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Abstract. In the paper we address the classical problem of solving one equation given by (d.c.)
function represented by the difference of two convex functions. This problem is initiated by the
optimization problems with constraints in the form of inequalities and/or equalities given by d.c.
functions when one needs to descent from an unfeasible point to the boundary of a constraint im-
proving, at the same time, the value of the objective function. We propose a new numerical procedure
which allows to do this. Further, for the developed algorithm we provide the convergence results and
numerical results of computational testing which look rather promising and competitive.
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1. Introduction

In the second half of the 20-th century the computational mathematics became one of
the most powerful and effective tools for the decision making procedures in various areas
of the human civilization: from medicine (Martinkenas et al., 2007) to economic and
technical problems (Törn and Zilinskas, 2007).

Those achievements have been attained, in particular, due to the fantastic progress in
computational sciences and developments in the field of computer technology.

On the other hand, the progress in the mathematical methods, specifically, in optimiza-
tion, is not so obvious, for instance, it concerns nonconvex optimization and solution of
the equation systems (Bakhvalov, 1977; Dennis and Schnabel, 1996; Horst and Tuy, 1993;
Kelley, 1995; Ortega and Rheinboldt, 1970; Strekalovsky, 2003; Törn and Zilinskas, 2007;
Zhigljavsky and Zilinskas, 2008).

However, observe that the latter case might be treated by the optimization approach,
but nowadays nonconvex optimization problems are viewed as very difficult and often
computationally intractable, because real-life nonconvex optimization problems may have
a lot (often a huge number!) of local extrema and stationary (KKT-) points which are rather
far from a global solution (Hiriart-Urruty, 1985; Nocedal and Wright, 2006; Izmailov and
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Solodov, 2014; Mathar and Zilinskas, 1994; Sergeyev and Kvasov, 2008; Strekalovsky,
2014; Horst and Tuy, 1993; Zhigljavsky and Zilinskas, 2008).

It is worth mentioning that in the case of the equation systems such a situation cor-
responds to the multitude of critical points (generated by Newton’s methods) which
are rather far from the root set. As a consequence, the classical optimization meth-
ods for nonconvex problem and numerous variants of Newton’s schemes turn out to
be, in general, inoperative and ineffective when it comes to finding a (global) solution
or roots of the equation system, because they fail to escape a local pit in the case of
arbitrary starting point (Bakhvalov, 1977; Dennis and Schnabel, 1996; Kelley, 1995;
Ortega and Rheinboldt, 1970; Nocedal and Wright, 2006; Zhigljavsky and Zilinskas,
2008).

Therefore, all experts in the field agree that we need to search for new ways of con-
structing new numeric schemes designed for escaping local pits or improving of Newto-
nian critical points. On the other hand, the linear space DC(Rn) of d.c. functions, i.e. the
functions represented by the difference of two convex functions, is large enough to test
any approach to solving the problems mentioned above.

Recall that C2(Rn) ⊂ DC(Rn), and all power polynomials belong to DC(Rn); etc.
Horst and Tuy (1993), Strekalovsky (2003), Hiriart-Urruty (1985).

Moreover, every continuous function on a compact can be approximated by a d.c. func-
tion at any accuracy. As a consequence, any system of equations with continuous functions
can be replaced by an equivalent system of equations with a d.c. function at any desired
accuracy. Finally, the convex cone of convex functions has been rather profoundly inves-
tigated in Hiriart-Urruty (1985).

Therefore, this paper addresses the simplest object in the equations theory – a sin-
gle equation with a d.c. function. After the statement of the problem and its motivation
in Section 2, we propose a numeric scheme for solving the equation. In Section 3, the
convergence of the procedure is investigated. Finally, we present and analyse results of
computational simulations.

2. Statement of the Problem and Motivation

Consider the equation

(E): F(x) = 0, x ∈R
n, (2.1)

where F(·) is a (d.c.) function, which can be represented as a difference of two convex
functions g(·) and h(·):

F(x) = g(x) − h(x),

where g(·) is continuously differentiable. Assume that there exist points u and v from R
n

that satisfies the following relations

F(u) , g(u) − h(u) < 0 < F(v) , g(v) − h(v). (2.2)
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Remember, that the solution of the problem under consideration should be carried out
within the general optimization problem with the d.c. inequality constraints for finding
an admissible point, which is better than the current critical one provided by, say, a local
search, in particular, in the problem (Strekalovsky, 2003; Horst and Tuy, 1993) as follows:

(P0):
f (x) ↓ min, x ∈ S,

F (x), g(x) − h(x)6 0.

}

(2.3)

Note, that in place of the point u we use the point that violated equation (2.1) and at which
F(u) < 0, meanwhile f (u) 6 f (z), where z is the current critical point. To find v it is
sufficient to solve the relaxed convex problem without the inequality constraint:

(PR): f (x) ↓ min, x ∈ S. (2.4)

In this case, one may have the following relations

F(v) > 0, f (v) < f (u) 6 f (z). (2.5)

Therefore, by virtue of (2.2), there exists a number λ ∈]0; 1[ that satisfies the condition

xλ = λu + (1 − λ)v = v + λ(u − v) : F(xλ) = 0, (2.6)

or, which is the same,

g
(

x(λ)
)

= h
(

x(λ)
)

. (2.6′)

So, to find the solution to (2.6′), it is sufficient to perform a one-dimensional search along
λ ∈]0; 1[. However, the solution to (2.6′) might not be unique, and ideally we should
choose the convex combination coefficient λ that corresponds to the smallest value of the
goal function f (x(λ)). The explanation is that, in virtue, say, of convexity of f (·), the
following inequalities hold:

f (x(λ))6 λf (u) + (1 − λ)f (v) < f (z). (2.7)

Taking into consideration (2.5), it is easy to see that the closer λ is to zero, the smaller the
upper bound of the value f (x(λ)) is. Besides, if f (·) is convex, then the value of f (x(λ))

is also smaller.
Therefore, among the solutions to (2.6′), it is reasonable to search for the one that

corresponds to the smallest λ.

3. Numerical Method

Further on, we propose a procedure which aims at the approximate computation of λ that
satisfies (2.6′). To find µ0, we do not use the equality

g(x(µ0)) = h
(

x(µ0)
)

. (3.1)



370 A. Strekalovskiy, E. Musatova

Instead, we employ the following relation:

g(v) + µ0

〈

∇g(v),u − v
〉

= µ0h(u) + (1 − µ0)h(v).

It means that we linearize the function g(·) at the point v, and in place of the function h

we use the convex combination of its values at the points u and v. Then it immediately
follows from the latter relation that

µ0 =
F(v)

h(u) − h(v) − 〈∇g(v),u − v〉
. (3.2)

Hence, if we choose µ0 as shown above, then we use an explicit form of F(·) as a
difference of two convex functions. In this case, due to (2.2) and the convexity of g(·), the
denominator in (3.2) turns out to be positive, since

ϕ(u, v) , h(u) − h(v) −
〈

∇g(v),u − v
〉

> h(u) − h(v) − g(u) + g(v) = F(v) − F(u) > 0. (3.3)

Thus, using (2.2), (3.2) and (3.3), we arrive at the chain of inequalities

0 < µ0 =
F(v)

ϕ(u, v)
6

F(v)

F (v) − F(u)
< 1. (3.4)

Consequently, the number µ0 ∈]0,1[ can be a coefficient for the convex combination of
the vectors u and v satisfying (2.2).

Further on, taking into consideration convexity of g(·) and h(·) and using (3.2), we
obtain

F(x(µ0)) = g
(

x(µ0)
)

− h
(

x(µ0)
)

= g
(

µ0u + (1 − µ0)v
)

− h
(

µ0u + (1 − µ0)v
)

> g
(

v + µ0(u − v)
)

− µ0h(u) − (1 − µ0)h(v)

> g(v) + µ0

〈

∇g(v),u − v
〉

− µ0h(u) − (1 − µ0)h(v) = 0,

so that the following inequality is valid at the point x(µ0):

F
(

x(µ0)
)

> 0. (3.5)

Taking into account (3.2)–(3.5) and using the sequence {µk} of the convexcombination
coefficients, we can develop the procedure of convex combination (CoComba), which
generates the sequence {xs}, starting at x0 = v and all points of which belongs to the
segment [u; v].

Procedure “CoComba”

Step 0. Set k := 0, xk := v.
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Fig. 1. The first iteration of procedure CoComba.

Step 1. Compute

µk :=
F(xk)

h(u) − h(xk) − 〈∇g(xk), u − xk〉
. (3.6)

Step 2. Construct a convex combination

x := xk + µk

(

u − xk
)

. (3.7)

Step 3. If F(x)6 ε, then Stop, x is an ε-solution to the equation F(x) = 0.
Step 4. Set k := k + 1, xk := x , move to Step 1.

Now let us give a geometric interpretation of the method proposed. More precisely
Fig. 1 shows the first iteration of CoComba for the one-dimensional case (x ∈ R). Besides,
on the segment [u,v] in place of h(·), i.e. we construct a segment that passes through the
points (u,h(u)), (v,h(v)). After that, we linearize g(·), i.e. we construct the tangent to
y = g(x) at the point v. The point x1 is the projection (into the space X, absciss) of the
point of intersection of two lines, and all subsequent points xk are located to the right of
the root x∗ of the equation.

Further, consider the relations of CoComba with the well-known methods (Bakhvalov,
1977; Ortega and Rheinboldt, 1970). In particular, let us investigate the cases, when equa-
tion (2.1) is defined by one convex function, and observe various changes in CoComba.

Case 1. Let g(x) ≡ 0. Then, on Step 1 the convex combination coefficient µk is found as

µk = −
h(xk)

h(u) − h(xk)
. (3.8)

By substituting µk into (3.7), we obtain

xk+1 = xk −
h(xk)(u − xk)

h(u) − h(xk)
, k = 1,2, . . . (3.9)
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Fig. 2. The graph of function F(x) = −x5 + x3 + 4x.

which is the chord method (false position method) for solving the equation h(x) = 0

(Bakhvalov, 1977; Dennis and Schnabel, 1996; Ortega and Rheinboldt, 1970; Kelley,
1995).

Case 2. Let now in (2.1) the function h(·) be identically equal to zero: h(x) ≡ 0. Then,
on Step 1 we obtain

µk = −
g(xk)

〈∇g(xk), u − xk〉
, (3.10)

which implies the iterative process

xk+1 = xk −
g(xk)(u − xk)

〈∇g(xk), u − xk〉
, k = 1,2, . . . (3.11)

If x ∈ R
1, this is nothing else but Newton’s method for the equation g(x) = 0:

xk+1 = xk −
g(xk)

g′(xk)
.

Note that the direct application of Newton’s method (Bakhvalov, 1977; Izmailov and
Solodov, 2014) or the chord method to the nonconvex function F(x) does not always
result in finding a root of the equation. The iterative process might diverge or converge to
another root of the equation or even converge to a point which is not a root. The following
example illustrates this.

Example 1. (See Nocedal and Wright, 2006.) Consider the equation −x5 + x3 + 4x = 0

(see Fig. 2).
The segment [−1; 1] contains the root of the equation x∗ = 0. If we choose x0 = 1

or x0 = −1 as a starting point for Newton’s method, then the method loops endlessly
generating either 1 or −1 for the next iteration.
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Fig. 3. The graphs of g(·) and h(·) from the d.c. representation of the function F(x) = −x5 + x3 + 4x.

If we apply formulae (3.9) to the segment [u; v] = [−1.5; 1], the iterative process
converges to the root x ≈ −1.6005 that does not belong to the given segment.

Meanwhile, CoComba makes it possible to find the root x∗ = 0 with an accuracy of
0.001 in 6 iterations in Case 1 and in 9 iterations in Case 2. Figure 3 shows graphs for
the functions g(x) and h(x) from the d.c. representation of the function F defining the
equation.

Here

g(x) =

{

−x5 + 4x, x < 0,

x3 + 4x, x > 0,
h(x) =

{

−x3, x < 0,

x5, x > 0.

Remark 1. Now let us have a closer look at the d.c. representation of the function defining
the equation. As is well known (Hiriart-Urruty, 1985; Horst and Tuy, 1993), for any d.c.
function F(x) there exists an infinite number of the d.c. representations of d.c. function.
The question that has to be answered is which d.c. representation is most suitable for the
method in operation that uses the explicit representation into a difference of two convex
functions.

Specifically, consider two d.c. representations for the same function F(x). Let

F(x) = g1(x) − h1(x), (3.12)

and, at the same time,

F(x) = g2(x) − h2(x), (3.13)

where g2(x) = g1(x) + r(x), h2(x) = h1(x) + r(x), whereas r(·), g1(·) and h1(·) are
convex functions. It means, we added the same convex function r(x) to both convex terms
g1(x) and h1(x) which are employed in the first d.c. representation.

In Case 1, the convex combination coefficient has the following form on Step 1:

µ01 :=
F(x0)

h1(u) − h1(x0) − 〈∇g1(x0), u − x0〉
. (3.14)
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On the other hand, in Case 2, on account of the convexity of r(·), we get

µ02 :=
F(x0)

h2(u) − h2(x0) − 〈∇g2(x0), u − x0〉

=
F(x0)

h1(u) − h1(x0) − 〈∇g1(x0), u − x0〉 + (r(u) − r(x0) − 〈∇r(x0), u − x0〉)
.

Further on, by employing the inequality of convexity for r(·)

r(u) − r
(

x0
)

−
〈

∇r
(

x0
)

, u − x0
〉

> 0,

we arrive at the following relations

µ02 6
F(x0)

h1(u) − h1(x0) − 〈∇g1(x0), u − x0〉
= µ01.

In particular, when r(x) = ‖x‖2, the coefficient µ02 reads as

µ02 =
F(x0)

ϕ(u, x0) + (‖u‖2 − ‖x0‖2 − 2〈x0, u − x0〉)
=

F(x0)

ϕ(u, x0) + ‖u − x0‖2
.

Thus, since ‖x1 − x0‖ = µ0‖u − x0‖, the strongly convex function ‖x‖2 added to g1(·)

and h1(·) decreases the convex combination coefficient and therefore the method’s step
size. This fact should be taken into consideration when choosing the d.c. representation
of the function defining the equation. For example, if possible, we can take the minimal
d.c. representation (Hiriart-Urruty, 1985).

4. Convergence Proof for the CoComba Procedure

Let us now investigate the properties of the sequence {xk} generated by the CoComba
procedure when ε = 0, i.e. when the iterative process is infinite.

Since x0 := v, F(x0) > 0, then we obtain from (3.5)

F(xk)> 0, k = 0,1,2, . . . (4.1)

On the other hand, by construction x0 := v, and one can see that

x1 − x0 = µ0

(

u − x0
)

, 0 < µ0 < 1,

x2 − x1 = µ1

(

u − x1
)

= µ1

[

u − x0 − µ0

(

u − x0
)]

= µ1(1 − µ0)
(

u − x0
)

,

x3 − x2 = µ2

(

u − x2
)

= µ2

[

u − x1 − µ1

(

u − x1
)]

= µ2(1 − µ1)
(

u − x1
)

= µ2(1 − µ1)
[

u − x0µ0

(

u − x0
)]

= µ2(1 − µ1)(1 − µ0)
(

u − x0
)

= µ2(1 − µ1)(1 − µ0)(u − v). (4.2)
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Therefore, it follows immediately that

xk+1 − xk = µk(1 − µk−1)(1 − µk−2) · · · (1 − µ0)(u − v). (4.3)

Besides, similarly, we get

xk+1 − u = xk + µk

(

u − xk
)

− u = (1 − µk)(1 − µk−1) · · · (1 − µ0)(v − u). (4.4)

Hence, the behaviour of the sequence {xk} depends on the behaviour of {µk} and {1−µk}.
For this reason, first we investigate properties of the sequence {µk}.

Theorem 1. The numerical sequence {µk} constructed by the rule (3.6) converges to zero:
limk→∞ µk = 0.

Proof. Suppose the contrary and let {µk} satisfy the condition

µk > γ > 0 ∀k = 0,1,2, . . .

Then, due to the inequalities

0 < γ 6µk < 1,

we have

1 − µk 6 1 − γ = q < 1 ∀k = 0,1,2, . . .

Therefore, it follows from (4.4)

∥

∥xk+1 − u
∥

∥ = (1 − µk)(1 − µk−1) · · · (1 − µ0)‖v − u‖6 qk+1‖v − u‖.

Consequently, we derive

lim
s→∞

∥

∥xk+1 − u
∥

∥6 lim
k→∞

qk+1‖v − u‖ = 0.

This means that xk → u, which is impossible in virtue of continuity of the function F(·),
because due to (4.1) we have

F(xk)> 0 > F(u), k = 0,1,2, . . . (4.5)
�

Corollary 1. The sequence {xk} generated by CoComba converges:

lim
k→∞

xk = x∗, F (x∗)> 0.
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Proof. It follows from (4.3) that

∥

∥xk+1 − xk
∥

∥ = µk(1 − µk−1) · · · (1 − µ0)‖u − v‖ 6 µk‖u − v‖,

since

(1 − µi)6 1, i = 0,1,2, . . . , k − 1.

Hence, taking into consideration that µk ↓ 0, we arrive at the equality

lim
k→∞

∥

∥xk+1 − xk
∥

∥ = 0.

Therefore, there exists a point x∗ ∈R
n : x∗ = limk→∞ xk .

So, the sequence {xk} converges to some limit x∗. Due to the continuity of F(·), we
obtain that

lim
k→∞

F
(

xk
)

= F(x∗)> 0.

�

Let now introduce a set of numbers λ, which are the roots of equation (2.6′):

3∗ =
{

λ ∈ [0,1]
∣

∣ F
(

λu + (1 − λ)v
)

= 0
}

,

and a set of corresponding vectors x(λ):

X∗ =
{

x ∈ R
n
∣

∣ ∃λ ∈ 3∗ : x = λu + (1 − λ)v, F (x) = 0
}

.

Further on, let us demonstrate that the sequence {xk} converges to the solution of equa-
tion (2.1), meanwhile the algorithm finds the closest to v root of the equation from the
set X∗.

Theorem 2. The limit x∗ of the sequence {xk} generated by the CoComba procedure

(i) is a root of the equation F(x) = 0;
(ii) satisfies the relation

∥

∥x∗ − v
∥

∥ = min
x

{

‖x − v‖
∣

∣ x ∈ X∗

}

. (4.6)

Proof. (i) Since F(xk) > 0 ∀k = 0,1, . . . , then, due to continuity of F(·), F(x∗) > 0.
Suppose that the limit of the sequence {xk} is not the root of the equation, i.e. there exists
η > 0 such that

lim
s→∞

F
(

xk
)

= F(x∗) = η > 0.
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Then, by the construction of the convex combination coefficient µk on Step 1 of the algo-
rithm from (3.6), we obtain

h(u) − h
(

xk
)

−
〈

∇g
(

xk
)

, u − xk
〉

, ϕ
(

u,xk
)

=
F(xk)

µk

>
η

µk

,

whence, due to Theorem 1, it follows that

lim
k→∞

[

h(u) − h
(

xk
)

−
〈

∇g
(

xk
)

, u − xk
〉]

, lim
k→∞

ϕ
(

u,xk
)

= +∞. (4.7)

On the other hand, since xk → x∗, then, due to continuity of h(·), the mapping ∇g(·)

and the scalar product, we have

lim
k→∞

ϕ
(

u,xk
)

= lim
k→∞

[

h(u) − h
(

xk
)

−
〈

∇g
(

xk
)

, u − xk
〉]

= h(u) − h(x∗) −
〈

∇g(x∗), u − x∗

〉

∈ R,

which does not coincide with (4.7). Therefore, the assumption that F(x∗) > 0 is false, and
thereby the first statement of the theorem is proved.

(ii) Let us now show the validity of (4.6). Suppose x̄ ∈ X∗ is a solution to the equation
for which

‖x̄ − v‖ = min
x

{

‖x − v‖
∣

∣x ∈ X∗

}

.

Further, let us prove that x∗ coincides with x̄ . To this end, along with the sequence
{µk}, we consider the sequence {γk} such that

x̄ = γku + (1 − γk)x
k, k = 0,1,2, . . .

Let us verify that at each step of the algorithm µk 6 γk and that the point xk happens to
be closer to v than x̄, i.e. the following inequality holds:

∥

∥xk − v
∥

∥ 6 ‖x̄ − v‖ ∀k = 0,1,2, . . . (4.8)

First let us demonstrate that µ0 6 γ0 as k = 0.
Due to convexity of the functions g(·) and h(·), the following chain of inequalities

holds:

g(v) + γ0

〈

∇g(v),u − v
〉

6 g
(

γ0u + (1 − γ0)v
)

= h
(

γ0u + (1 − γ0)v
)

6 γ0h(u) + (1 − γ0)h(v). (4.9)

Now, consider an affine function of one variable

90(γ ) = g(v) + γ
〈

∇g(v),u − v
〉

− γ h(u) − (1 − γ )h(v),
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which represents the difference between the right-hand and the left-hand sides of (4.9)
where γ0 is replaced by γ . Then, µ0 is a unique root of the equation 90(λ) = 0. Further-
more, in virtue of (4.9), 90(γ0) 6 0.

On the other hand,

90(0) = g(v) − h(v) > 0,

whence it follows that µ0 6 γ0. Therefore, we obtain

∥

∥x1 − v
∥

∥ = µ0‖u − v‖ 6 γ0‖u − v‖ = ‖x̄ − v‖.

Consequently, the root x̄ can be represented as a convex combination of the points u

and x1, so that γ1 ∈ [0; 1[.
Further, let the following condition hold for k = m

µm−1 6 γm−1,
∥

∥xm − v
∥

∥ 6 ‖x̄ − v‖, γm ∈ [0; 1[. (4.10)

Let us move to the (m + 1)-th iteration. Similarly, for the function

9m(γ ) = g
(

xm
)

+ γ
〈

∇g
(

xm
)

, u − xm
〉

− γ h(u) − (1 − γ )h
(

xm
)

,

we get 9m(µm) = 0, 9m(0) = g(xm) − h(xm) > 0, 9m(γm) 6 0, whence it follows that

µm 6 γm. (4.11)

Now let us prove that ‖xm+1 − v‖ 6 ‖x̄ − v‖. Indeed, from (4.4) we obtain

∥

∥xm+1 − v
∥

∥ =
∥

∥

(

xm+1 − u
)

+ (u − v)
∥

∥

=
∥

∥(1 − µm)(1 − µm−1) · · · (1 − µ0)(v − u) + (u − v)
∥

∥

=
(

1 − (1 − µm)(1 − µm−1) · · · (1 − µ0)
)

‖u − v‖. (4.12)

On the other hand, it is easy to see that

‖x̄ − v‖ =
∥

∥(γmu + (1 − γm)v − u) + (u − v)
∥

∥ =
∥

∥(1 − γm)(xm − u) + (u − v)
∥

∥

=
(

1 − (1 − γm)(1 − µm−1)(1 − µm−2) · · · (1 − µ0)
)

‖u − v‖. (4.13)

Furthermore, taking into consideration (4.11), we derive from (4.12) and (4.13) that
‖xm+1 − v‖ 6 ‖x̄ − v‖.

Hence, we conclude that (4.8) is valid.
Finally, passing to the limit in (4.8) as k → ∞, we obtain

‖x∗ − v‖ 6 ‖x̄ − v‖ = min
x

{

‖x − v‖
∣

∣ x ∈ X∗

}

,

whence the assertion (4.6) of Theorem 2 follows. �
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As has been mention in the introduction, in the one-dimensional case, the problem of
finding a special solution, satisfying (4.6), can be motivated by a problem of finding the
smallest root of the equation. Consider an example of such a problem arising in practice
(Sergeyev and Kvasov, 2008).

Suppose it is required to determine how long a device can work properly within the
time interval [t0, t1]. Herewith, the function f (t) describes the proper work of the device,
f (t0) > 0. Besides, the device works properly at time t if f (t) > 0. We are asked to find
such a moment of time t∗ that

f (t∗) = 0, f (t) > 0, t ∈
[

t0, t
∗
[

, t∗ ∈]t0, t1].

It is worth noting that in Sergeyev and Kvasov (2008), Molinaro and Sergeyev (2001), the
solution of this problem is based on construction of auxiliary functions to approximate f

with various techniques for estimating the Lipschitz constant.
In addition, in Khamisov (2015) the method for solving a d.c. equation involves con-

struction of concave support functions, which allows finding the closest to v root. At each
iteration of this method, we linearize the function g(·) and search for the root xk+1 of the
equation

ϕ
(

x, xk
)

, g
(

xk
)

+ pk
(

x − xk
)

− h(x) = 0, (4.14)

where pk ∈ ∂g(xk), xk is a point obtained at the previous iteration.
It is clear, that if h(·) ≡ 0, then this method as well as CoComba coincides with New-

ton’s method. Consider the relationship between the two methods in the general case.
Notice that if we use the method from Khamisov (2015) and, instead of finding the

exact solution of (4.14), we carry out just a single iteration of the chord method, we obtain:

µϕ
(

u,xk
)

+ (1 − µ)ϕ
(

xk, xk
)

= 0

or

g
(

xk
)

+ µpk
(

u − xk
)

= µh(u) + (1 − µ)h
(

xk
)

,

whence, as pk = ∇g(xk), we find the coefficient µ to compute the next approximation in
CoComba.

Therefore, instead of solving (4.14) by some numerical method, CoComba executes
only one step of the chord method, which, nevertheless, is enough for convergence to the
root of the equation. In this case, we do not need to solve (4.14) at a high accuracy. Oth-
erwise, we can conclude that in CoComba the computational complexity of each iteration
is decreased in comparison to the method from Khamisov (2015).

5. Computational Simulations

The computational experiment aimed at numerical testing of the CoComba procedure
for solving equations with d.c. functions and comparing it with some other methods that
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guarantee finding of a solution within a given interval. To carry out the comparison, we
chose the modified chord method (MCM) and the bisection method.

The modified chord method allows us to stay within the given interval all the time
by redefining the boundaries of the interval that contains the root. Below we give the
description of the MCM “step-by-step”.

Modified Chord Method

Step 0. Set s := 0, vs := v, us := u.
Step 1. Compute

µs :=
F(vs)

F (vs) − F(us)
. (5.1)

Step 2. Make a convex combination of the points us , vs :

xs := µsu
s + (1 − µs)v

s = vs + µs

(

us − vs
)

. (5.2)

Step 3. If |F(xs)|6 ε, then xs is an ε- approximate solution to F(x) = 0.
Step 4. If F(xs) < 0, then set

us+1 := xs, vs+1 := vs , (5.3)

s := s + 1, move to Step 1.
Step 5. If F(xs) > 0, then set

us+1 := us, vs+1 := xs, (5.4)

s := s + 1, move to Step 1.

Here, as well as in the CoComba procedure, at each iteration we construct a convex
combination of the points at which the function F has the opposite signs. However, we
cannot predict (like it happened to be possible in the case of CoComba) which sign F

has at the next iteration. Therefore, in contrast to CoComba, where the sequence {xs}

approaches the solution from one side, here we construct two sequences {us} and {vs}.
At first, we tested the methods on the d.c. equations of one variable. The data on the

test equations is given in Table 1.
Further, Table 2 comprises the results of the second stage of testing. Here, N is the

equation number followed by the segment that contains the roots of the equations and the
number of iterations required by CoComba, the modified chord method and the bisection
method. Besides, to carry out the comparison, we used MatLab r2009a. Note that the
bold font indicates the smallest number of iterations required to find a root by a respective
method. Here the chosen accuracy ε was 10

−7.
It can be readily seen from Table 2 that CoComba is most effective with respect to the

number of iterations in all cases.
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Table 1
Test equations.

No. Equation No. Equation

1 2 cosx+ x = 0 6 x
3
− 6x+ 1 = 0

–10

–5

0

5

–10 –8 –6 –4 –2 2 4 6 8 10x

–8

–6

–4

–2

2

4

6

8

10

–3 –2 –1 1 2 3x

2 3 sinx− x+ 4 = 0 7 0.01x2
− cosx = 0

–4

–2

2

4

6

8

10

12

–6 –4 –2 2 4 6x

–1

–0.5

0

0.5

1

1.5

–10 –8 –6 –4 –2 2 4 6 8 10x

3 e

x

2
− x

2 = 0 8 0.05x2 + sinx = 0

–35

–30

–25

–20

–15

–10

–5

–6 –4 –2 2 4 6x

–4

–3

–2

–1

0

1

2

–10 –8 –6 –4 –2 2 4 6 8 10x

4 3 cos x

2
−

x
3

2
= 0 9 sinx− 3x+ 1 = 0

–2

2

4

–2 –1 1 2x

–8

–6

–4

–2
0

2

4

6

8

10

–3 –2 –1 1 2 3x

5 2x− 3 sinx = 0 10 sinx− 4x+ 0.05x2 + 1 = 0

–10

–5

5

10

–6 –4 –2 2 4 6x

–60

–40

–20
0

20

40

60

80

100

–20 –10 10 20x

However, it should be taken into account that the computational cost of a single it-
eration of the CoComba procedure is higher because it needs to compute the derivative
of g. Nevertheless, all methods demonstrated comparable effectiveness with respect to the
solution time.
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Table 2
Solution of one-dimensional equations (number of iterations).

N Interval CoComba MCM Bisection M.

1 [−5;0] 4 8 26
2 [0;5] 5 5 27
3 [1;2] 7 10 16

[−5;0] 8 43 19
4 [1;2] 4 11 23
5 [1;2] 4 14 23

[0.3;1.8] 3 14 24
6 [2;3] 5 16 25

[−1;1] 3 4 25
7 [0;2] 3 4 23

[3;6] 4 5 24
[6;10] 4 6 24

8 [6;8] 6 7 27
9 [0;1] 3 6 23

10 [0;2] 5 9 21

Table 3
Increase of the interval containing the root (number of iterations).

N Interval CoComba MCM Bisection M.

1 [−10;10] 33 9 28
2 [10;−10] 30 6 29
3 [0;6] 12 25 19

[−10;0] 9 86 20
4 [−10;10] 170 222 25

5 [1;10] 7 15 26
6 [1;10] 8 221 29
7 [−6;10] 39 6 25
8 [−5;15] 32 11 26
9 [−10;10] 27 15 26

10 [−10;10] 23 17 27

If we increase the interval containing the root (see Table 3), then the situation becomes
quite different. As we could have foreseen, in this case the bisection method is most reli-
able, meanwhile the chord method as well as CoComba, being effective in certain cases,
requires a large number of iterations to perform in some other situations (see, for example,
Problem 4).

The similar phenomenon can be observed when solving multi-dimensional problems.
The bisection method happened to be the fastest, however, recall that it does not addition-
ally find the closest to v root, which is important when we search for the admissible point
in the problem (P0)–(2.3) with the d.c. constraint. However, we can give examples when
CoComba is most effective even for solving problems of large dimensions.

Tables 4 shows to results of solving the equation sin(x1 + x2 + · · ·+ xn) = 0. In Table
4, we use the following denotations: n is a number of variables, ui , vi are components of
the vectors u and v, respectively, I t is a number of iterations, T1000 is time required to
solve 1000 identical problems (solving one problem takes too little time).
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Table 4
Solution of the equation f (x) , sin(x1 + x2 + · · · + xn) = 0.

n ui vi ε CoComba MCM Bisection M.

I t T1000 I t T1000 I t T1000

10 π
2n

1 0.001 3 0.09 4 0.06 12 0.14
0.00001 5 0.16 5 0.07 19 0.19

100 π
2n

1.1 0.001 2 0.09 8 0.11 14 0.18
0.00001 4 0.16 9 0.13 23 0.21

500 π
2n

1 0.001 2 0.13 11 0.24 18 0.39
0.00001 3 0.18 12 0.27 24 0.51

1000 1 − π
2n

0.001 3 0.23 13 0.43 17 0.52
0.00001 4 0.31 14 0.45 25 0.78

Here, independently of the growth in dimension, CoComba steadily passes 4 iterations
outperforming other methods with respect to the number of iterations and running time.

In conclusion, consider an example from Khamisov (2015), which was used to com-
pare CoComba with the method of concave support functions.

Find the root of the equation f (x), − sin(x)−sin(3x+1)+1.5 = 0. Assume [5; 8.5]

as an interval containing the root.
The method of concave support functions required 13 iterations to find the root with

accuracy of 10
−7. The CoComba took 48 iterations. However, the computational cost of

these methods differs: in the first case, in addition to computing values of h(·) and ∇g(·)

or g′(x) ∈ ∂g(x) at each iteration, one needs to somehow solve the equation (4.14) (for
example, by the bisection method). Here CoComba has the obvious advantages. Since the
dimension of example from Khamisov (2015) is equal to 1, counting time is negligibly
small in both cases.

So, the test examples demonstrated effectiveness of CoComba. Since CoComba takes
acceptable amount of time and also takes into consideration specific properties of the
optimization problem, it is reasonable to use it in solving optimization problems with the
d.c. constraints to find admissible points.

6. Conclusions

In the paper, we proposed a new numerical method (the CoComba procedure) for solving
one equation with d.c. function of multi-dimensional variable and gave the motivation for
this problem with some applications.

In addition, we investigated the convergence of the advanced algorithm and the prop-
erties of sequence generated by the method.

Furthermore, the computational testing has been carried out on the test examples from
the literature. Finally, the results of computational experiments have been analysed and
compared with the results of other methods such as the modified chord method and the
bisection method.
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To sum up, the developed new method shows itself comparable with the effectiveness
of other methods, and the results of computational testing of the CoComba procedure look
rather promising, in particular, with respect to the solution time and number of iterations.
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Apie vienos lygties su D.C. funkcija sprendimą

Alexander STREKALOVSKIY, Elena MUSATOVA

Šiame straipsnyje nagrinėjame klasikinį uždavinį su viena lygtimi, aprašyta D.C. funkcija, pateikta
per dviejų iškilų funkcijų skirtumą. Šis uždavinys yra inicijuotas optimizavimo uždavinių su nely-
gybiniais ir arba lygybiniais apribojimais, aprašytais D.C. funkcijomis, kai reikia grįžti iš neleistino
taško prie apribojimo krašto ir tuo pačiu pagerinti tikslo funkcijos reikšmę. Siūlome tai leidžian-
čią naują skaitinę procedūrą. Sukurtam algoritmui pateikiame konvergavimo rezultatus ir skaitinio
testavimo rezultatus, kurie yra gana perspektyvūs ir konkurencingi.


