
rection is opposite (opposite behaviour). The value CORT(x, y) = 0 implies that growth
rates are stochastically linearly independent and there is no monotonicity between series
x and y (different behaviour). The proximity of the values of two time series DEUCL(x, y)

is estimated using Euclidean distance.
Dissimilarity index proposed by Chouakria and Nagabhushan (2007) automatically

modulates the proximity of the values according to the proximity of the behaviour. This
index is defined by:

DCORT(x, y) = φk

[
CORT (x, y)

]
· DEUCL(x, y), (2)

where φ(u) is exponential adaptive tuning function:

φk(u) =
2

1 + eku
, k > 0.

An adaptive tuning function decreases the weight of the proximity between values
when the temporal correlation increases from 0 to 1. And it works viceversa when corre-
lation decreases from 0 to −1. In case of CORT(x, y) = 0, i.e. time series show different
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behaviour, the dissimilarity index is approximately equal to the value of DEUCL(x, y).
The parameter k modulates the contribution of the temporal correlation and Euclidean
distance to the dissimilarity index DCORT(x, y).

A complexity-invariant distance measure

Batista et al. (2011, 2014) proposed dissimilarity index, which use information about com-
plexity difference between time series x and y . Authors argued that many dissimilarity
measures tend to place more complex pairs of time series further apart than pairs of sim-
ple series. A complexity-invariant dissimilarity measure DCID(x, y) is defined as follows:

DCID(x, y) = CF(x, y) · DEUCL(x, y), (3)

where CF(x, y) is complexity correction factor:

CF(x, y) =
max{CE(x),CE(y)}

min{CE(x),CE(y)}
, CE(x) =

√√√√
T −1∑

t=1

(xt+1 − xt )2.

The complexity correction factor increases the distance between two time series if
there is complexity difference between them. Furthermore, if time series have similar
complexity, then the distance is approximately equal to DEUCL(x, y).

The main idea of Batista et al. (2011, 2014) is that if a time series is stretched to become
a straight line, then more complex time series would result in a longer line. Dissimilarity
index DCID(x, y) is parameter-free, simple and increased accuracy of clustering in several
experiments accomplished by Batista et al. (2011).

Autocorrelation based distance

Bohte et al. (1980), Geleano and Peña (2000) and several other authors used estimated
autocorrelation function to measure the distance between two time series. Suppose that
ρ̂x = (ρ̂1,x, . . . , ρ̂L,x)

′ and ρ̂y = (ρ̂1,y , . . . , ρ̂L,y)
′ are the estimated autocorrelation vec-

tors of x and y . Here L is such that ρ̂i,x ≈ 0 and ρ̂i,y ≈ 0 when i > L. A dissimilarity
between two univariate time series can be measured by:

DACF(x, y) =

√
(ρ̂x − ρ̂y)

′
�(ρ̂x − ρ̂y),

where � is a weighting matrix.
If we take � = I , i.e. uniform weights, then DACF(x, y) is Euclidean distance between

the estimated autocorrelation functions:

DACFE(x, y) =

√√√√
L∑

i=1

(ρ̂i,x − ρ̂i,y)2. (4)

Dynamic time warping distance

Berndt and Clifford (1994) proposed dynamic time warping (DTW) to find patterns in
time series. This distance measure is popular and widely used in time series clustering
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literature. Let N be the set of all possible sequences of n pairs preserving the observations
order in the form:

r =
(
(xa1

, yb1
), . . . , (xan, ybn)

)
, (5)

where ai, bj ∈ {1, . . . , T } such that a1 = b1 = 1 and an = bn = T , and ai+1 = ai or ai + 1

and bi+1 = bi or bi + 1, for i ∈ {1, . . . , n − 1}. Then dynamic time warping distance is
defined by:

DDTW(x, y) = min
r∈N

( ∑

i=1,...,n

|xai − ybi |

)
. (6)

Dynamic time warping dissimilarity measure allows time series to be stretched or com-
pressed to recognize similar shapes.

4. Functional Data Clustering Methodology

In this section the data are considered as observations of curves, i.e. the random vari-
ables underlying data are countinuous time stochastic processes. To cluster the curves we
apply a non-parametric method which uses a specific distance or dissimilarities between
functions. Besides widely used in the literature measures of dissimilarities of functions
such as Hausdorff distance, L2-distance or distance based on functional principal compo-
nents, we consider also a class of Hölder distances that take into account a certain type
of growth rates of curves. It is shown that this type of distances in some cases performs
better compared with others.

4.1. Functional Data

We assume that the data under investigation x
(i)
t = (x

(i)
1,t , . . . , x

(i)
d,t), t = 1, . . . , T , i =

1, . . . ,N , constitute observations of random curves:

X(i)(t) =
(
x

(i)
1 (t), . . . , x

(i)
d (t)

)
, t ∈ [0,1], i = 1, . . . ,N.

Moreover, we assume that the sampled curves are observed at discrete instants of time.
Hence we have:

x
(i)
j = X(i)(j/T ) + εi(j/T ), j = 1, . . . , T .

We reconstruct functions x(i)(t), t ∈ [0,1] by smoothing techniques (see e.g. Ramsey and
Silverman, 2005), thus obtaining functional data

x̂(i)(t), t ∈ [0,1], i = 1, . . . ,N,
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Fig. 2. Capital adequacy ratio (smoothed using B-spline approximation).

which are a subject for functional clustering analysis. It is worth to mention that each func-
tion x̂(i) is d-dimensional. In Fig. 2 we present an example of 1-dimensional functional
data under consideration.

As in time series clustering, we will apply clustering methodology on 1-dimensional
curves, i.e. we will cluster banks according to each ratio separately.

4.2. Functional Data Dissimilarity Measures

In this section, we review six dissimilarity measures used in functional data clustering.

Hausdorff distance between two curves

A distance between two curves can be measured by Hausdorff distance. This distance mea-
sures maximum distance from a point in one curve to the nearest point in the other curve.
Suppose that G(x) = {(t, x(t)) : t ∈ [0,1]} ⊂ R2 and G(y) = {(t, y(t)) : t ∈ [0,1]} ⊂ R2

are graphs of the curves x and y , respectively. Hausdorff distance DHausdorff(x, y) is de-
fined by:

DHausdorff(x, y) = max
{

sup
x∈G(x)

inf
y∈G(y)

DL2
(x, y), sup

y∈G(y)

inf
x∈G(x)

DL2
(x, y)

}
, (7)

where DL2
is Euclidean distance.

A formal definition of the Euclidean distance between functional data is:

DL2
(x, y) =

√√√√
(

1
∫ b

a
w(t)dt

∫ b

a

∣∣x(t) − y(t)
∣∣2 · w(t)dt

)
,

where w(t) is a weighting function.
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Distance based on B-spline approximation

Ferraty and Vieu (2006) proposed a two-stage approach for functional data clustering.
Proximity between two curves x and y could be estimated using:

Dq (x, y) =

√
1

T

∫

T

(
x(q)(t) − y(q)(t)

)2
dt,

where x(q)(t) is the q-th derivative of x . In the first stage Ferraty and Vieu (2006) used
B-spline to approximate functional data.

Consider a B-spline basis as a set of functions B = {b1, . . . , bN }. Then derivatives of
the approximated curves by n elements of B-spline are expressed: x̂(q) =

∑N
n=1 cnB

(q)
n .

The second stage is proximity measure, which is expressed as:

DB(x, y) =

√
1

T

∫

T

(
x̂(q)(t) − ŷ(q)(t)

)2
dt . (8)

In our analysis we considered two cases, i.e. we estimated distance with q = 0 (DBASIS)

and q = 1 (DDERIV).

Distance based on continuity properties of curves

In this paper we introduce two dissimilarity measures. One of them is based on Hölderian
property of a function. Dissimilarity measure is constructed from two parts. The first part
shows how close functions are to each other. In this part we calculate supremum between
two curves. The second part shows how similar curves change together. Hölder distance
measure is defined by:

DHölder(x, y) = sup
t

∣∣x(t) − y(t)
∣∣+ sup

t 6=s

|(x(t) − y(t)) − (x(s) − y(s))|

|t − s|α
, (9)

where the number α ∈ (0,1] is called Hölder exponent.
The second dissimilarity measure, which we propose, is also constructed from two

parts. The first part shows how close B-spline approximations are close together. The sec-
ond part uses q-th derivative to capture how close is the change of curves. The dissimilarity
measure is estimated as follows:

DSUP(x, y) = sup
t

∣∣x(t) − y(t)
∣∣+ sup

t

∣∣x(q)(t) − y(q)(t)
∣∣. (10)

This distance measure takes into account both the closeness and the behaviour of the
data.

Distance based on functional principal components

Functional principal components give another tool to reduce dimension of a functional
data. This distance measure is also considered as a two-stage approach. The functional
data can be decomposed in a finite orthonormal basis: x̂i(t) =

∑K
i=1 fikξk(t), where fik
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is the score of the principal component ξk(t). In this case the distance between two curves
is calculated as:

DFPCA(x, y) =

√√√√√
K∑

k=1

(
T∑

j=1

(
fx(tj ) − fy(tj )

)
)2

, (11)

where fx and fy are scores of the principal component of curves x and y , respectively.

5. Multivariate Clustering

In the previous two sections we considered data as univariate time series or 1-dimensional
curves. In this section we interpret the data as N observations of d-dimensional time series
or d-dimensional curves.

Multivariate Euclidean distance

The Euclidean distance of univariate time series can be easily expended to multivariate
case. This dissimilarity measure is expressed as:

Dλ,EUCL(x,y) =

(
d∑

j=1

T∑

t=1

(
(xj t − λxj,t−1) − (yj t − λyj,t−1)

)2
)1/2

. (12)

The next two measures of dissimilarity of time series are obtained by introducing cer-
tain correction of Euclidean distance. This addresses to adaptive dissimilarity index intro-
duced by Chouakria and Nagabhushan (2007) and to complexity invariant distance mea-
sure introduced in Batista et al. (2011, 2014). We define the analogues for d-dimensional
time series.

Multivariate adaptive dissimilarity index

Extended adaptive dissimilarity index for the d-dimensional time series x and y , is defined
as:

CORT (x,y) = Q
−1/2
x Qx,yQ

−1/2
x ,

where

Qx =

T −1∑

t=1

(xt+1 − xt )
τ (xt+1 − xt ), Qx,y =

T −1∑

t=1

(xt+1 − xt )
τ (y t+1 − yt ).

Let λmax(CORT (x,y)) denote the largest eigenvalue of the matrix CORT(x,y). Mul-
tivariate addaptive dissimilarity index is then expressed as:

DCORT(x,y) = φk

[
λmax

(
CORT(x,y)

)]
· DEUCL(x,y), (13)

where φ(u) is exponential adaptive tuning function.
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Multivariate complexity-invariant distance measure

Consider that complexity estimate CE(x) for multivariate case can be written as follows:

CE(x) =

(
d∑

j=1

T −1∑

t=1

(xj t+1 − xj t)
2

)1/2

.

Then a complexity-invariant dissimilarity measure is expressed as:

DCID(x,y) = CF(x,y) · DEUCL(x,y), (14)

where CF(x,y) is complexity correction factor.

Multivariate case of other dissimilarity measures

Other dissimilarity measures (DACF, DDTW, DHausdorff , DHölder, DBASIS, DDERIV, DSUP,
DFPCA) for the multivariate case are calculated using the following expression:

DM(x,y) =

(
d∑

j=1

[
Dj (x, y)

]2
)1/2

, (15)

where Dj (x, y) is a coordinate-wise dissimilarity measure.

6. Clustering Algorithm and Validity Assessment

In this section, we present clustering algorithm and clustering validity indices used in the
paper.

6.1. Clustering Algorithm

In this study we used conventional agglomerative hierarchical clustering algorithm. This
method works by clustering time series into a tree of clusters (dendrogram). At the be-
ginning each observation is assigned to its own cluster. Afterwards, clustering algorithm
works iteratively, at each step joining the two most similar clusters into larger and larger
ones. This process continues until a single cluster is formed or until certain termination
conditions are satisfied. The complete linkage algorithm, which was applied in this study,
measures the similarity between two clusters as the similarity between farthest pair of data
belonging to different clusters.

The iterative procedure of the complete linkage algorithm can be written as follows:

1. At the start each element is assigned to its own cluster. The level of dendrogram is
set to L(0) = 0 and sequence number n = 0.

2. One finds a pair of clusters, say Ci and Cj , with lowest dissimilarity (D(Ci ,Cj )).
Set the sequence number to n = n + 1. These two clusters are then joined at a level
L(n) = D(Ci ,Cj ).
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Fig. 3. Dendrogram using DFPCA distance measure: capital adequacy ratio.

3. Dissimilarity matrix is updated by reducing its order by one. In complete linkage
clustering the distance between clusters is the distance between the farthest pair of
points, i.e. D(Ci ∪ Cj ,Ck) = maxi,j∈Ci∪Cj ,k∈Ck (D(i, k),D(j, k)).

4. Steps 2 and 3 are repeated until single cluster is obtained (N − 1 times).

Figure 3 gives an example of dendrogram from the hierarchical clustering algorithm.
We have chosen hierarchical clustering algorithm because it is more efficient in dealing
with outliers than partitional algorithms.

6.2. Cluster Validity Assessment

The next step is to choose the optimal number of clusters. We calculated three different
measures which are used validating the results of clustering analysis in clustering litera-
ture. Dunn index and Caliński and Harabasz index are used choosing number of clusters.
Meanwhile, average silhouette width helps to choose number of clusters and to compare
different distance measures.

Average silhouette width

Rousseeuw (1986), Kaufman and Rousseeuw (1990) introduced average silhouette width
as a measure to evaluate clustering. Let C = {C, , . . . ,CK } be particular clustering par-
tition of the N observations into K disjoint clusters. The silhouette value measures the
degree of confidence in the clustering of an observation.For observation i , value is defined
by:

S(i) =
bi − ai

max(bi, ai)
, (16)

where ai is the average dissimilarity of i to all other objects of Ci (cluster containing
observation i) and bi is a minimum of the average dissimilarity between i and the elements
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of the other cluster which is different from Ci . Thus:

ai =
1

n(Ci)

∑

j∈Ci

D(i, j), bi = min
Cm∈C\CX

∑

j∈Cm

D(i, j)

n(Cm)

where D(i, j) is dissimilarity measure and n(C) is the cardinality of the cluster C. The
average silhouette value is in the interval [−1,1]. A value close to 1 means that particular
clustering partition is well classified, and value close to −1 means that observations are
misclassified.

Dunn index

Another cluster validity index was proposed by Dunn (1974). This index tries to identify
compact and well separated clusters. The Dunn index is calculated as a ratio of the small-
est dissimilarity between observations not in the same cluster to the largest intra-cluster
dissimilarity:

Dunn(C) =
minCm,Cl∈C,Cm 6=Cl

(mini∈Cm,j∈Cl D(i, j))

maxCn∈C diam(Cn)
(17)

where diam(Cn) is diameter of a cluster, i.e. maximum distance between observations in
cluster Cn.

If observations are in the compact and well separated clusters, then the value of Dunn
index should be large, because the dissimilarity between the clusters is expected to be
large and the diameter of the clusters is expected to be small.

Caliński and Harabasz index

Caliński and Harabasz (1974) introduced a criterion, which can be used to determine the
number of clusters in cluster analysis. Milligan and Cooper (1985) showed that CH(k)

index works in many cases.
Caliński and Harabasz index is defined by the following expression:

CH(k) =
Bk(N − k)

Wk(k − 1)
, (18)

where Wk is the overall within-cluster variance:

Wk =

k∑

h=1

1

|Ch|

∑

i,j∈Ch

D(i, j)2

and Bk is the overall between-cluster variance:

Bk =
1

N

N∑

i,j=1

D(i, j)2 − Wk.

Well separated clusters have large Bk and small Wk . Therefore, larger value of CH(k)

indicates better data partition.
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7. Clustering Results

In this section, we present results from the banking data clustering exercise. We performed
the clustering experiment on 6 bank performance ratios. We used 12 dissimilarity mea-
sures for each ratio to assess the closeness of the banks. Then agglomerative hierarchical
clustering algorithm was perfomed to group banks into clusters. Since the true number of
clusters is unknown, we divided banks into 2, 4, 6, 8, 10 and 20 clusters. Finally, cluster
validity indices were calculated, which are presented in Appendix.

In a univariate case based on the average silhouette width we can conclude that there
is no dissimilarity measure which could be the best one for all ratios. For example, for
some ratios (ROAA, ROAE) dissimilarity measured between first derivatives gives high
average silhouette width (see Appendix, Figs. 5 and 6). However, this distance measure
performs poorly for capital adequacy ratio, especially if we consider more than two clus-
ters (Appendix, Fig. 10). Similarly, distance measure based on supremum between two
curves gives good clustering results for loan loss provisions over gross loan portfolio ratio
(Appendix, Fig. 9), but it is not suitable to cluster banks if we use ROAE. Our proposed
distance measures (DHölder, DSUP) performed well in this study. Dissimilarity measure
based on L∞ norm between B-spline approximations and their first derivatives showed
the highest average silhouette width for ROAA. Meanwhile, distance measure based on
Hölder’s exponent provided the best results if we take CAR ratio. One thing that could be
noted is that dissimilarity measures which are based on functional data properties (DHölder,
DSUP, DBASIS, DDERIV, DFPCA) performed better than measures which use time series
properties. In our case distance measure based on autocorrelation and CID gives the low-
est average silhouette width values (see e.g. Appendix, Fig. 7). It could be also noted that
simple Euclidean distance performed rather good for clustering banking data. This result
is consistent with Ding et al. (2008), who also found that Euclidean distance provides rela-
tively good clustering outcome. Thus, we can conclude that it is useful to use dissimilarity
measures which employ functional data properties.

From these results we also see that average silhouette width usually is the highest if
we take two clusters. Only in some cases the higher value is with 4 clusters, for example,
ROAA, if we measure dissimilarity with DBASIS distance or functional principal compo-
nents and CIR if we use Euclidean distance (see Appendix, Fig. 8). In many cases the
average silhouette width drops significantly if we consider more than four clusters. How-
ever, other clustering validity indices give mixed results. In some cases, for instance, if
we take CAR ratio or LLP, Dunn index mostly shows that we should consider two ar four
bank clusters (see Appendix, Table 2). Caliński and Harabasz index also suggests mostly
2 or 4 clusters. Similar results are with LLP ratio where both indices indicate that the
best option is to choose two or four clusters (see Appendix, Table 3). An interesting case
is with CIR ratio. While Dunn index suggests that we should consider even 20 clusters,
Caliński and Harabasz index gives the opposite result, i.e. the index is highest if we take
2 or 4 clusters. Such discrepancy may arise due to the fact that CH index calculates aver-
age variance, meanwhile Dunn index takes maximum distance between observations. As
our data are noisy and clusters are not well-separated, few observations may have strong
impact on Dunn index values.
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Fig. 4. Clustering results using DFPCA distance measure: capital adequacy ratio.

Analysis of the data grouped into 20 clusters revealed that in many cases there are
few clusters formed by larger number of banks and other clusters are formed by only few
banks. For example, Fig. 4 shows 6 clusters that are formed from bigger number of banks
using DFPCA distance measure. From the figure we can distinguish few patterns in the
development of capital adequacy ratio: one group of banks kept their CAR ratio more or
less at the same level, second group showed decreasing trend, and third group increased
CAR significantly after the Global financial crisis in 2009. Other clusters included only 1
or 3 banks. Clustering results show that we can extract 6 larger clusters if we take ROAA
or ROAE. Taking capital adequacy ratio results in 6 clusters, whereas LLP in 8 clusters.
Banks could be clustered into 10–11 groups if we take NIM and into 12 larger clusters
if we take CIR. Clusters that are formed by few banks could be considered as outliers.
Therefore, only the larger clusters could be further examined in the development of the
macroprudential policy instruments.

In a multivariate case we take three profitability measures and efficiency ratio (CIR)
to form d-dimensional time series. Furthermore, we normalized data of each ratio to take
into account differences between values of each ratio. We take these four ratios because
most of the banks in our sample had data on them. Based on the average silhouette width
we see that it is reasonable to cluster banks into groups based on few ratios at the same
time. Most of the values of the ASV index are comparable with the univariate cases. An-
other finding is that in multivariate case it is important to take into account both closse-
ness and behaviour of time series, as DHölder, DSUP and D1,EUCL give better clustering
results. Differently from univariate case where D1,EUCL does not improve results of Eu-
clidean distance (DEUCL), in a multivariate case the change in ratios improves clustering
results. In a multivariate case ASV mostly suggests two clusters, but based on Dunn index
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and CH index we should take a larger number of clusters. As multivariate clustering re-
vealed, it is possible to find homogeneousgroups of banks taking into account all ratios. Of
course, if we analyse separate ratios of the clustered banks, we see that some banks would
not be grouped into the same cluster in a univariate case. For this result there are also
economical reasons as banks might reach similar ROAA ratio having different share of
equity and/or performance efficiency. Nevertheless, multivariate dissimilarity measures,
proposed in this paper, might be useful in other cases.

8. Conclusions

There are two main purposes of this paper. The first one is to compare various dissimilarity
measures which are used to cluster time series data. We considered dissimilarity measures
based on raw time series data and measures which take into account some properties
of time series (e.g. autocorrelation). Another group of dissimilarity measures is based
on functional data properties. Furthermore, we analysed clustering based on multivariate
data. Second purpose is to consider clustering of the banks according to their performance
ratios and to find a proper number of clusters. We took 6 ratios that are commonly used to
compare performance of the banks. Three ratios measure profitability: return on average
assets, return on average equity, net interest margin. Cost to income shows efficiency,
capital adequacy ratio shows how much risk bank is taking and loan loss provisions show
the quality of loan portfolio.

Cluster analysis results show that the choice of dissimilarity measure may change the
way banks are grouped significantly. The same could be addressed to the choice of number
of clusters which depends on the clustering validation method. As pointed out by Batista
et al. (2014), dissimilarity measure is the key component in clustering. Therefore, it is
good option to take few distance measures and compare the results. Furthermore, based
on the average silhouette width we may conclude that no dissimilarity measure worked
best for all ratios. In some cases dissimilarity measured between first derivatives or dis-
similarity measure based on Hölder condition gives high average silhouette width, in other
cases distance measure based on functional principal components gives better clustering
results. However, clustering methods based on functional data properties mostly outper-
fomed distance measures based on time series properties. In our study DACF and DCID

provided relatively poor clustering results for many ratios. Another conclusion could be
that simple Euclidean distance is relatively good distance measure for clustering bank-
ing data. Third conclusion, based on average silhouette width both proposed measures,
DHölder and DSUP, were among the best for clustering banking data.

The choice of number of clusters is not that clear also. However, for some banking
ratio clustering validation indices suggest low number of clusters. If we consider CAR,
LLP or CIR, then optimal number of clusters would be 2 or 4. But if we take profitability
ratios, then the results are mixed and the number of clusters could be chosen by the expert
judgement.

Division of banks into 20 clusters revealed that there are few larger clusters and other
clusters are formed by small number of banks. According to different banking ratios, there
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are from 6 to 12 clusters. Those larger clusters could be further analysed and used to
develop some new macroprudential tools.

Multivariate clustering revealed that it is reasonable to group banks into clusters ac-
cording to profitability and efficiency ratios. Average silhouette width is comparable with
univariate cases. Of course, if we analyse separate ratios of the clustered banks, we see that
some banks would not be grouped in a univariate case. Nevertheless, in some data samples
multivariate clustering might be useful as it divides time series based on few features.

Appendix

Fig. 5. Average silhouette width (ROAA). Fig. 6. Average silhouette width (ROAE).

Fig. 7. Average silhouette width (NIM). Fig. 8. Average silhouette width (CIR).
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Fig. 9. Average silhouette width (LLP). Fig. 10. Average silhouette width (CAR).

Fig. 11. Average silhouette width (multivariate case).

Table 2
Number of clusters suggested by Dunn index.

EUCL 1, EUCL CORT CID ACF DTW Hausdorff Basis Deriv FPCA Hölder SUP

ROAA 2 8 4 20 10 10 4 4 4 6 2 2
ROAE 4 8 8 6 20 20 10 2 20 4 2 4
NIM 2 20 4 20 10 20 2 2 4 4 2 2
CIR 20 20 2 20 20 2 20 20 6 8 2 20
LLP 2 2 2 20 20 2 4 2 10 2 8 8
CAR 2 2 20 10 20 4 2 4 2 4 2 2
Multivariate 2 2 10 8 20 2 2 10 2 2 2 4
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Table 3
Number of clusters suggested by Caliński and Harabasz index.

EUCL 1, EUCL CORT CID ACF DTW Hausdorff Basis Deriv FPCA Hölder SUP

ROAA 10 2 20 6 2 2 2 6 6 20 2 2

ROAE 6 2 6 6 2 10 2 4 10 10 2 4

NIM 6 4 2 2 8 20 4 10 2 2 2 4

CIR 4 2 2 2 4 20 2 2 4 2 8 4

LLP 4 2 20 2 2 20 2 2 2 4 20 2

CAR 2 4 2 2 20 20 2 2 2 2 4 20

Multivariate 4 8 2 8 4 6 2 2 4 4 2 2
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Panašumo vertinimo metodų lyginimas pagal bankų veiklos rodiklius

Laurynas NARUŠEVIČIUS, Alfredas RAČKAUSKAS

Šiame straipsnyje nagrinėjama, kaip būtų galima suskirstyti Eupopoje veikiančių bankų imtį į klas-

terius pagal jų veiklos rodiklius 1999–2013 metais. Antrasis šio straipsnio tikslas – palyginti pana-

šumo vertinimo metodus ir nustatyti, kurie yra tinkamiausi klasterizuoti bankams. Darbe naudojami

šeši rodikliai, kurie parodo bankų pelningumą, veiklos efektyvumą, stabilumą ir paskolų portfelio

kokybę. Panašumas tarp bankų vertintas metodais, kurie remiasi laiko eilučių ypatybėmis arba funk-

cinių duomenų ypatybėmis. Darbe taip pat pasiūlyti du panašumo vertinimo metodai, nedažnai tai-

komi klasterizavimo literatūroje. Be to, išplėsti keli metodai iš vienmačių į daugiamačius atvejus.

Skaičiavimų rezultatai rodo, kad nėra vieno panašumo vertinimo metodo, kuris duotų geriausius

klasterizavimo rezultatus pagal visus rodiklius. Vis dėlto panašumo vertinimo metodai, kurie re-

miasi funkcinių duomenų ypatybėmis duoda geresnius rezultatus nei metodai, paremti laiko eilučių

ypatybėmis. Rezultatai rodo, kad sunku tiksliai parinkti tinkamą bankų klasterių skaičių. Remiantis

skirtingais veiklos rodikliais, bankus būtų galima suskirstyti į 6–12 klasterius.


