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Abstract. An optimization problem is formulated in the tropical mathematics setting to maximize
a nonlinear objective function defined by conjugate transposition on vectors in a semimodule over a
general idempotent semifield. The study is motivated by problems from project scheduling, where
the deviation between completion times of activities is to be maximized subject to precedence con-
straints. To solve the unconstrained problem, we establish an upper bound for the function, and then
obtain a complete solution to a system of vector equations to find all vectors that yield the bound.
An extension of the solution to handle constrained problems is discussed. The results are applied to
give direct solutions to the motivational problems, and illustrated with numerical examples.
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1. Introduction

Optimization problems that are formulated and solved in the framework of tropical math-
ematics offer an evolving research domain in applied mathematics with an expanding ap-
plication scope. Tropical (idempotent) mathematics deals with semirings with idempotent
addition and dates back to pioneering works by Pandit (1961), Cuninghame-Green (1962),
Hoffman (1963), Giffler (1963), Vorob’ev (1963), Romanovskiı̆ (1964), which were in-
spired by real-world problems in operations research, including optimization problems.

The tropical optimization problems under consideration are set up in the tropical math-
ematics setting to minimize or maximize linear and nonlinear functions defined on finite-
dimensional semimodules over idempotent semifields, subject to linear inequality and
equality constraints. The linear objective functions turn the problems into formal idempo-
tent analogues of ordinary linear programming problems. The nonlinear objective func-
tions are assumed to be defined through a multiplicative conjugate transposition operator.

There is a range of solution approaches offered to handle particular problems in a set
of works, which include Hoffman (1963), Cuninghame-Green (1976), Superville (1978),
Zimmermann (1984), Butkovič and Aminu (2009), Gaubert et al. (2012). Among them
are iterative algorithms that produce a solution if any, or indicate that no solution ex-
ists otherwise (Zimmermann, 1984, 2006; Butkovič and Aminu, 2009; Gaubert et al.,
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2012), and exact methods that provide direct solutions in a closed form (Hoffman, 1963;
Cuninghame-Green, 1976; Superville, 1978; Zimmermann, 2003, 2006). Many prob-
lems are represented and worked out in terms of particular idempotent semifields as
those considered by Superville (1978), Zimmermann (1984), Butkovič and Aminu (2009),
Gaubert et al. (2012), whereas some other problems are examined by Hoffman (1963),
Cuninghame-Green (1976), Zimmermann (2006) in a general setting, which covers the
above semifields as special cases. Existing methods, however, mainly give a particular
solution, rather than provide all solutions to the problem under study.

As the problems can appear in a variety of applied contexts, a large body of motiva-
tion and application examples is drawn from optimal scheduling, as those presented in
Cuninghame-Green (1976), Zimmermann (1984, 2006), Butkovič and Tam (2009), Tam
(2010). Specifically, the examples include scheduling problems, where the objective func-
tion takes the form of the span (range) seminorm.

The span seminorm is defined, in the ordinary setting, as the maximum deviation be-
tween components of a vector. It finds application as an optimality criterion in diverse ar-
eas from the analysis of Markov decision processes in Bather (1973), Puterman (2005) to
the form-error measurement in precision metrology in Murthy and Abdin (1980), Gosavi
and Cudney (2012).

In the context of tropical mathematics, the span seminorm is introduced by
Cuninghame-Green (1979), Cuninghame-Green and Butkovič (2004), where it is called
the range seminorm. Both problems of minimizing and maximizing the seminorm taken
from machine scheduling are examined in Butkovič and Tam (2009), Tam (2010) with a
combined technique, which needs to use two reciprocally dual idempotent semifields.

Another more straightforward approach is implemented in Krivulin (2013) to solve
problems of minimizing the span seminorm, where the seminorm is represented as a non-
linear objective function defined through a conjugate transposition operator. The problem
arises in project management within the framework of just-in-time scheduling of activities
constrained by various precedence relations (see, e.g. T’kindt and Billaut, 2006; Demeule-
meester and Herroelen, 2002 for further details and references on project scheduling).
Based on the approach, exact, direct solutions to the problems are obtained in a compact
vector form given in terms of a single semiring.

In this paper, we start with the same problems, except that the span seminorm is maxi-
mized. In the context of optimal scheduling, the problems appear when activity initiation
or completion times are to be spread over the maximum possible time interval due to the
lack of resource to handle all activities simultaneously. One of the problems, which is to
maximize the deviation of the completion time, is similar to that considered in Butkovič
and Tam (2009), Tam (2010).

We formulate a common tropical optimization problem as to maximize a nonlinear
objective function defined on vectors over a general idempotent semifield. To solve the
problem, we apply and further develop solutions proposed in Krivulin (2013, 2014a,
2014b, 2015). We first establish an upper bound for the objective function, and then find
all vectors that yield the bound. As particular cases, complete solutions are given to the
problems of maximizing the span seminorm in project scheduling.
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By contrast to many project scheduling methods, including both the conventional tech-
niques based on linear and mixed integer linear programming, and a variety of new pro-
cedures, which mainly provide indirect solutions in the form of iterative algorithm (see
T’kindt and Billaut, 2006; Demeulemeester and Herroelen, 2002; Andziulis et al., 2011;
Caplinskas et al., 2012; Varoneckas et al., 2013 for related overviews and examples), our
approach offers direct exact solutions in a form that is suitable for both further analysis and
practical implementation. The solutions obtained involve simple matrix-vector operations
and guarantee low polynomial computational complexity.

The rest of the paper is organized as follows. Section 2 presents motivational prob-
lems coming from project scheduling. In Section 3, we give an overview of preliminary
definitions and results of idempotent algebra, including complete solutions to linear vec-
tor equations and inequalities. The main result, which offers a complete direct solution
to a general maximization problem, and its corollaries are given in Section 4. Finally, we
present applications of the results obtained to solve scheduling problems together with
numerical examples in Section 5.

2. Motivational Examples

In this section, we describe problems drawn from the project scheduling (T’kindt and
Billaut, 2006; Demeulemeester and Herroelen, 2002) and intended to both motivate and
illustrate the development of solutions to tropical optimization problems presented below.
The scheduling problems are formulated in the general terms of activities and precedence
relations, which can represent actual jobs, tasks or operations, and of time constraints
placed on them by technical, operational, or other real-world limitations.

Suppose there is a project that involves certain activities operating under various tem-
poral constraints. The constraints have the form of start-finish and start-start precedence
relations defined for each pair of activities. The start-finish relation limits a minimum
allowed time lag between the initiation of one activity and the completion of the other,
whereas the start-start relation fixes a minimum lag between the initiations of the activities.
Each activity is assumed to complete at the earliest possible time within the constraints
imposed.

Scheduling problems of interest are to determine, subject to the constraints, an ap-
propriate initiation time for each activity so as to satisfy an optimality criterion in the
form of the maximum deviation time between either initiation or completion times of the
activities.

Consider a project of n activities. For each activity i = 1, . . . , n, denote the initiation
time by xi and the completion time by yi . Let aij be the minimum time lag between the
initiation of activity j = 1, . . . , n and the completion of i . The start-finish constraints are
represented in the ordinary notation by the equalities

max
16j6n

(xj + aij ) = yi, i = 1, . . . , n.
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With the maximum deviation of completion time of activities given by

max
16i6n

yi − min
16i6n

yi = max
16i6n

yi + max
16i6n

(−yi),

we arrive at the problem of finding for each i = 1, . . . , n the unknown xi that

maximize max
16i6n

yi + max
16i6n

(−yi),

subject to max
16j6n

(xj + aij ) = yi, i = 1, . . . , n. (1)

Note that a similar problem arising in machine scheduling is examined in Butkovič and
Tam (2009), Tam (2010) in the context of the analysis of the image set of a max-linear
mapping.

Furthermore, let cij be the minimum time lag between the initiation of activity j and
the initiation of i . The start-start constraints yield the inequalities

max
16j6n

(xj + cij )6 xi, i = 1, . . . , n.

If there is actually no time lag defined for some i and j , we put cij = −∞.
The problem of maximizing the deviation between the initiation times of activities

takes the form

maximize max
16i6n

xi + max
16i6n

(−xi),

subject to max
16j6n

(xj + cij )6 xi, i = 1, . . . , n. (2)

Finally, when both start-finish and start-start constraints are taken into account, we get
a problem to find an initiation time for each activity to

maximize max
16i6n

yi + max
16i6n

(−yi),

subject to max
16j6n

(xj + aij ) = yi,

max
16j6n

(xj + cij )6 xi, i = 1, . . . , n. (3)

We note that both problems (2) and (3) can readily be rewritten as linear programming
problems. However, linear programming, which offers efficient numerical solutions in the
form of iterative algorithms, cannot, in general, provide direct solutions in an explicit
form.

Below, the scheduling problems considered are represented in terms of tropical math-
ematics. We offer a complete, direct solution to a general tropical optimization problem,
and then solve the scheduling problems as particular cases.
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3. Preliminary Definitions and Results

The purpose of this section is to give a brief overview of basic definitions and preliminary
results that underlie the formulation and solution of tropical optimization problems under
study. In the literature, there is a range of works that provide concise introduction to as
well as comprehensive coverage of the theory and methods of tropical mathematics in
various forms and somewhat different formal languages, including recent publications by
Kolokoltsov and Maslov (1997), Golan (2003), Heidergott et al. (2006), Litvinov (2007),
Gondran and Minoux (2008), Butkovič (2010).

The overview presented below is mainly based on the presentation style of notation
and results in Krivulin (2006, 2009, 2014a, 2014b, 2015), which offer the possibility of
deriving direct complete solutions in a compact vector form. For additional details and
further discussion, one can consult references listed before.

3.1. Idempotent Semifield

LetX be a set that is closed with respect to addition ⊕ and multiplication ⊗, which are both
associative and commutative binary operations, where multiplication is distributive over
addition. The set includes zero 0 and unit 1 to be respective neutral elements for addition
and multiplication. Addition is assumed to be idempotent, which implies that x ⊕ x = x

for all x ∈ X. Multiplication is invertible to provide each x ∈ X \ {0} with an inverse x−1

such that x−1 ⊗ x = 1. Under these assumptions, the algebraic structure 〈X,0,1,⊕,⊗〉

is commonly referred to as the idempotent semifield over X.
Idempotent addition imposes a partial order on the semifield, which establishes a re-

lation x 6 y if and only if x ⊕ y = y . The definition implies that addition has an extremal
property, which ensures the inequalities x 6 x ⊕ y and y 6 x ⊕ y for all x, y ∈ X, as
well as that both addition and multiplication are isotone in each argument. Finally, it is as-
sumed that the partial order can be completed into a total order, which makes the semifield
linearly ordered.

In what follows, we routinely omit the multiplication sign for the brevity sake. The
relation symbols and the max operator are thought of as defined in terms of the order
induced by idempotent addition.

The semifield Rmax,+ = 〈R ∪ {−∞},−∞,0,max,+〉 over the set of real numbers R
offers an example of the idempotent semifield under study, which is used to represent and
solve optimal scheduling problems below.

3.2. Matrix Algebra

Matrices and vectors with entries in X are routinely defined together with related opera-
tions, which are performed according to the conventional rules with the operations ⊕ and
⊗ in the role of ordinary addition and multiplication.

As usual, the set of matrices over X with m rows and n columns is denoted by X
m×n.

A matrix with all entries equal to ) 0 is the zero matrix. A matrix is row- (column-) regular
if it has no rows (columns) that consist entirely of 0.
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In what follows, we denote matrices with bold uppercase letters. For each introduced
matrix, the same bold lowercase and normal lowercase letters are reserved respectively for
the columns and entries of the matrix. Specifically, a column and an entry of a matrix A

are denoted by ai and aij .
The extremal property of scalar addition extends to matrix addition in the form of

entry-wise inequalities A6 A⊕B and B 6 A⊕B , which are valid for all A,B ∈X
m×n .

Addition and multiplication of matrices, as well as multiplication of matrices by scalars,
are isotone in each argument.

For any matrix A = (aij ) ∈X
m×n without zero entries, we define a multiplicative con-

jugate transpose as the matrix A− = (a−
ij ) ∈ X

n×m with entries a−
ij = a−1

ji . For two con-
forming matrices A and B without zero entries, the entry-wise inequality A 6 B implies
the inequality A− > B− and vice versa.

Consider square matrices in X
n×n . A square matrix that has 1 on the diagonal and 0

elsewhere, is the identity matrix denoted by I . The power notation with nonnegative inte-
ger exponents is used to represent repeated multiplication by the same matrix as A0 = I

and Ap = Ap−1A for any A ∈ X
n×n and integer p > 0.

For any matrix A = (aij ) ∈X
n×n, the trace is given by

tr A =

n
⊕

i=1

aii .

A matrix is reducible if it can be put in a block-triangular form with zero blocks above
(or below) the diagonal by simultaneous permutation of rows and columns. Otherwise, the
matrix is considered to be irreducible. Any matrix with only nonzero entries is trivially
irreducible.

It is not difficult to see that, for any irreducible matrix A ∈X
n×n , the matrix I ⊕ A ⊕

· · · ⊕ An−1 has no zero entries.
Any matrix of one column presents a column vectors. The set of column vectors with n

components over X is denotedXn and forms a finite-dimensional idempotent semimodule
with respect to vector addition and scalar multiplication. A vector with all components
equal to 0 is the zero vector. A vector is called regular if it has no zero components.

For any regular column vector x = (xi) ∈ X
n, the multiplicative conjugate transpose

is the row vector x− = (x−
i ) with components x−

i = x−1
i . It is not difficult to verify that,

for any nonzero vector x, we have x−x = 1. If x is regular, then xx− > I . Finally, the
identity (xy−)− = yx− is valid for any two regular vectors x and y of the same order.

To simplify some further formulae, we introduce, for any vector x ∈ X
n and matrix

A ∈X
m×n , idempotent analogues of the vector and matrix norms

‖x‖ =

n
⊕

i=1

xi, ‖A‖ =

m
⊕

i=1

n
⊕

j=1

aij .

Denote by 1 a vector with all components equal to 1. Now we can write

‖x‖ = 1T x, ‖A‖ = 1T A1.

For any vectors x and y of the same order, we have ‖xyT ‖ = ‖x‖‖y‖.
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3.3. Linear Equations and Inequalities

Assume A ∈ X
m×n to be a given matrix and d ∈ X

n a given vector, and consider the
problem to find solutions x ∈X

n to the equation

Ax = d.

A complete direct solution to the problem is given in a vector form in Krivulin (2009,
2012). In what follows, we need a solution to a particular case when m = 1. Given a vector
a ∈ X

n and a scalar d ∈ X, the problem is to solve the equation

aT x = d. (4)

Based on the solution of the general equation, a solution to (4) is as follows.

Lemma 1. Let a = (ai) be a regular vector and d > 0 a scalar. Then the solutions of

equation (4) form a family of solutions, each defined for a particular k = 1, . . . , n as a set

of vectors x = (xi) with components

xk = a−1
k d,

xi 6 a−1
i d, i 6= k.

Now we present solutions to another problem to be used below. Given a matrix A ∈

X
n×n , consider the problem of finding regular vectors x ∈ X

n that satisfy the inequality

Ax 6 x. (5)

To describe a solution given in Krivulin (2006, 2009, 2015), we make some definitions.
For each matrix A ∈ X

n×n, a function is introduced that yields the scalar

Tr(A) = tr A ⊕ · · · ⊕ tr An.

Under the condition that Tr(A) 6 1, we further define an asterate of A (the Kleene
star) to be the matrix

A∗ = I ⊕ A ⊕ · · · ⊕ An−1.

A direct solution to inequality (5) is given by the next result.

Theorem 1. For any matrix A, the following statements hold:

1. If Tr(A)6 1, then any regular solution to inequality (5) is given by x = A∗u, where

u is a regular vector.

2. If Tr(A) > 1, then there is no regular solution.



594 N. Krivulin

4. Optimization Problem

We are now in a position to present the main result, which offers a solution to the following
tropical optimization problem. Given matrices A ∈ X

m×n, B ∈X
l×n and vectors p ∈ X

m

and q ∈ X
l , find regular solutions x ∈X

n that

maximize q−Bx(Ax)−p. (6)

Below a solution to the problem is obtained under fairly general assumptions. Then,
we give a solution to a special case of the problem. An extension of the solution to handle
constrained problems is also discussed.

4.1. The Main Result

The next statement offers a direct, complete solution to problem (6) under some regularity
conditions.

Theorem 2. Suppose A is a matrix with regular columns, B is a column-regular matrix,

p and q are regular vectors. Define the scalar

1 = q−BA−p. (7)

Then, the maximum value in problem (6) is equal to 1, and attained if and only if the

vector x = (xj ) has components

xk = αa−
k p,

xj 6 αa−1
sj ps , j 6= k, (8)

for all α > 0 and indices k and s given by

k = arg max
16j6n

q−bja
−
j p, s = arg max

16i6m
a−1
ik pi .

Proof. To verify the statements, we first show that (7) is an upper bound for the objective
function in problem (6). Then, we validate that the regular vectors x defined as (8) yield
the bound, whereas any other vector does not.

Obviously, if a vector x is a solution to (6), then any vector αx for all α > 0 is also a
solution, and hence the solution to the problem is scale-invariant.

Since we have x(Ax)− = (Axx−)− 6 A− provided that both x and A have no zero
elements, we immediately obtain

q−Bx(Ax)−p 6 q−BA−p = 1.

To find vectors that give the bound, we have to solve the equation

q−Bx(Ax)−p = 1.
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With an auxiliary variable α > 0, the equation is immediately transformed into the
system of equations

q−Bx = α1,

(Ax)−p = α−1.

Considering that the solution is scale-invariant, we eliminate α to get

q−Bx = 1,

(Ax)−p = 1. (9)

Furthermore, we examine all solutions of the first equation at (9) to find those solutions
that satisfy the second equation as well.

Due to Lemma 1, the solution of the first equation in the system is actually a family of
solutions, each defined for one of i = 1, . . . , n as vectors with components

xi =
(

q−bi

)−1
1,

xj 6
(

q−bj

)−1
1, j 6= i.

We consider the upper bound 1 and put it into the form

1 = q−BA−p =

n
⊕

j=1

q−bja
−
j p = q−bka

−
k p,

where k is the index of a maximum term q−bja
−
j p over all j = 1, . . . , n.

As the starting point to get a common solution to both equations (9), we use the solution
of the first equation for i = k, which is given by

xk =
(

q−bk

)−1
1 = a−

k p,

xj 6
(

q−bj

)−1
1 =

(

q−bj

)−1
q−bka

−
k p, j 6= k.

Now we examine the left hand side of the second equation at (9). We express the vector
Ax as the linear combination of columns in the matrix A in the form

Ax = x1a1 ⊕ · · · ⊕ xnan.

Then, we take xk = a−
k p, and consider the term xkak = aka

−
k p. We write

a−
k p = a−1

1k p1 ⊕ · · · ⊕ a−1
mkpm = a−1

sk ps ,

where s is the index of the maximum term a−1
ik pi over all i = 1, . . . ,m.
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Since the vector xkak = aka
−
k p has components

xkask = aska
−1
sk ps = ps ,

xkajk = ajka
−1
sk ps > pj , j 6= s,

we arrive at a vector inequality Ax > xkak > p.
To satisfy the second equation at (9), the vector inequality must hold as an equality for

at least one component.
By taking xj to meet the condition xj 6 a−1

sj ps for all j 6= k, we obtain

as1x1 ⊕ · · · ⊕ asnxn = ps,

ai1x1 ⊕ · · · ⊕ ainxn > pi , i 6= s.

With the inequality a−1
sj ps 6 a−

j p 6 (q−bj )
−1q−bka

−
k p, we conclude that any vec-

tor x with components

xk = a−
k p,

xj 6 a−1
sj ps , j 6= k,

presents a common solution of both equations at (9), and so a solution to (6). Taking into
account that the solution is scale-invariant, we get (8).

Finally, we show that the solutions to the first equation for each i 6= k cannot satisfy
the second equation. We assume that q−bia

−
i p < q−bka

−
k p, and consider the solution

xi =
(

q−bi

)−1
q−bka

−
k p,

xj 6
(

q−bj

)−1
q−bka

−
k p, j 6= i.

With the above assumption, we have (q−bi)
−1q−bka

−
k p > a−

i p, and therefore,

xiai = ai

(

q−bi

)−1
q−bka

−
k p > aia

−
i p.

Then, we write Ax > xiai > aia
−
i p, which yields (Ax)− < (a−

i p)−1a−
i . We see

that (Ax)−p < (a−
i p)−1a−

i p = 1, and thus the above solution fails to solve the entire
problem, which completes the proof. �

To conclude, we estimate the computational complexity of the solution offered by the
theorem. First, note that the most computationally intensive part is calculating of the min-
imum at (7). The number of operations (addition, multiplication and taking inverse) re-
quired to evaluate (7) is of the order n× max{l,m}, which offers a reasonable approxima-
tion to the complexity of the overall solution.
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4.2. Particular Cases

We now present a special case of the general problem, which involves idempotent ana-
logues of the vector and matrix norms. Another particular case is considered in the next
section in the context of solution of scheduling problems.

Let us assume that p = q = 1 and note that 1T ai = ‖ai‖ and b−
i 1 = ‖b−

i ‖. Moreover,
we have

1T Bx(Ax)−1 = ‖Bx‖
∥

∥(Ax)−
∥

∥, 1T BA−1 =
∥

∥BA−
∥

∥.

Under these assumptions, problem (6) takes the form

maximize ‖Bx‖
∥

∥(Ax)−
∥

∥. (10)

It follows from Theorem 2 that a solution to problem (10) goes as follows.

Corollary 1. Suppose A is a matrix with regular columns and B is a column-regular

matrix. Define the scalar

1 =
∥

∥BA−
∥

∥.

Then, the maximum in problem (10) is equal to 1, and attained if and only if the vector

x = (xj ) has components

xk = α
∥

∥a−
k

∥

∥,

xj 6 αa−1
sj , j 6= k,

for all α > 0 and indices k and s given by

k = arg max
16j6n

‖bj‖
∥

∥a−
j

∥

∥, s = arg max
16i6m

a−1
ik .

4.3. Extension to Constrained Problems

The solution to problem (6) can be extended to cover certain constrained problems. Specif-
ically, assume C ∈ X

n×n to be given and consider the problem

maximize q−Bx(Ax)−p,

subject to Cx 6 x. (11)

By Theorem 1, the inequality constraint in (11) has regular solutions only when
Tr(C) 6 1. Under this condition, the solution is given by x = C∗u for all regular vec-
tors u ∈ X

n, whereas the entire problem reduces to

maximize q−BC∗u(AC∗u)−p.
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The unconstrained problem admits an immediate solution based on Theorem 2, pro-
vided that the matrix AC∗ has only regular columns and the matrix BC∗ is column-
regular.

Since we have C∗ > I , the condition is fulfilled when the matrix A has no zero en-
tries and B is column-regular. The assumption on A, however, is not necessary to apply
the theorem. Specifically, the condition is also satisfied if the matrix A is row-regular,
whereas C is irreducible. Indeed, in this case, the matrix C∗ and, thus the matrix AC∗,
have no zero entries.

It is clear that the condition for A to be row-regular is necessary.
Note that the solution to the unconstrained problem is given by Theorem 2 in terms

of the auxiliary vector u and, therefore, needs to be translated into a solution with respect
to x with the mapping x = C∗u.

Examples of solutions to particular constrained problems drawn from project schedul-
ing are given in the next section.

5. Application to Project Scheduling

In this section, we revisit scheduling problems (1), (2), and (3) to reformulate and solve
them as optimization problems in the tropical mathematics setting. To illustrate the results
obtained, numerical examples are also given.

5.1. Representation and Solution of Problems

Taking into account that the representation of the problems in the ordinary notation in-
volves maximum, addition, and additive inversion, we translate it into the language of the
semifield Rmax,+.

We start with problem (1), which can be written in terms of Rmax,+ in scalar form as

maximize

(

n
⊕

i=1

yi

)(

n
⊕

i=1

y−1
i

)

,

subject to
n
⊕

j=1

aijxj = yi, i = 1, . . . , n.

Furthermore, we introduce a matrix A = (aij ) and vectors x = (xi), y = (yi) to shift
from the scalar representation to that in the matrix-vector notation

maximize ‖y‖
∥

∥y−
∥

∥,

subject to Ax = y. (12)

A complete solution to the problem is given as follows.
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Lemma 2. Suppose A is a matrix with regular columns. Define the scalar

1 =
∥

∥AA−
∥

∥.

Then, the maximum in problem (12) is equal to 1, and attained if and only if the vector

x = (xj ) has components

xk = α
∥

∥a−
k

∥

∥,

xj 6 αa−1
sj , j 6= k,

for all α > 0 and indices k and s given by

k = arg max
16j6n

‖aj‖
∥

∥a−
j

∥

∥, s = arg max
16i6n

a−1
ik .

Proof. By substitution y = Ax, we obtain an unconstrained problem in the form of (10).
Application of Corollary 1 with B = A completes the solution. �

Note that the solution is actually determined up to a nonzero factor, and so can serve
as a basis for further optimization of the schedule under additional constraints, including
due date and early start time constraints.

We now examine problem (2). When expressed in terms of the operations in the semi-
field Rmax,+, the problem becomes

maximize

(

n
⊕

i=1

xi

)(

n
⊕

i=1

x−1
i

)

,

subject to
n
⊕

j=1

cijxj 6 xi, i = 1, . . . , n.

With a matrix C = (cij ), we switch to matrix-vector notation and get

maximize ‖x‖
∥

∥x−
∥

∥,

subject to Cx 6 x. (13)

Lemma 3. Suppose C is a matrix with Tr(C)6 1. Define a scalar

1 =
∥

∥C∗
(

C∗
)−∥
∥.

Then, the maximum in problem (13) is equal to 1, and attained if and only if x = C∗u,

where u = (uj ) is any vector with components

uk = α
∥

∥

(

c∗
k

)−∥
∥,

uj 6 α
(

c∗
sj

)−1
, j 6= k,
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for all α > 0 and indices k and s given by

k = arg max
16j6n

∥

∥c∗
j

∥

∥

∥

∥

(

c∗
j

)−∥
∥, s = arg max

16i6n

(

c∗
ik

)−1
.

Proof. It follows from Theorem 1 that each solution to the inequality constraint in (13)
is given by x = C∗u, where u is a regular vector. Taking the general solution instead of
the inequality, we arrive at an optimization problem with respect to u in the form of (12)
with A = C∗. After solution of the last problem according to Lemma 2, we arrive at the
desired result. �

Finally, in a similar way as above, problem (3) can be represented in the form

maximize ‖y‖
∥

∥y−
∥

∥,

subject to Ax = y,

Cx 6 x, (14)

and then solved by the following result.

Lemma 4. Suppose A is a row-regular matrix and C a matrix with Tr(C)6 1 such that

all columns in the matrix D = AC∗ are regular. Define the scalar

1 =
∥

∥DD−
∥

∥.

Then, the maximum in problem (14) is equal to 1, and attained if and only if x = C∗u,

where u = (ui) is any vector with components

uk = α
∥

∥d−
k

∥

∥,

uj 6 αd−1
sj , j 6= k,

for all α > 0 and indices k and s given by

k = arg max
16i6n

‖d i‖
∥

∥d−
i

∥

∥, s = arg max
16i6n

d−1
ik .

Note that the matrix D = AC∗ has only regular columns when all columns in the
matrix A are regular or the matrix C is irreducible.

5.2. Numerical Examples

We start with problem (12), which is to maximize the deviation of completion time. Con-
sider a project with n = 3 activities operating under start-finish constraints given by the
matrix

A =





4 1 1

2 2 0

0 1 3



 .
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To apply Lemma 2, we calculate

A− =





−4 −2 0

−1 −2 −1

−1 0 −3



 , AA− =





0 2 4

1 0 2

2 3 0



 , 1 =
∥

∥AA−
∥

∥= 4.

Furthermore, we obtain

‖a1‖
∥

∥a−
1

∥

∥= 4, ‖a2‖
∥

∥a−
2

∥

∥= 1, ‖a3‖
∥

∥a−
3

∥

∥= 3,

and then verify that

‖a1‖
∥

∥a−
1

∥

∥= max
{

‖ai‖
∥

∥a−
i

∥

∥

∣

∣ i = 1,2,3
}

, a−1
31 = max

{

a−1
i1

∣

∣ i = 1,2,3
}

.

Taking k = 1 and s = 3, we assume α = 0 to obtain a solution set that is defined by
the relations

x1 = 0, x2 6 −1, x3 6 −3.

Specifically, the solution vector with the latest initiation time and the corresponding
vector of completion time are given by

x =





0

−1

−3



 , y = Ax =





4

2

0



 .

To illustrate the solution to problem (13) given by Lemma 3, we examine a project
with start-start precedence constraints defined by the matrix

C =





0 −2 1

0 0 2

−1 0 0



 ,

where the symbol 0 = −∞ is used to save space.
First, we successively find

C2 =





0 0 0

1 −2 1

0 −3 0



 , C3 =





−1 −2 1

0 −1 2

−1 0 −1



 , Tr(C) = 0,

and then form the matrices

C∗ = I ⊕ C ⊕ C2 =





0 −2 1

1 0 2

−1 −3 0



 ,
(

C∗
)−

=





0 −1 1

2 0 3

−1 −2 0



 .



602 N. Krivulin

Furthermore, we calculate

C∗
(

C∗
)−

=





0 −1 1

2 0 3

−1 −2 0



 , 1 =
∥

∥C∗
(

C∗
)−∥
∥= 3.

We examine columns in the matrix C∗ to get

∥

∥c∗
1

∥

∥

∥

∥

(

c∗
1

)−∥
∥= 2,

∥

∥c∗
2

∥

∥

∥

∥

(

c∗
2

)−∥
∥= 3,

∥

∥c∗
3

∥

∥

∥

∥

(

c∗
3

)−∥
∥= 2.

We take k = 2 and then identify s = 3. With α = 0, we arrive at the set of solutions
x = C∗u, where u = (ui) is a vector with components

u1 6 1, u2 = 3, u3 6 0.

For the solution with the latest initiation time, we have

u =





1

3

0



 , x = C∗u =





1

3

0



 .

We now apply Lemma 4 to solve problem (14), which is to maximize the deviation
between completion times of activities in a project with a combined set of precedence
constraints. We consider a project with n = 3 activities, where start-finish and start-start
constraints are given by the respective matrices

A =





4 1 1

2 2 0

0 1 3



 , C =





0 −2 1

0 0 2

−1 0 0



 .

Using the result of the previous example, we find the matrix

D = AC∗ =





4 1 1

2 2 0

0 1 3









0 −2 1

1 0 2

−1 −3 0



=





4 2 5

3 2 4

2 1 3



 .

Furthermore, we obtain

D− =





−4 −3 −2

−2 −2 −1

−5 −4 −3



 , DD− =





0 1 2

0 0 1

−1 −1 0



 , 1 =
∥

∥DD−
∥

∥= 2.

Analysis of columns in the matrix D gives

‖d1‖
∥

∥d−
1

∥

∥= 2, ‖d2‖
∥

∥d−
2

∥

∥= 1, ‖d3‖
∥

∥d−
3

∥

∥= 2.
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First we take k = 1 and s = 3. With α = 0, we get the solution x = C∗u, where the
vector u = (ui) has components

u1 = −2, u2 6 −1, u3 6 −3.

The solution with the latest initiation times is given by

u =





−2

−1

−3



 , x = C∗u =





−2

−1

−3



 , y = Du =





2

1

0



 .

Another solution is obtained by setting k = 3 and s = 3. The vector u is then defined
by

u1 6 −2, u2 6 −1, u3 = −3.

The solution with latest initiation time is obviously the same as before.
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Maksimizacijos problema tropinėje matematikoje: išsamus

sprendimas ir taikymo pavyzdžiai

Nikolai KRIVULIN

Tropinės matematikos terminais suformuluotas optimizacijos uždavinys, kurio tikslo funkcija api-
brėžta per vektorių transpoziciją semimoduliu idempotentiniame semilauke. Šis uždavinys įdomus
ryšium su projektų grafikų sudarymu, kai skirtingos atlikimo trukmės optimizuojamos pagal darbų
eiliškumo ribojimus. Uždavinys be ribojimų sprendžiamas nustatant tikslo funkcijos reikšmių viršu-
tinį rėžį, o po to sprendžiant vektorines lygtis, kurių sprendiniai sutampa su optimizacijos uždavinio
sprendiniais. Aptartos galimybės išplėsti pasiūlytą metodą uždaviniams su ribojimais. Pateikti pa-
vyzdžiai, iliustruojantys pasiūlyto metodo taikymą.


