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Abstract. This paper presents the corpus-driven approach in building the computational model of
fundamental frequency, or F0, for Lithuanian language. The model was obtained by training the
HMM-based speech synthesis system HTS on six hours of speech coming from multiple speakers.
Several gender specific models, using different parameters and different contextual factors, were
investigated. The models were evaluated by synthesizing F0 contours and by comparing them to
the original F0 contours using criteria of root mean square error (RMSE) and voicing classification
error. The HMM-based models showed an improvement of the RMSE over the mean-based model
that predicted F0 of the vowel on the basis of its average normalized pitch.

Key words: HMM-based synthesis, statistical parametric speech synthesis, F0 modelling,
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1. Introduction

An intonation expresses linguistic information about word meanings, indicates empha-
sized words of an utterance and helps to distinguish affirmative and interrogative state-
ments. It also helps expressing paralinguistic information like emotions, identifying
speaker and so on. A synthesis of the intonation plays an important role in text-to-speech
(TTS) systems. A goal of such synthesis process is to predict the intonation for a text. The
model of the intonation takes text labels and other linguistic and non-linguistic features as
an input and produces the fundamental frequency (F0) contour as an output. The model
of the intonation X() in a formal form can be expressed as:

X
(
f (1), f (2), . . . , f (N)

)
→ F0(1),F0(2), . . . ,F0(M), (1)

where f (1), f (2), . . . , f (N) are vectors of contextual features extracted from a text each
describing some chosen modelling unit, and F0(1),F0(2), . . . ,F0(M) represent the dis-
crete time sequence of F0 values henceforth referred to as F0 contour generated for that
text. The F0 can take continuous value in a voiced region of a speech and is undefined in
an unvoiced region of a speech: F0(x) ∈ {NULL} ∪ (−∞,∞).

*Corresponding author.
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1.1. Intonation Synthesis Models

There are many models and methods proposed and used to model the intonation. The
first distinction is among the methods that split F0 prediction process into a few steps and
those that try to predict F0 directly from the contextual features. The intonation modelling
methods of the first type extract intonation model parameters P in the first step

X
(
f (1), f (2), . . . , f (N)

)
→ P(1),P (2), . . . ,P (L)

and build intonation model Y () that predicts F0 contour in the second step

Y
(
P(1),P (2), . . . ,P (L)

)
→ F0(1),F0(2), . . . ,F0(M).

For instance, a popular Fujisaki model (Fujisaki and Hirose, 1984) simulates a human
intonation production mechanism. F0 contour is defined as a linear superposition of a
phrase intonation and accent intonation components:

lnF0(t) = ln F0 min +

I∑

i=1

ApiGpi(t − T0i) +

J∑

j=1

Aaj
[
Gaj (t − T1j ) − Gaj (t − T2j )

]
,

where the second term of the expression is a slow decaying phrase intonation component
and the last term of the expression is a fast decaying accent intonation. For a detailed
explanation of the above expression see Fujisaki and Hirose (1984). Any classification
method can be used to predict phrase and accent commands from a given text in the first
step. Thereafter, the F0 contour is calculated based on the above expression in the second
step. The Fujisaki model was designed for Japanese but was successfully applied to many
languages. The main advantage of this model is that it has constraints on the generated F0

contour. It always generates a “naturally” looking F0 contour.
A Tilt intonation model (Taylor, 1998) is modelling intonation at a phonetic level.

It assumes that an intonation contour consists of a sequence of parametrized intonation
events. Two types of events are defined: pitch accents and boundary tones. Each event is
assigned a set of continuous parameter values a) amplitude (A = |Arise| + |Afall|) and b)
duration (D = |Drise| + |Dfall|). The F0 contour in the region of the event is calculated
using the following expression:

F0(t) =

{
Aabs + A − 2A(t/D)2, 0 < t 6 D/2,

Aabs + A − 2A(1 − t/D)2, D/2 < t < D,

where Aabs is the absolute F0 value at the start of the event and corresponds to the end
value of the previous event or connection. The final F0 contour is calculated by linearly
interpolating F0 in between the boundaries of the adjacent Tilt events. Tilt events and
parameters of these events are predicted from contextual features. For example, Dusterhoff
et al. (1999) successfully used decision trees for this task. The Tilt model has more degrees
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of freedom than the Fujisaki model. Certain F0 phenomena such as continuous rising of
the intonation are hard to approximate with the Fujisaki model but possible with the Tilt
model (Taylor, 2000).

A Tones and Break Indices (ToBI) system is an international standard for labelling
intonation databases. It describes how speech corpora should be labelled. Black and Hunt
(1996) proposed a method to generate F0 contour by means of linear regression given
the ToBI labelled speech corpus. The method predicts three F0 values per syllable for
three time positions within a syllable: at the start, in the middle and at the end of it. The
prediction for each time position was made using separate linear regression models:

F0 point = I + w1f1 + w2f2 + · · · + wnfn,

where fi are features and I , wi are model parameters estimated from the data by linear
regression. The final F0 contour is obtained by smoothing F0 values at these three posi-
tions of every syllable. The main inconvenience of the ToBI model, when it is used for the
synthesis of the F0 contour, is related to the difficulty of obtaining ToBI labelled data. It
is very hard to automatize ToBI label assignment (Taylor, 2009).

Unit concatenation TTS synthesis dominates today, but there is an increasing compe-
tition from statistical data driven systems, especially HMM-based systems. The existing
open-source tools such as HTK (Young et al., 2006) and HTS (Tokuda et al., 2002b;
Zen et al., 2007a) offer a good starting platform for research and experiments on such
systems. Though English and Japanese (HTS is created and supported in Japan) attracted
most attention, other languages that are closer to Lithuanian were also investigated. HMM-
based TTS systems are reported for highly inflected languages like Polish (Kuczmarski,
2010), Czech (Hanzliček, 2010), Croatian (Martincic-Ipsic and Ipsic, 2006) and others.
The base HMM is described by the parameter set λ = {π,A,B}, where π = {πi} repre-
sents initial state probabilities, A = {aij } – state transition probabilities and B = {bi(o)} –
state output probabilities. Each chosen modelling unit (F0 modelling is usually based
of phonemes or syllables) is represented by a HMM having several states. The model
is trained by trying to find the best parameter set λ:

λ̂ = arg max
λ

p(O|W,λ);

p(O|W,λ) =
∑

∀q

πq0

T∏

t=1

aqt−1qt bqt (ot),

where O = {o0, . . . , oT } represents F0 observations of the training data. Each observa-
tion can be a single F0 value or can represent a vector including F0 and its derivatives.
W represents transcriptions (or contextual features) and Q = {q0, . . . , qN } represents an
HMM state sequence. Then the output o is synthesized by:

ô = arg max
o

p(o|W, λ̂). (2)
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To model the discontinuous F0 function, a multi space probability distribution MSD–
HMM variation is mostly used (Tokuda et al., 2002a). In the simplest case the output
probability of an HMM state is defined by:

bi(o) = wi + (1 − wi)N (o;µi, σi),

where wi is a probability of the state i to produce unvoiced F0, and N (o;µi, σi) is a
Gaussian distribution with mean µi and deviation σi to produce a voiced F0 output o for
the state i . In addition to F0, delta of F0 and acceleration of F0 are used to model dynamics
of the contour:

δF0(t) ≈ −
1

2
F0(t − 1) +

1

2
F0(t + 1),

δ2F0(t) ≈
1

4
F0(t − 1) −

1

2
F0(t) +

1

4
F0(t + 1).

These three parameters are modelled in separate streams using the above defined MSD–
HMM. A formula for output probability using streams is:

bi(o) =

S∏

s=1

{
b

(s)
i

(
o

(s)
i

)}ws
,

where S is the number of streams, b(s)(o(s)) is a state output probability of the stream s,
and ws is a stream weight, which defaults to one. There are also other methods proposed
to model discontinuity of F0, for example, by considering it to be continuous everywhere
(Yu and Young, 2011).

Spectrum, intonation and duration are modelled and trained simultaneously in the
HMM-based speech synthesis systems. Typically a semi-Markov structure is used by
adding the duration model. Each HMM has the explicit state duration model instead of
state transition probabilities. The duration is approximated by a Gaussian distribution and
incorporated into training and synthesis parts (Zen et al., 2007b). For other modifications
of conventional HMM that are used in TTS systems see Tokuda et al. (2013).

A well-known problem is that an output generated by HMM systems suffers from over-
smoothing. Toda and Tokuda (2007) introduced a method that uses a speech parameter
generation considering Global Variance (GV). It adds a penalty to the maximized expres-
sion (Eq. (2)) if a probability density of the output differs from the global one estimated
on all training data:

ô = arg max
o

(
p(o|W, λ̂)ωp(v(o)|λ̂v)

)
,

where p(v(o)|λ̂v) is modelled by a single Gaussian distribution. If only F0 contour is used,
then p(v(o)|λ̂v) =N (v(o);µv, σv). Where v(o) is variation of synthesized contour, and
µv, σv are mean and deviation of the contour estimated on the training set, ω is a weight
to control the balance of two probabilities.
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In recent days there were several different attempts to model F0 by using HMMs. For
example, Hirose et al. (2014) trained HMM system using an output of the Fujisaki model
instead of real estimated F0 values. Authors also incorporated F0 residuals (fragments of
F0 contour not represented by the Fujisaki model) into training and synthesis steps. Suni
et al. (2013) used wavelets to decompose F0 contour into five temporal scales ranging
from microprosody to the utterance level. Each F0 level was trained individually and their
superposition was used during the synthesis stage.

Further information about other intonation modelling methods can be found in detailed
observations by Taylor (2009) and Santen et al. (2008).

1.2. Contextual Factors for Intonation Modelling

A set of linguistic and non-linguistic factors named contextual factors is defined to com-
plement the description of a modelling unit. The factors are used to extract contextual
features (denoted as f (i) in the Eq. (1)). Contextual factors are useful for an intonation
model because the same phone uttered in different context may result in different F0 tra-
jectories. The modelling unit often is chosen to be a syllable (Dusterhoff et al., 1999) or a
phoneme (Tokuda et al., 2002b). Contextual factors that describe the context of the mod-
elling unit at the level of phonemes, syllables, words, phrases and utterances are used for
English (Tokuda et al., 2002b). Features for some of these factors are easily estimated like
the number of phonemes in a syllable or the position of the phoneme in a syllable, word,
phrase and so on. Estimation of some other features, such as ToBI endtone label of an
utterance or stress of a word, requires additional knowledge or robust estimation methods.
Krstulovic et al. (2007) found that the performance of intonation models based on a set of
objective factors is almost the same as the performance of the models based on complex
factors like ToBI endtones. Cernak et al. (2013) investigated the relative importance of
contextual factors for English and found that the syllable context is the most important
and the word context is less important. The factors that influence the intonation are lan-
guage dependent. Other factors related to Japanese language are described by Yoshimura
et al. (1999), to Czech – by Hanzliček (2010).

1.3. Research on Intonation Modelling of Lithuanian Language

The problem of creating computational models of Lithuanian intonation has already been
addressed by some researchers. Paulikas and Navakauskas (2005) present the third or-
der polynomial accent models of F0 and incorporate them into the homograph restora-
tion process of Lithuanian words. Leonavičius (2006) models pitch variation of melis-
mas using artificial neural networks. The authors of the Lithuanian TTS synthesis system
(Kasparaitis, 2001; Kasparaitis and Anbinderis, 2014) probably use some rule-based F0

prediction techniques, though the details of their F0 modelling are not revealed. Our ap-
proach to F0 modelling is different from the research above in two aspects. First, our
research is not limited to some particular context (e.g. homographs, melismas) of the spo-
ken language and has the ultimate goal of predicting the F0 contour in as many contexts
as possible. Second, our research is driven by the large corpus of spoken utterances that
intend to approximate the actual usage of the language.
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Fig. 1. HMM training process.

2. Intonation Modelling of Lithuanian Language Using HMMs

In this section we present HMM-based intonation models of Lithuanian language. The
models were built using a simplified version of HTS 2.2 toolkit (see online HTS Web
Site). We followed the default sequence of steps described in CMU-ARCTIC-SLT demo
to train the intonation models. A high level abstraction of the training process is illus-
trated by Fig. 1. Only F0 and derivatives of F0 were used to prepare training parameters.
Spectrum parameters were not used in the experiments. Phoneme was chosen to be the
modelling unit. SAMPA-LT (Raškinis et al., 2003) phoneme inventory was taken for the
basic phoneme set. This set distinguishes between stressed/unstressed, short/long vow-
els, and palatalized/non-palatalized consonants. Palatalization of consonants was ignored
as it can be captured by using wider phoneme context. This simplification resulted in a
reduced inventory of about 100 phonemes with respect to the original SAMPA-LT set.
A short and a long pause symbols were also included into the set of modelling units.
Context-dependent phonemes were modelled using MSD-HMM states with no skips. F0,
delta and acceleration parameters were modelled in separate streams.

The list of contextual factors used in our experiments is presented in Table 1. It was
derived from the list of factors that were used for English (Tokuda et al., 2002b). Almost
all of these factors are objective and the contextual features can be obtained automatically.
A few subjective, manually labelled, semantic factors such as rheme, theme and logical
stress were added to this set in a hope that they will increase the predictive accuracy of
the model. The total number of contextual factors was 49.

A rich list of contextual factors results in that almost every feature vector becomes
unique and parameters of HMM states cannot be accurately estimated. State tying tech-
nique is applied to overcome the data sparseness problem. Similar states are clustered to-
gether using hierarchical decision tree. A minimum description length criterion is used to
build the tree (Shinoda and Watanabe, 2000). The state tying algorithm uses a set of factor
value tests to partition training set into two parts on each step. Factors with phoneme la-
bels as their values were subject to the membership tests to some category (set of phoneme
symbols). Such tests are language specific so considerable amount of time was spent on
defining an extensive set of Lithuanian-specific phonetic categories. Numeric valued fac-
tors were subject to the tests of type “=” and “6”. “Part-of-speech” factor was a subject
to the “=” type of tests.



Corpus-Based Hidden Markov Modelling of the Fundamental Frequency of Lithuanian 679

Table 1
Contextual factors used to describe the context of the modelling unit (phoneme).

Relates to Features

Phoneme label of the current phoneme,
labels of two preceding and two succeeding phonemes,
forward, backward positions of the current phoneme in a syllable

Previous, current and
next syllable

stress presence, stress type,
number of phonemes

Current syllable forward, backward positions of the syllable in a word and a phrase,
vowel of the syllable,
number of syllables that are stressed in a phrase before and after the current syl-
lable,
number of syllables from previous stressed syllable,
number of syllables to next stressed syllable

Previous, current and
next word

number of syllables,
part of speech tag,
logical stress

Current word forward, backward positions of the word in a phrase,
distance in words to comma, dot, question mark or exclamation mark

Previous, current and
next phrase

number of syllables, words

Current phrase forward, backward positions of the phrase in an utterance
rheme, theme

Utterance number of syllables, words, phrases

Table 2
The speech corpus.

Gender Speakers Train (min) Test (min)

Male 10 126.78 19.25
Female 9 181.23 29.99

3. Model Assessment

3.1. Speech Corpus

Lithuanian speech corpus was used in our investigations. It contained utterances of read
speech of 10 males and 9 females, nearly 6 hours of speech in total. The speech corpus was
annotated at the level of phonemes, syllables, words, and phrases. It also included some
semantic and morphological markup: boundaries of themes, rhemes and logical stress,
and part of speech tags.

Speaker independent, but gender dependent models were built and investigated in our
experiments. Table 2 describes training and testing parts of the corpus.
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3.2. F0 Contour Extraction and Normalization

F0 contour was extracted from audio signals using the proceduredescribed in Raškinis and
Kazlauskienė (2013). F0 values were calculated using 5 ms frame shift. The F0 contour
was normalized for all speakers:

lnF0 norm(t) = lnF0 speaker(t) − lnF0 speaker + lnF0 all,

where lnF0 speaker and lnF0 all are mean of logarithmic F0 values for a speaker and for
the entire corpus respectively. The initial size of the speech corpus was greater than that
indicated by Table 2. Some utterances were excluded from training and testing corpora
because the extracted F0 contour might be erroneous. Criteria for automatic rejection of
utterances were based on checking F0 contour for a) an octave jump within a short period
of time and b) a range of 4 octaves within one utterance.

3.3. Evaluation Criteria

The F0 contour was synthesized on the basis of text transcriptions of utterances in the
test corpus. The synthesis process used the knowledge of phoneme boundaries. Thus, the
synthesized/predicted F0 contour was of the same length as the reference F0 contour of
the test corpus and a frame by frame comparison could be performed. For the evaluation
a root mean square error (RMSE) and a voicing classification error (VCE) criteria were
used. The RMSE is calculated taking the quadratic difference for each frame:

RMSE =

√∑
t∈V

(
lnF0(t) − ln F̂0(t)

)2

NV
,

where NV is the total number of frames where both reference F0 values and predicted F̂0

estimates are voiced.
The VCE is a percent of voiced and unvoiced frames for which the wrong voicing

decision was taken:

VCE = 100
Nwrong

Nall
,

where Nwrong is a number of wrong voicing decisions and Nall is a total number of frames
within the testing material.

3.4. Baseline Mean-Based Model

A simple static mean-based model was used as a starting point for an evaluation of the
models. A single mean value of the F0 was extracted for each voiced phoneme. These
values were calculated on a multi-speaker normalized corpus. F0 synthesis consisted of
mapping every voiced phoneme of the test corpus into its constant mean value. A linear
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Fig. 2. Sample of contour generated by the mean-based model.

Table 3
Model evaluation results.

Model type Male Female

Features & contextual factors RMSE VCE, % RMSE VCE, %

1. Baseline mean-baseda 0.21465 12.23 0.17918 13.19
2. F0 & full setb 0.22493 13.66 0.18625 13.06
3. F0+delta & full set 0.20535 11.34 0.17306 11.75
4. F0+delta+acc & full set 0.19952 12.09 0.16873 10.75
5. F0+delta+acc & full set & GVc 0.22373 12.05 0.19538 10.75
6. F0+delta+acc & without subjectived 0.19921 12.02 0.16855 10.73
7. F0+delta+acc & only phonemes 0.20869 11.92 0.17366 10.66

aStatic non HMM-based model.
bSee Table 1 for full set of contextual factors.
cUsing GV method.
d Full set excluding subjective factors: rheme, theme and logical stress.

interpolation was used to calculate F0 values for each diphthong. A sample of the contour
generated by this method is provided in Fig. 2. The RMSE and VCE results for this type
of model are provided in Table 3 (row 1).

3.5. Default HMM-Based Model

Gender dependent models were built using the training procedure, described in Section 2.
Parameters included F0, delta and acceleration of F0. A model topology was based on
5 generating left-to-right states per phoneme. State skip was not allowed. 1 mixture per
state was used. A full set of contextual factors was included (see Table 1). Global Vari-
ance method was not used in a synthesis stage. The results (Table 3, row 4) showed an
improvement comparing to the baseline model.
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Fig. 3. Sample of contours generated by HMM with and without dynamic features.

3.6. Dynamic Features

To experimentally prove the importance of dynamic features we calculated the RMSE for
models without delta and acceleration of F0. The results (Table 3, rows: 2, 3) showed that
the use of dynamic features is crucial for this type of models. Fig. 3 shows samples of F0

contours that were generated with and without the dynamic features.
If dynamic features are not used, then F0 contour just follows the mean F0 value of

individual HMM states. When F0 derivative was added, it greatly improved the RMSE
value. The inclusion of the F0 acceleration (Table 3, row 4) added another improvement.

3.7. Global Variance Method

The speech synthesis can be audibly improved by using the GV method. The most sig-
nificant improvement results from applying GV to the spectral synthesis and to a lesser
extent from applying it to the F0 synthesis (Toda and Tokuda, 2007). We evaluated a de-
fault HMM-based model by applying the GV method for the F0 synthesis. The estimated
RMSE values of this experiment are provided in Table 3 (row 5).

Distributions of the reference F0 values and the synthesized F0 values are shown in
Fig. 4. As it could be expected, the distribution of synthesized F0 values using the GV
method is closer to the reference distribution. Surprisingly, the RMSE criterion showed
an opposite result. By exploring the synthesized F0 contours in detail we found that GV
has the tendency to “cheat”. Sometimes it generates a few exceptional F0 values in order
to increase a variance of an utterance (see Fig. 5). This phenomenon can be explained by
the hypothesis that “flat” probability density functions were learnt (or were not) by some
HMM states. Flat distributions do not penalize synthesized F0 values that are far away
from the mean F0 value of a state.
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Fig. 5. Sample of contour generated by HMM with GV method.

3.8. Impact of the Number of States per Phoneme

By default, HTS suggests using HMM topology with 5 generating states without skips for
each phoneme. HMMs with more states per phoneme may allow for a more fine-grained
F0 modelling. However, because of no-skips HMM topology, short phonemes may not
be modelled accurately. The minimum phoneme duration that can be accurately modelled
with 5 HMM states is 25 ms (F0 was calculated with 5 ms frame shift) and 50 ms with
10 HMM states. There are 9% and 35% of phonemes that have the duration 6 25 ms and
6 50 ms respectively in our corpus. The percentage of frames covered by these phonemes
is a bit lower – 2.7% and 18% respectively.

The impact of the number of states per phoneme was investigated by building F0 mod-
els on the basis of different HMM topologies. Fig. 6 shows the results of this investigation.
The results confirm the fact that more detailed F0 contour is generated if more states are
used. But the VCE increases for models with more states.
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Fig. 6. RMSE and VCE estimates for models with different number of HMM states per phoneme.

3.9. Impact of Some Contextual Factors

We conducted an experiment that tried to estimate the impact of the subjective contextual
factors: theme, rheme and logical stress on model accuracy. We constructed a model that
used the complete set of factors (see Table 1) except for theme, rheme and logical stress.
The RMSE of this model (Table 3, row 6) was a bit lower in comparison to the default
HMM-based model.

The analysis of the decision tree generated in order to tie HMM states of the default
HMM-based model revealed that node splitting tests of the type “Is theme” and “Is rheme”
were among top 10 most frequent tests. This suggests that the dependency between theme,
rheme and F0 contour really exists. At the same time, it seems that if these factors are
missing, the other objective factors (Table 1) can successfully compensate for them.

A model with a small set of contextual factors (current and two preceding and two
succeeding phonemes) showed a big increase in the RMSE value (Table 3, row 7). This
confirms that the selection of right contextual factors is important and can improve the
quality of the synthesized F0 contour.

4. Conclusions

A few HMM-based F0 prediction models were built and experimentally investigated for
Lithuanian language. The default HMM-based model achieved lower RMSE estimate in
comparison to the static baseline model. The absolute improvement was small, but the
difference was statistically significant and confirmed by paired t-test with confidence in-
terval 0.95. We were unable to perform cross-validation tests due to the high amount of
computations involved in such tests.
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The experiments with different model types showed the usefulness of the delta and
acceleration features. The increase of states per phoneme from the default number (5 gen-
erating states) resulted in a reduced RMSE value, but at the same time VCE increased.
The GV method increased the RMSE and did not help to model the intonation.

We experimented with a few different sets of contextual factors. The set of contex-
tual factors that was good for English appeared to be useful for Lithuanian as well. How-
ever, our assumption that Lithuanian intonation model can be improved by the subjective
factors: theme, rheme and logical stress, was not confirmed. A detailed investigation of
additional Lithuanian-specific contextual factors that could improve over the present con-
textual factor set is one of the directions of our future research.

Further investigation of different HMM topologies for different phonemes may be
promising. For instance, short and long Lithuanian vowels may be modelled by HMMs
with different number of states. Allowing state skip for certain phonemes may also result
in a more accurate F0 models. We expect that F0 models can be also improved by provid-
ing more training data. Finally, the subjective listening tests of synthesized F0 contours
can be performed. If correlation of listener ratings and RMSE values is established, it may
help to better interpret the achieved RMSE results.
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Paulikas, Š., Navakauskas, D. (2005). Restoration of voiced speech signals preserving prosodic features. Speech

Communication, 47(4), 457–468.
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Lietuvių kalbos pagrindinio tono kaitos prognozė, naudojant
paslėptųjų Markovo modelių metodiką

Airenas VAIČIŪNAS, Gailius RAŠKINIS, Asta KAZLAUSKIENĖ

Šiame straipsnyje, remiantis 20 profesionalių diktorių 6 valandų skaitomos kalbos garsyno duome-
nimis, aprašomi bandymai automatizuotai sudaryti kompiuterinį lietuvių kalbos intonacijos modelį.
Intonacijos modeliui kurti naudotas šnekos sintezės įrankis HTS, kuris remiasi Paslėptųjų Markovo
Modelių (PMM) metodika. Tyrimuose atskirai modeliuoti vyrų ir moterų balsai, įvertinta įvairių
HTS sistemos parametrų ir kontekstinių požymių įtaka prognozuojamos pagrindinio tono kreivės
tikslumui. Gauti intonacijos modeliai vertinti lyginant jų prognozuotą pagrindinio tono kreivę su at-
skaitos kreivėmis. Vertinti naudoti vidutinės kvadratinės paklaidos ir balsingų / nebalsingų atkarpų
atpažinimo klaidos kriterijai. Taikant PMM pagrindu veikiantį intonacijos modelį gaunamas ma-
žesnis vidutinės kvadratinės paklaidos įvertis nei taikant paprastąjį modelį, kai kiekvienam balsiui
atvaizduoti pasirenkama tam balsiui būdinga vidutinė pagrindinio tono reikšmė.


