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Abstract. The paper presents analytic and stochastic methods of structure parameters estimation for

a model selection problem. Structure parameters are covariance matrices of parameters of linear and

non-linear regression models. To optimize model parameters and structure parameters we maximize

a model evidence, a convolution of a data likelihood with a prior distribution of model parameters.

The analytic methods are based on the derivatives computation of the approximated model evidence.

The stochastic methods are based on the model parameters sampling and data cross-validation. The

proposed methods are tested and compared on the synthetic and real data.

Key words: structure parameters optimization, regression model, error function, Laplace approxi-
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1. Introduction

Structure parameter estimation is the key problem of model complexity estimation and

model selection. The problem is to find a regression model (Strijov and Weber, 2010;

Draper and Smith, 1998; Kutner et al., 2004; Bishop and Tipping, 2003) approximat-

ing measured data and to estimate regression model parameters (McCullagh and Nelder,

1989). The measured data consists of the dependent and independent variable measure-

ments.

To estimate the model parameters one should find a minimum of the error function over

the set of parameters (Bishop, 2006; Hastie et al., 2009). The error function is inferred

from the algebraic or statistic approaches.

The statistical approach to the parameter estimation problem assumes the dependent

variable and the model parameters to be multidimensional random variables described by

their probability distribution functions. According to the statistical framework, the opti-

mized error function is regarded as the form of the transformed likelihood (Eidsvik et al.,

2011; Packalen and Wirjanto, 2012).

To construct and optimize the error function we use the Bayesian model comparison

method (Zellner, 1995; Strijov and Weber, 2010; Liang and Yang, 2009). According to

this method, a prior distribution is defined over the set of regression model parameters.

*Corresponding author.
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We consider the case of multivariate normal prior and dependent variable distributions.

In this case the structure parameters are the covariance matrices of the distributions.

The structure parameters are also regarded as the regularization parameters that pe-

nalize the elements of the model parameters vector (Lampe and Voss, 2013; Cawley and

Talbot, 2007; Gillard, 2010). In this study the structure parameters are unknown and

should be estimated to find the optimal model parameters. To estimate them we compare

several methods of the model evidence optimization (Hu, 2005; Chang and Tsay, 2010;

Lopes et al., 1999).

The first method is the maximization of the simplified form of model evidence called

Laplace approximation (Wood and Butler, 2003; Mackay, 1998). The method expands the

data likelihood function around an optimum value of the parameter vector and allows to

obtain an exact form of the approximated evidence. We consider different types of the

covariance matrices structure and obtain different forms of the evidence approximation

for each type.

The second method is based on the Monte-Carlo approximation of the model evi-

dence (Alessandri et al., 2010; Betro and Vercellis, 2007). The parameter vector is sam-

pled according to the given distribution function. The optimum structure parameters max-

imize the model evidence calculated over the set of sampled parameters.

To validate and compare the proposed methods we use the cross-validation schema of

the structure parameters estimation (Hastie et al., 2009; An et al., 2007). The method is

based on the sample splitting into parts of nearly equal size. The model parameters are

estimated on the each part of the sample set.

In a special case we consider linear regression models (McCullagh and Nelder, 1989).

For this type of models we derive explicit values of the model parameters and of the

Hessian matrix (Zhang and Leithead, 2005).

2. Structure Parameter Estimation Problem

Consider a data set D = {(xi, yi)}
m
i=1 consisting of the independent variables xi =

[xij ]
n
j=1, x ∈X ⊆R

n and the dependent targets yi, y ∈Y ⊆R
1.

Let f : W × X → Y be the regression model mapping Cartesian product of the

model parameter space W and the independent variable space X to the dependent variable

space Y. The elements of the data set are related by the following equation,

yi = f (w,xi) + ε(xi), (1)

with a normal random noise ε = ε(x). By f = f(w,X) we denote a vector-valued function

f(w,X) =
[

f (w,x1), . . . , f (w,xm)
]T

.

According to the regression equation (1) we treat a vector y as a multivariate normally

distributed random variable,

y ∼N
(

f,B−1
)

,

such that B is an inverse covariance matrix of the noise vector ε.
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To determine the parameter space W we use the Bayesian framework. The parameter

vector w is the multivariate random vector defined by a prior distribution p(w|A). In this

paper we consider multivariate normal priors with different types of covariance matrices

described in Section 2.2.

2.1. Model Evidence

We use the coherent Bayesian inference method to estimate the parameters w of the

model f . According to this approach, we define a prior probability distribution p(w|A)

of the parameters w, where A is an inverse covariance matrix of the parameters vector w.

Matrices A and B are referred to as structure parameters. In particular, matri-

ces A and B are the parameters of the prior distribution p(w) and the conditional dis-

tribution p(y|w), respectively. Below we will consider special types of this distribu-

tions.

The first level of the Bayesian inference selects the best model from the set of competi-

tive models F by maximizing a model evidence (D|A,B) over the structure parameters A

and B. To calculate the model evidence, we integrate the data likelihood p(D|w,B) over

the set of parameters W defining by the prior distribution p(w|A):

p(D|A,B) =

∫

w∈W

p(D|w,B)p(w|A)dw,

so that

(Â, B̂) = arg max
A∈Mn,B∈Mm

(

∫

w∈W

p(D|w,B)p(w|A)dw

)

, (2)

where M
n is the set of positive-definite symmetric n × n matrices.

The second level of Bayesian inference estimates w by maximizing posterior distribu-

tion of the parameters,

ŵ = arg max
w∈W

p(w|D, Â, B̂).

Here the posterior distribution p(w|D,A,B) equals

p(w|D,A,B) =
p(D|w,B)p(w|A)

p(D|A,B)
,

so that optimal parameters ŵ maximize the integrand of (2):

ŵ = arg max
w∈W

(

p(D|w, B̂)p(w|Â)
)

.
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Table 1

Distribution of dependent variable y and model parameters w.

Dependent variable y Model parameters w Notations

1) y ∼ N (f, σ 2(y)I)
def
=N (f, β−1I) w ∼N (w0, σ 2(w)I)

def
=N (0, α−1I) A = αI

2) y ∼ N (f,diag−1(β1, . . . , βm)I) w ∼N (w0,diag−1(α1, . . . , αn)I) A = diag(αi )I

3) y ∼ N (f,B−1) w ∼N (w0,A−1) A ∈ M
n

2.2. Types of Structure Parameters

To estimate the parameters Â, B̂, ŵ let us make some assumptions about types of the struc-

ture parameters. We will consider normal priors: let vectors w and y have the multivariate

normal distribution with covariance matrices A−1 and B−1, respectively.

We will distinguish three various types of the matrices A and B: scalar, diagonal and

full type. Table 1 shows various cases of the distribution of the dependent variable y and

the model parameters w according to the possible types of matrices.

In this paper we will focus on different types of the matrix A and consider only a scalar

type of the matrix B, B = βI.

To estimate structure parameters Â, B̂ we transform the optimization problem (2) ac-

cording to the normal distribution of the dependentvariable y and the model parameters w:

(Â, B̂) = arg max
A∈Mn,B∈Mm

(

|B|
1
2

(2π
m
2 )

|A|
1
2

(2π
n
2 )

∫

w∈W

exp

(

−
1

2
(y − f)T B(y − f)

)

× exp

(

−
1

2
wT Aw

)

dw

)

. (3)

By the error function S(w,A,B) denote the exponent of the expression (3) with a negative

sign,

S(w,A,B) =
1

2
(y − f)T B(y − f) +

1

2
wT Aw, (4)

and the optimization problem (3) will be formulated as follows,

(Â, B̂) = arg max
A∈Mn,B∈Mm

(

|B|
1
2

(2π
m
2 )

|A|
1
2

(2π
n
2 )

∫

w∈W

exp
(

−S
(

w,A,B
))

dw

)

.

The optimal parameters ŵ maximize the posterior distribution of parameters, or, equiva-

lently, minimize the error function,

ŵ = arg min
w∈W

S(w|Â, B̂),

where Â, B̂ are the estimations of the structure parameters maximizing (3).
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3. Model Evidence Approximation

In this section we use the Laplace approximation of the model evidence to estimate the

structure parameters A,B and the model parameters w. The method uses Taylor expansion

of the error function S(w) near the optimal solution S(ŵ) to approximate the expression

S(w) = S(ŵ + 1w) ≈ S(ŵ) +
1

2
1wT H1w,

where H is Hessian of the error function,

H = ∇∇S(w)|w=ŵ,

at the optimum point, w = ŵ. Denote by ‖w‖ the Euclidean norm ‖w‖ = ‖w‖2. Instead

of optimizing (3) let us optimize its approximated form,

(Â, B̂) = arg max
A∈Mn,B∈Mm

(

|B|
1
2

(2π
m
2 )

|A|
1
2

(2π
n
2 )

exp
(

−S(ŵ)
)

∫

w∈W

exp

(

−
1

2
1wT H1w

)

dw

)

.

(5)

Let us remark that the integrand of (5) is a part of the normal distribution, hence we can

substitute an integral in (5) for normalization and obtain:

(Â, B̂) = arg max
A∈Mn,B∈Mm

(

g(A,B)
)

,

g(A,B) =
|B|

1
2

(2π
m
2 )

|A|
1
2

(2π
n
2 )

exp
(

−S(ŵ)
) (2π

n
2 )

|H|
1
2

. (6)

Taking the logarithm of (6), we obtain the following optimization problem,

(Â, B̂) = arg max
A∈Mn,B∈Mm

(

lng(A,B)
)

,

ln g(A,B) = −
m

2
ln(2π) +

1

2
ln |A| +

1

2
ln |B| − S(ŵ) −

1

2
ln |H|. (7)

Let us define a type of the matrices A,B to simplify the function lng(A,B). In particular,

below we will consider the scalar-type B matrix, B = βI. In this case, the error function (4)

is given by

S(w,A, β) =
β

2
(y − f)T (y − f) +

1

2
wT Aw = βSD(w) +

1

2
wT Aw, (8)

where

SD(w) =
1

2
(y − f)T (y − f), (9)
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and Hessian is given by

H = βHD + A,

where HD is a Hessian of the function SD(w) at the optimum point w = ŵ.

The function (7) is given by the expression

lng(A, β) = −
m

2
ln(2π) +

1

2
ln |A| +

m

2
lnβ −

β

2

(

y − f
(

ŵ,X
))T (

y − f
(

ŵ,X
))

−
1

2
ŵT Aŵ −

1

2
ln |βHD + A|. (10)

Below we will consider scalar and diagonal types of matrix A to differentiate a summand

1

2
ln |βHD + A| (11)

of the function (10).

3.1. Scalar Type of Matrix A

In this section, let A be scalar, A = αI. By this assumption, the expression (11) equals to

1

2
ln |βHD + αI| =

1

2

n
∑

j=1

ln(βhj + α),

where hj is an eigenvector of HD.

Equating derivatives of (10) with respect to α and β tending to zero, we get an esti-

mation of the structure parameters α and β :

∂(− lng(α,β))

∂α
=

n

2α
−

‖ŵ‖2

2
−

1

2

n
∑

j=1

1

βhj + α
= 0,

α‖ŵ‖2 = n −

n
∑

j=1

α

βhj + α
= β

n
∑

j=1

hj

βhj + α
.

By definition, put

γ = β

n
∑

j=1

hj

βhj + α
, (12)

then

α =
γ

‖ŵ‖2
. (13)
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Similarly, equating a derivative of (10) with respect to β to zero, we obtain

β =
m − γ

‖y − f(ŵ,X)‖2
. (14)

Since γ is a function of β , α and optimal model parameters ŵ, we solve equations (12),

(13) and (14) iteratively for the fixed ŵ.

3.2. Diagonal Type of Matrix A

In the case of diagonal matrix A = diag(αj ) the obtained results are comparable with

equations (12), (13) and (14). In particular, instead of (12), by definition we put

ρ = β

n
∑

j=1

hj

βhj + αj

,

and β is given by

β =
m − ρ

‖y − f(ŵ,X)‖2
.

To compute the elements of the matrix A = diag(αj ) we must solve n independent equa-

tions

αj =
βhj

2

(

− 1 +

√

1 +
4

βhj‖ŵ‖2

)

.

3.3. Linear Model

In the special case of linear model,

f(w,X) = Xw,

we obtain an explicit form for the part of optimization procedure. In particular, the integral

of the error function exponent function equals

∫

exp
(

−S(w)
)

dw = S(ŵ)(2π)
n
2
(

detH−1
)

1
2 ,

where ŵ is a unique global minimum of the unimodal error function S(w), and the Hessian

matrix equals to

H = A + βXT X.

In this case, the most probable parameters,

ŵ = arg maxp(w|D,A,B),
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equal

ŵ =
(

A + βXT X
)−1

βXT y.

In particular, for the case of diagonal matrix A = diag(αj ) we write explicit estimations

of the structure parameters:

β =
m − ρ

‖y − Xŵ‖2
,

where

ρ =

n
∑

j=1

βhj

αj + βhj

,

and

αj =
βhj

2

(

− 1 +

√

1 +
4

βhj‖ŵ‖2

)

,

where hj is a j -th eigenvalue of the matrix XT X.

3.4. Hessian Computation

In the non-linear case we must apply a numerical method to determine the Hessian values.

To do this we use a method of approximation of the error function second derivatives with

the finite differences. The element hjk of the Hessian H at w = ŵ can be computed as

hjk =
∂2S

∂wj∂wk

=
S(ŵ + (ej + ek)r) − S(ŵ + ej r) − S(ŵ + ekr) + S(ŵ)

r2
,

where ej , ek are unit vectors, and r is a small parameter. An error of this method is of the

order O(r). The method requires computation of the error function in the n(n+1)
2

points

and is computationally efficient.

4. Monte-Carlo Approximation Method

From the Bayesian inference it follows that to estimate structure parameters we must max-

imize integral

(Â, B̂) = arg max
A∈Mn,B∈Mm

(

∫

w∈W

p(D|w,B)p(w|A)dw

)

. (15)
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In this section let A be the matrix inverse to the covariance matrix 6 of the random vec-

tor w, A = 6
−1. Without loss of generality it can be assumed that E(w) = 0. This gener-

alizes the hypothesis of the normal distribution of the parameters vector w, given in the

previous section.

Let us remark that under this conditions A−1 is a Gramian matrix of Euclidean space

of random vectors w. Since matrix A is a positive definite matrix it follows that matrix A

has a unique Cholesky decomposition (Chang and Tsay, 2010),

A−1 = RT R, R ∈ U
n, (16)

where R is an upper triangular matrix with positive diagonal elements, and U
n is the

set of all those matrices of the size n × n. Note that R is a transformation matrix from

Euclidean space of random vectors w with the Gramian matrix 6
0 = I to Euclidean space

of vectors w with the Gramian matrix 6.

Since the Cholesky decomposition (Chang and Tsay, 2010) is unique for the matrix A,

let us find the optimal solution of (15) as follows,

(R̂, B̂) = arg max
R∈Un,B∈Mm

(

∫

w∈W

p(D|w,B)p(w|R) dw

)

.

In this section let matrix B be constant, B = B0. Then the optimization problem (15) will

be reformulated as follows,

R̂ = arg max
R∈Un

(

∫

w∈W

p
(

D|w,B0
)

p(w|R) dw

)

. (17)

Since the integral (17) cannot be computed analytically, we use a stochastic method of the

integration over the parameter space W. Note that the expression (17) equals the expected

value of the likelihood,

∫

w∈W

p
(

D|w,B0
)

p(w|R) dw = E
(

p
(

D|w,B0
))

,

and according to the law of large numbers

∫

w∈W

p
(

D|w,B0
)

p(w|R) dw ≈
1

K

∑

w∈W(R)

p
(

D|w,B0
)

,

where W(R) is a set of vectors w with the covariance matrix RT R. The set W(R) of

cardinality K can be computed through sampling.

Denote by E(R) a model evidence approximation that should be maximized over R,

R̂ = arg max
R∈Un

(

E(R)
)

,
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E(R) ≈
1

K

∑

w∈W(R)

p
(

D
∣

∣w,B0
)

. (18)

To estimate the optimal parameters R of the optimization problem (18) it is necessary

to perform the sampling procedure of the parameters W(R) for each R. However, it is

readily seen that the matrix R is the transformation matrix for the map from Euclidean

space with the Gramian matrix I to Euclidean space with the Gramian matrix RT R.

This means that it is sufficient to perform the sampling procedure once before opti-

mization algorithm starts. Doing this we obtain the set

W0 =W(I) =
{

w0
∣

∣w0 ∼ p
(

w0
∣

∣I
)}

.

Then we compute the set W(R) on each iteration of the algorithm by rescaling the set W0:

W(R) =
{

RT w0
∣

∣w0 ∈ W0
}

.

4.1. Metropolis-Hastings Sampling Algorithm

To generate the sampleW0 = {w|w ∼ p(w|I)} we use the Metropolis-Hastings algorithm.

The basic idea of the algorithm is to generate a sample constituting a Markov chain.

Each element wt+1 of the sample correlates only with the previous element wt of the

sample.

Denote by Q(w|w′) an auxiliary distribution Q(w|w′), choose an initial element w0

and assign W0 = {w0}. Then let an element wt be chosen according to the distribu-

tion Q(w′|wt ). The next element w′ is generated randomly. Then the algorithm computes

the acceptance ratio a:

a = min
w′∈Rn

(

p(D|w′,B0)Q(wt |w
′)

p(D|wt ,B0)Q(w′|wt )
,1

)

.

The algorithm accepts the element w′ with probability a, wt+1 = w′, W0 := W0 ∪ w′.

Otherwise, the algorithm rejects the candidate and puts wt+1 = wt .

wt+1 =

{

w′, with probability a,

wt , with probability 1 − a.

Let the auxiliary distribution Q(w|w′) be normal:

Q
(

w|w′
)

= Q
(

w′|w
)

=
1

(2πα−1)
n
2

exp

(

−
α

2

(

w − w′
)T (

w − w′
)

)

.

That is, the function Q(w|w′) is symmetric and

a =
p(D|w′,B0)

p(D|wt ,B0)
.

The initial element w0 is chosen randomly from the distribution P(w|I).
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5. Cross-Validation Estimation Method

The cross-validation method assumes realizations of the random vector w to be defined

by the regression sample elements. Each realization is the optimal value of the parameters

vector w on the corresponding subsample. We estimate the expected loss,

L(w) = ED

(

SD(w)
)

,

where

SD(w) =
1

2
(y − f)T (y − f),

according to (9). Note that the function SD(w) is the part of the first summand of the error

function S(w) in (8):

S(w) = βSD(w) +
1

2
wT Aw,

where the second summand 1
2
wT Aw corresponds to the prior distribution of the model

parameters w.

According to Hastie et al. (2009) we split the sample D into Q roughly equal-sized

parts to estimate the expected loss L(w),

D =D
l1
1 ⊔ · · · ⊔D

lQ
Q .

By ŵD\Dq (A) denote an estimation of the parameters vector w such that ŵ minimizes

the error function (8) over the subsample D\Dq for the constant matrix A. We minimize

the expected loss estimation (CV — Cross-Validation),

Â = arg max
A∈Mn

(

CV(D,A)
)

,

CV(D,A) =
1

m

m
∑

i=1

SDq

(

ŵD\Dq (A)
)

,

where SDq (ŵD\Dq (A)) is estimated on the validation subsample Dq with the parameter

vector ŵ such that ŵ is estimated on the learn subsample D\Dq . Note that the matrix B

is fixed, B = B0, and the algorithm computes only an estimation of the matrix A.

6. Computational Experiment

The proposed algorithms were tested on synthetic and real data. Figures below illustrate

convergence of the structure parameters estimations ŵ, Â. The results are compared with

the true values w∗,A∗.
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Table 2

Error analysis: estimations relative bias.

Scalar Diag Full

‖ŵ−w∗‖
‖w∗‖

‖Â−A∗‖
‖A∗‖

‖ŵ−w∗‖
‖w∗‖

‖Â−A∗‖
‖A∗‖

‖ŵ−w∗‖
‖w∗‖

‖Â−A∗‖
‖A∗‖

OLS 0.3 – 0.67 – 0.37 –

LA 0.095 0.14 0.54 1.09 – –

MK 0.078 0.16 0.52 0.36 0.34 0.57

CV 0.041 0.39 0.53 0.42 0.36 0.55
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Fig. 1. Structural parameters convergence for the scalar matrix A−1 , A = αI.

Consider the sample set generated by the linear polynomial model

y =

n
∑

j=0

wjx
j + ε,

where

w ∼N
(

0,A∗−1
)

, ε ∼N
(

0,B∗−1
)

=N

(

0,
1

β∗
I

)

.

The proposed algorithms estimated the matrix Â and the corresponding optimal pa-

rameters vector ŵ. The Laplace approximation also estimated the matrix B̂.

Table 2 shows the results; here ‖ŵ−w∗‖
‖w∗‖

is a norm of the estimation relative bias from

the parameters ground truth. Similarly,
‖Â−A∗‖

‖A∗‖ is a norm of the estimation relative bias

from the structure parameters A∗ ground truth. The first row of the table shows the results

for ordinal least squares method of the parameters estimation. The best fitted parameters

are marked bold. The table shows that algorithms return comparable results.

Figures 1, 2, 3 illustrate iterative parameters convergence for the real data. The real data

are the bread prices data with time as the independent variable and price as the dependent

variable. Additional columns of the matrix X are polynoms of the time variable. Figure 1

illustrates convergence for scalar type of the matrix A. Figure 2 illustrates diagonal type
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Fig. 2. Structural parameters convergence for the diagonal matrix A−1, A = αI.
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Fig. 3. Structural parameters convergence for the full matrix A−1, A = αI.

and Fig. 3 illustrates full type of the matrix A. x-axis shows iterations number, y-axis

shows value of the elements of the matrix A.

Figure 1 shows that in the scalar case convergence appears after 10–20 iterations. Al-

gorithms need more iterations for the diagonal (Fig. 2) and for the full (Fig. 3) cases.

Figure 2 shows zero diagonal elements of the matrix Â−1. The zero element follows that

the corresponding feature is non-informative due to the large penalty in the error func-

tion. All three algorithms show that two features (fourth and fifth polynomial degrees) are

non-informative.

Figure 4 shows computational time of the algorithms. x-axis shows maximum poly-

nomial degree which grows from 2 to 11. Size of the generated sample equals 400. The

cardinality of the set |W(R)| equals 1000, blocks number Q for cross-validation equals

100.

Figure 4 shows that computational times of the algorithms are comparable in the case

of the scalar matrix A∗ = αI since there is only one parameter α for optimization. Figure 4

shows that the Laplace approximation method works much more faster because it solves n

independent equations. Note that computational time function is not monotonic for the

Monte-Carlo and cross-validation algorithms due to randomization of the initial values.
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7. Summary and Discussion

In this study we presented the algorithms of the regression model structure parameters

estimation. We proposed the method of the approximated model evidence optimization

to estimate the distribution covariance. To obtain exact computation formulas we use

the Laplace approximation of the evidence. Furthermore, we proposed the Monte-Carlo

method for model evidence approximation and cross-validation method for the model pa-

rameters estimation to estimate the covariance. The computational experiment section

provides the analysis of the methods convergence and computational time comparison. To

illustrate the results we used simulated and real data.

The proposed theoretical study and experimental framework allow us to highlight the

pros and cons of the proposed methods. First, due to the exact derivative computation

formulas the Laplace approximation method outperforms other methods by both accuracy

and time complexity. However, it has a limited scope: at present we have derived the exact

formulas only for the scalar and diagonal cases of the prior distribution covariance. The

full-covariance case must involve the development of new numerical methods to solve

the system of equations for the Hessian computation that is a promising further study.

Second, we have discovered that in the full-covariance case the Monte-Carlo approach

works better. The weights rescaling trick allowed us to avoid weights resampling and to

make the method more accurate and significantly more faster. In further study we are going

to investigate the multistart optimization strategy using the different initial simulations for

the Monte-Carlo method to improve its stability.

Another further direction is the investigation of non-Gaussian distributions of a target

variable and model parameters. In particular, the binomial distribution of a target leads to

a classification problem. The analysis of hyperparameters for classification was explored

by Bishop (2006) but requires a significant development. In practical point of view, the

structure parameter analysis for classification can be very useful for the credit scoring

problem that requires a profound analysis of model structure. Besides that, the expan-

sion of the prior distribution class (e.g. using the Laplace-kind distributions) leads to the

Bayesian elastic net problem (Zou and Hastie, 2005), a state-of-the-art variable selection

method. The target model evidence becomes non-differentiable for this case, and the de-

velopment of numerical methods for the evidence estimation is a great promise.

A developing alternative to the proposed parametric regression is the non-parametric

CMARS-like methods (Weber et al., 2012). The important problem for those methods

is to choose the minimum number of splines to reduce a model complexity. The pro-

posed methodology can be expanded to estimate the general form of evidence for the

non-parametric problems.

The developed tool is used by the authors as a part of the data analysis framework

for the several real-world applications. First, the evidence estimation is used for feature

selection in the option volatility forecasting problem (Strijov and Weber, 2010). Second,

the evidence maximization helps to select an accurate robust model for the credit scor-

ing (Motrenko et al., 2014). In addition, the authors are going to apply the framework in

the human behaviour recognition problem to select the minimum set of features encoding

each type of behaviour.



622 M. Kuznetsov et al.

Acknowledgements. This project was supported by the Ministry of Education and Science

of the Russian Federation, RFMEFI60414X0041.

References

Alessandri, A., Cervellera, C., Maccio, D., Sanguineti, M. (2010). Optimization based on quasi-Monte Carlo

sampling to design state estimators for non-linear systems. Optimization, 59, 963–984.

An, S., Liu, W., Venkatesh, S. (2007). Fast cross-validation algorithms for least squares support vector machine

and kernel ridge regression. Pattern Recognition, 40, 2154–2162.

Betro, B., Vercellis, C. (2007). Bayesian nonparametric inference and monte carlo optimization. Optimization,

17, 681–694.

Bishop, C.M. (2006). Pattern Recognition and Machine Learning. Springer.

Bishop, C.M., Tipping, M.E. (2003). Bayesian regression and classification. Advances in Learning Theory:

Methods, Models and Applications, 190, 267–285.

Cawley, G.C., Talbot, N.L.C.. (2007). Preventing over-fitting during model selection via bayesian regularisation

of the hyper-parameters. Journal of Machine Learning Research, 8, 841–861.

Chang, C., Tsay, R.S. (2010). Estimation of covariance matrix via the sparse cholesky factor with lasso. Journal

of Statistical Planning and Inference, 140, 3858–3873.

Draper, N.R., Smith, H. (1998). Applied Regression Analysis. Wiley, New York.

Eidsvik, J., Finley, A.O., Banerjee, S., Ru, H. (2011). Approximate bayesian inference for large spatial datasets

using predictive process models. Computational Statistics & Data Analysis, 1362–1380.

Gillard, J. (2010). Asymptotic variance-covariance matrices for the linear structural model. Statistical Method-

ology, 8, 291–301.

Hastie, T., Tibshirani, R., Firedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference,

and Prediction, second ed. Springer, New York.

Hu, H. (2005). Ridge estimation of a semiparametric regression model. Journal of Computational and Applied

Mathematics, 176, 215–222.

Kutner, M.H., Nachtsheim, C.J., Neter, J. (2004). Applied Linear Regression Models. McGraw-Hill/Irwin Series

Operations and Decision Sciences.

Lampe, J., Voss, H. (2013). Large-scale tikhonov regularization of total least squares. Journal of Computational

and Applied Mathematics, 238, 95–108.

Liang, C.F., Yang, Y.F. (2009). A bayesian inference approach to identify a robin coefficient in one-dimensional

parabolic problems. Journal of Computational and Applied Mathematics, 231, 840–850.

Lopes, H.F., Moreirac, A.R.B., Schmidt, A.M. (1999). Hyperparameter estimation in forecast models. Compu-

tational Statistics & Data Analysis, 29, 387–410.

Mackay, D.J.C. (1998). Choice of basis for laplace approximation. Machine Learning, 33, 77–86.

McCullagh, P., Nelder, J.A. (1989). Generalized Linear Models, Chapman and Hall.

Motrenko, A., Strijov, V., Weber, G.-W. (2014). Weber Bayesian sample size estimation for logistic regression.

Journal of Computational and Applied Mathematics, 255, 743–752.

Packalen, M., Wirjanto, T.S. (2012). Inference about clustering and parametric assumptions in covariance matrix

estimation. Computational Statistics & Data Analysis, 56, 1–14.

Strijov, V., Weber, G.W. (2010). Nonlinear regression model generation using hyperparameter optimization.

Computers & Mathematics with Applications, 60, 981–988.

Weber, G.W., Batmaz, I., Koksal, G., Taylan, P., Yerlikaya-Ozkurt, F. (2012). CMARS: a new contribution to

nonparametric regression with multivariate adaptive regression splines supported by continuous optimiza-

tion. Inverse Problems in Science and Engineering, 20(3), 371–400.

Wood, A.T.A., Butler, R.W. (2003). Laplace approximation for bessel functions of matrix argument. Journal of

Computational and Applied Mathematics, 155, 359–382.

Zellner, A. (1995). Bayesian and non-bayesian approaches to statistical inference and decision-making. Journal

of Computational and Applied Mathematics, 64, 3–10.

Zhang, Y., Leithead, W.E. (2005). Exploiting hessian matrix and trust-region algorithm in hyperparameters

estimation of gaussian process. Applied Mathematics and Computation, 171, 1264–1281.

Zou, H., Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statis-

tical Society: Series B (Statistical Methodology), 67, 301–320.



Analytic and Stochastic Methods of Structure Parameter Estimation 623

M.P. Kuznetsov was awarded the master of applied mathematical sciences degree at

Moscow Institute of Physics and Technology in 2013 (Faculty of Department of Control

and Applied Mathematics). He is a PhD student of Moscow Institute of Physics and Tech-

nology at the Intelligent Systems department. His research interests include the problems

of machine learning, data analysis and statistics.

A.A. Tokmakova was awarded the master of mathematical sciences degree at Moscow

Institute of Physics and Technology in 2014. At present she is a developer at Yandex. Her

research interests are the problems of multivariate statistics and machine learning.

V.V. Strijov was awarded the candidate in 2002 and doctor of physics and mathemat-

ics in 2014 at Computing Center of the Russian Academy of Sciences. At present he is

a principal investigator at the Computing Center of RAS. His research interests are ma-

chine learning, data analysis, time series forecasting and algebraic approach to pattern

recognition.



624 M. Kuznetsov et al.

Analitiniai ir stochastiniai struktūrų parametrų vertinimo metodai

Mikhail KUZNETSOV, Aleksandra TOKMAKOVA, Vadim STRIJOV

Straipsnyje pateikiami analitiniai ir stochastiniai struktūrų parametrų vertinimo metodai, taikomi

spręsti modelio parinkimo problemai. Struktūros parametrais laikomos tiesinių ir netiesinių regre-

sijų modelių kovariacijų matricos. Modelio struktūra ir parametrai optimizuojami maksimizuojant

modelio akivaizdumą, išreiškiamą per duomenų tikėtinumo sąsuką su modelio parametrų aprioriniu

skirstiniu. Analitiniai metodai grindžiami aproksimuoto akivaizdumo išvestinių apskaičiavimu. Sto-

chastiniai metodai konstruojami per modelio parametrų imitavimą ir duomenų kryžminį tikrinimą.

Pasiūlyti metodai yra testuojami ir lyginami su imituotais bei realiais duomenimis.


