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Abstract. The iterative bisection of the longest edge of the unit simplex generates a binary tree,
where the specific shape depends on the chosen longest edges to be bisected. In global optimization,
the use of various distance norms may be advantageous for bounding purposes. The question dealt
with in this paper is how the size of a binary tree generated by the refinement process depends
on heuristics for longest edge selection when various distance norms are used. We focus on the
minimum size of the tree that can be reached, how selection criteria may reduce the size of the
tree compared to selecting the first edge, whether a predefined grid is covered and how unique
are the selection criteria. The exact numerical values are provided for the unit simplex in 4 and
5-dimensional space.

Key words: simplex, Branch-and-Bound, longest edge bisection, norm, selection heuristics.

1. Introduction

During his scientific career, the interests of Antanas Žilinkas have shown a wide vari-
ety. Besides focus on practical problem solving such as Žilinskas and Žilinskas (2013),
his handbooks written with Aimo Törn (Törn and Žilinskas, 1989) and Anatoly Zhigl-
javsky (Zhigljavsky and Žilinskas, 2008) aided the understanding of random function
approaches, stochastic processes and branch and bound (B&B). With Jens Claussen
(Claussen and Žilinskas, 2002) one of his topics focussed on the use of simplicial par-
tition sets in B&B. The clear advantage of these partition sets is in the use of bounding
when the function value of all vertices is taken into account.

This idea is of great interest to our team, as the use of simplicial partition sets is natural
when the search region is the unit simplex. This is the case of mixture design problems.
We studied these problems with quadratic constraints for practical design of mixtures in
the lubricant industry (Hendrix and Pínter, 1991) and for the design of fat blends in food
production (Casado et al., 2007).

*Corresponding author.
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Fig. 1. The unit 2-simplex.

The search region can be described by the standard n-simplex defined in the (n + 1)-
dimensional space (see Fig. 1):

S1 =
{

x ∈ R
n+1

n+1
∑

j=1

xj = 1; xj > 0

}

, (1)

where xi represents the contribution of ingredient i in the mixture. In the resulting B&B
mostly Longest Edge Bisection (LEB) is applied as this provides relatively round sim-
plices. As discussed by the decision makers at that time, this typically provides solutions
with elements that are a power k of 0.5. Considering the worst case, where the complete
tree is generated up to a given relative user accuracy ǫ = 1

2k , one may expect the bisection
method to generate points on a grid with mesh size ǫ, whereas more points than the grid
are over-sampled. This paper shows that not necessarily all grid points are sampled and
that the behaviour of this covering among others depends on the chosen norm.

More recently, our research interest goes to the fact that the size of the Binary Tree (BT)
generated depends on the longest edges chosen to be bisected in the iterative bisection
refinement of the unit simplex for dimension bigger than 3. First of all, heuristics were
developed to choose the longest edge and the size of the tree was measured in Aparicio
et al. (2014) taking as a reference the “first” longest edge as choice rule. Next, a specific
algorithm was developed to discover the minimum size of a tree in dimension n+ 1 given
an accuracy ǫ in Salmerón et al. (2015). Following the line of early research of Adler
(1983), Horst (1997), Hendrix et al. (2012), we studied bisection of the longest edge in
Euclidean norm.

Although not necessary for deriving bounds on quadratic constraints, the bounding in
Hendrix and Pínter (1991) and Casado et al. (2007) was based on Lipschitzian consider-
ations. Thinking in terms of Euclidean space, the Lipschitz constant links the accuracy δ

in function space with a maximum accuracy ǫ in the decision space. This means that one
does not have to subdivide partition parts further if their size is less than ǫ making the
B&B algorithm a finite process given a certain accuracy. Recently some collaborators of
Antanas Žilinskas have shown that one can extend the bounding with Lipschitz constants
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to other norms such as the 1-norm and ∞-norm providing sharper bounds, see Paulavičius
et al. (2011) and the further explanations in the book (Žilinskas and Paulavičius, 2014).

This motivates the question whether the use of other norms is also profitable in the
generation of a complete binary tree from iterative refinement of the unit simplex. We pose
and investigate the following research questions. What is the effectiveness of heuristics to
choose the longest edge in the different distance norms? To investigate this question, we
measure the reduction in the size of the tree with respect to the simple rule of selecting the
first edge found. Second, is the minimum size tree of the 1-norm and ∞-norm smaller than
that of using the Euclidean norm? For this we run an exhaustive algorithm and measure
the corresponding tree size. Third, how well does bisection of the longest edge for the
1-norm and ∞-norm cover all points in a grid of a mesh size ǫ = 1

2k ? This question is
investigated by generating the points on a regular grid and measuring the number that are
used as vertices in the bisection process. Last, we will also investigate the uniqueness of
the studied selection rules; how many of the longest edges have the same criterion value?

The reporting on the investigation of these research questions in this paper is organ-
ised as follows. Section 2 introduces the simplex refinement by LEB, the grid on the unit
simplex and the different distance norms. Section 3 introduces the heuristics studied to
select the edge to bisect. Section 4 describes the algorithm to obtain the minimum binary
tree by simplex refinement using LEB. Section 5 describes the grid covering of the binary
tree using LEB. Section 6 shows a numerical evaluation of the bisection process on the
unit simplex in the various norms. Finally, conclusions and future research are discussed
in Section 7.

2. Simplex Refinement Using Longest Edge Bisection

Consider the unit n-simplex S1 of (1) to be iteratively bisected, where various distance
norms can be used. In general, an n-simplex S is defined by the convex hull S = conv(V )

of its vertex set V = {v1, . . . , vn+1}, vj ∈R
n+1, j = 1, . . . , n+1. Let ω(S) denote the size

(width) of a simplex S given by the length of its longest edge. Figure 1 shows a 2-simplex
of size

√
2 in Euclidean, size 2 in 1-norm and size 1 in ∞-norm distance.

Longest edge bisection (LEB) is a popular way of iteratively refining a simplex in the
context of the finite element method, since it is very simple and can easily be applied in
higher dimensions (Hannukainen et al., 2014). It is based on splitting a simplex using the
hyperplane that connects the mid point of the longest edge of a simplex with the opposite
vertices, as illustrated in Fig. 2. Longest edge bisection avoids the generation of needle
shape simplices. In this way, the length of an edge in a simplex cannot be greater than two
times the length of the other. Using LEB and ω(S) 6 ǫω(S1) as termination criterion, the
finiteness of the algorithm is assured.

Algorithm 1 describes the Simplex Refinement (SR) process which bisects an initial
simplex iteratively. In principle, the refinement can continue infinitely. We study the pro-
cess with a stopping criterion, i.e. the branching continues until the relative size of the
simplex is smaller than or equal to a desired accuracy ǫ.
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Fig. 2. Longest Edge Bisection (LEB) of the unit 3-simplex.

Algorithm 1 SR(S1, ǫ)

Require: S1: initial simplex, ǫ = 1
2k : relative accuracy

1: 3 := {S1} {Set of leaf indices; simplices not yet split}
2: ns := 1 {Number of simplices}
3: while 3 6= ∅ do

4: Extract a simplex Si from 3

5: if ω(Si) > ǫω(S1) then {Final accuracy not reached}
6: {j, k} := SelectLE(Si) {Select a longest edge}
7: {S2i, S2i+1} := Bisect(Si, j, k) {See Algorithm 2}
8: Store simplices S2i and S2i+1 in 3.
9: ns := ns + 2.

10: return ns

Figure 3 illustrates the result of the SR algorithm on a 2-simplex S1 with Euclidean
distance and accuracy ǫ = 0.5. The number of levels in the binary tree is 4 and the number
of generated simplices from S1 is 10.

Bisecting a 2-simplex does not require any selection among the longest edges in Se-
lectLE(), as the longest edge is either unique or the choice does not alter the size of the
resulting BT (in the cases with regular simplices). Algorithm 2 follows a rule described in
Mitchell (1989), where one can avoid edge length calculations in a 2-simplex by always
bisecting the edge with vertices {1,2} and numbering the new vertex as the last one of the
set of vertices in the generated new sub-simplices.

Figure 2 shows the bisection of a regular 3-simplex. It does not matter which edge is
selected first, because all generated sub-simplices differ only in orientation. Notice that
after the first sub-division, the generated sub-simplices are irregular and have three (out
of six) edges with the longest length. Therefore, we need to make a decision on which
longest edge should be bisected. The number of simplices in the finite BT generated by
Algorithm 1 depends on how fast the simplex size decreases when we go deeper into
the tree. A straightforward implementation selects the first longest edge {j, k} found in
SelectLE(). The resulting tree may differ if various norms are used. Moreover, applying
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Fig. 3. Binary tree generated by the SR algorithm on unit 2-simplex, ǫ = 0.5.

Algorithm 2 Bisect(S, j, k)
Require: S = conv(V ); j, k: vertex indices, vj , vk ∈ V determining an edge

1: Take the vertices vj and vk to generate x := vj +vk

2

2: Vl := Vr := V {New vertex sets Vl and Vr inherit characteristic from the old}
3: Remove vj from Vl and add x at the end {Vl = {v1, . . . , vj−1, vj+1, . . . , x}}
4: Remove vk from Vr and add x at the end {Vr = {v1, . . . , vk−1, vk+1, . . . , x}}
5: return Sl = conv(Vl), Sr = conv(Vr )

selection rules based on a criterion evaluation may reduce the size of the BT with respect
to the straightforward implementation. We are interested in how the chosen norm affects
the shape of the tree and the effectiveness of chosen selection rules, also called Heuristics
for Longest Edge Bisection.

3. Heuristics for Longest Edge Selection

As described before, during the refinement of a regular n-simplex (n >3) sub-simplices
may have several longest edges. A heuristic that computes a criterion value and uses it
to select the longest edge may reduce the number of generated sub-simplices and main-
tains the characteristics of the longest edge bisection. We investigate the effect of various
heuristics with respect to the number of generated simplices.

3.1. First Longest Edge, LEB1

The straightforward implementation to select a longest edge is to take the first one found.
Which is the first one? It depends of course on the coding and storing of the vertices and
edges, i.e. the index number assigned to each vertex of the simplex. The new vertex usually
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has the same index as the one it substitutes. This rule, which we denote as LEB1, is used
as a benchmark in measuring performance.

3.2. Midpoint Furthest from the Centroid, LEBC

The criterion is the distance of the midpoint of edge {vi , vj } to the centroid C:

∥

∥

∥

∥

vi + vj

2
− C

∥

∥

∥

∥

. (2)

The LEBC rule selects the longest edge {vi , vj } from

arg max
i,j

∥

∥

∥

∥

vi + vj

2
− C

∥

∥

∥

∥

. (3)

3.3. Largest Distance from Edge Midpoint to the Vertices, LEBM

The criterion is the sum of distances of the midpoint of edge {vi, vj } to the rest of vertices:

∑

k 6=i,j

∥

∥

∥

∥

vi + vj

2
− vk

∥

∥

∥

∥

. (4)

The LEBM rule selects the longest edge {vi , vj } from

arg max
i,j

∑

k 6=i,j

∥

∥

∥

∥

vi + vj

2
− vk

∥

∥

∥

∥

. (5)

3.4. Equal and Maximum Distance Sum to all Neighbours, LEBN

For each edge {vi, vj } the sum of edge lengths from vertex vi and vj to the rest of vertices
is given by

di =
∑

k 6=i

‖vi − vk‖, dj =
∑

k 6=j

‖vj − vk‖. (6)

The LEBN rule selects the longest edge that gives the optimum of

{vi , vj } ∈ arg max
i,j

{di + dj , di = dj }. (7)

In the cases without edges with di = dj , LEBN takes the longest edge {vi , vj } that max-
imises di + dj .

The uniqueness of maximising a criterion is an interesting topic. In cases where the
heuristics give more than one LE to bisect, i.e. the set arg max has more than one element,
another criterion can be added, e.g. first select according to LEBC and within the set
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of candidates apply LEBN . We will investigate possible combinations in future research
and focus on the pure effects in this paper. Here, we choose to select the LE with its
middle point being a grid point, as a second selection criterion. This can easily be tested
by checking that each element is an integer multiple of ǫ.

4. Minimum Tree Size

This section describes an algorithm for determining the size of the smallest binary tree
generated using Longest Edge Bisection as the rule for subdividing simplices as published
in Salmerón et al. (2015). The method applies a full enumeration of simplices checking ev-
ery division option, i.e. one for each longest edge, and counts the number of sub-simplices
in each sub-tree generated from that option. Algorithm 3 performs this task recursively.
It has the initial simplex and the required precision as input parameters and returns the
number of simplices of the smallest trees.

Algorithm 3 MinTree(S, ǫ)
Require: S: simplex, ǫ: accuracy.

1: if ω(S)6 ǫω(S1) then

2: return 1
3: for each longest edge LEh = {j, k} of S do

4: {Sl , Sr } := Bisect(S, j, k)

5: rl := MinTree(Sl , ǫ) {size of a minimum left sub-tree}
6: rr := MinTree(Sr , ǫ) {size of a minimum right sub-tree}
7: Rh := rl + rr
8: return 1 + minh{Rh}

Algorithm 3 determines the size of the smallest sub-tree from a sub-simplex when it is
bisected by one of its longest edges LEh, with vertices {j, k} (see line 4). It recursively calls
itself to get the smallest sub-tree size for the two generated sub-simplices (see lines 5–6).
When the recursive algorithm is back at the initial simplex, the size of the smallest trees is
known and the algorithm ends. The algorithm does not provide information about which
longest edges have been bisected to generate one of the smallest trees.

Figure 3 illustrates running Algorithm 3 on a 2-simplex for Euclidean distance and
ǫ = 0.5. The BT has 10 sub-simplices. Although the 2-simplex is not a very interesting
case, because irregular simplices have just one longest edge, the illustration facilitates
discussing several details not included in Algorithm 3 for the sake of simplicity:

• In Algorithm 3, if Sl and Sr are symmetric, only one of them is processed and the
algorithm returns twice the size of the evaluated sub-tree. In the example of Fig. 3,
siblings S2 and S3 and also S10, S11 and S12, S13 are symmetric. However, for our
investigation we also would like to find the cover of the grid and therefore cannot
apply this observation.



358 J.M.G. Salmerón et al.

• Algorithm 3 only has to process one of the longest edges for a regular simplex, be-
cause any edge division will return the same sub-tree size. Simplices S1, S4 and S7

are regular in Fig. 3.
• For an irregular simplex with several longest edges, it is of interest to determine

those edges generating similar pairs of siblings. Therefore, Algorithm 3 only has to
process one of the pairs. This will be studied in future work.

5. Covering of the Grid

In Törn and Žilinskas (1989), Antanas introduced the concept of everywhere dense sam-
pling. An equidistant grid is not necessarily the sample with a minimum number of points
where each point in the search space has a distance less than a predefined accuracy. How-
ever, it is easy to generate and understand. Choosing a certain accuracy ǫ = 1

2k , one would
expect iterative bisection of the unit simplex to generate all grid points and over-sample in
the sense that it generates additional points. This paper shows that this is not necessarily
true. The grid corresponds to G = 1

2k + 1 grid points per axis. It is known from Casado
et al. (2007) that the number of grid points is

NV (G,n) =
n

∑

k=1

(

G

j

)(

n − 1

j − 1

)

. (8)

Two neighbour points x and y on a grid are characterised by the existence of two indices
i 6= j such that (x1, . . . , xn+1) = (y1, . . . , yi + ǫ, . . . , yj − ǫ, . . . , yn+1). The distance be-
tween two neighbours therefore is d1(x, y) = 2ǫ in 1-norm, d2(x, y) = ǫ

√
2 in Euclidean

norm and d∞(x, y) = ǫ in infinity norm.
Notice that in infinity norm, there are more points than the grid-neighbours defined

before at a minimum distance to a grid point. For instance consider ǫ = .125 and n = 4.
Grid point x = (0.5,0,0.25,0,0.25) has a neighbour y = (0.375,0.125,0.25,0,0.25).
However, the point z = (0.375,0.125,0.125,0.125,0.25) is at the same minimum dis-
tance of x as the neighbour y . This observation motivates our question whether iterative
bisection with the infinity norm will cover all grid points for all dimensions and accuracies.

A refinement of the unit simplex that would cover all NV (G,n) grid points consists of

NS(G,n) =
(

G + n − 3

G − 2

)

, (9)

overlapping regular simplices, see G.-Tóth et al. (2016). The number of generated sim-
plices by bisection is much higher. Moreover, we have already questioned the cover of the
grid points by bisection. In order to know which vertices from the binary tree are covering
the grid points, we will compare the list of grid points with the list of generated vertices
by the bisection process. Notice the following:

Remark 1. One grid point can be covered by a vertex of several simplices.
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Fig. 4. Covering of grid points by iterative LE bisection, ǫ = 1
4

.

Remark 2. A full cover grid does not imply that all vertices are located on the grid. Off-
grid vertices can exist. In Fig. 4, yellow boxes represent grid points, whereas red boxes
represent generated vertices.

One of the questions is, what is the minimum size tree for the various norms? An
observation is that in Fig. 3 after 1 bisection, the next iteration according to the infinite
norm may choose from two longest edges, as two edges have a length of 1. Therefore, the
hypothesis is that the corresponding minimum size tree will be smaller or equal in num-
ber of nodes (simplices) than the corresponding 2-norm tree. This motivates the research
question on the size of the minimum tree. The third observation is that if the shape of the
tree may differ due to the variety of uniqueness (ambiguity) of the longest edge among
distance norms. The heuristics to choose from the longest edges may also differ in effec-
tiveness in obtaining a minimum size tree. This observation motivates the last research
question.

6. Numerical Evaluation

The heuristics and norms described in Sections 2 and 3 are evaluated on a regular
n-simplex. Different values of ǫ = 1

2k are used for several dimensions of the problems.
When there is more than one longest edge satisfying the criterion related to the heuristic
and having its middle point as a grid point, the first longest edge is bisected. The ques-
tion is what is the number of simplices in the binary tree and how close does it get to the
minimum size of the binary tree.

Another issue that we evaluate, directly related to the edge selection and simplex eval-
uation, is the match of vertices of the simplices with the grid points, as described in Sec-
tion 2. Moreover, we measure the ambiguity (uniqueness) of the criteria when selecting
the edge to bisect in the simplex.

6.1. 3-Simplex

We first focus on the refinement of the 3-simplex. Table 1 shows the number of simplices
of a smallest binary tree (MTREE) and the number of nodes generated by each heuristic for
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Table 1
Number of simplices in a 3-simplex refinement, ǫ = 1

2k .

k = 3 k = 4 k = 5

L2 L1 L∞ L2 L1 L∞ L2 L1 L∞

LEB1 4103 8511 3443 32343 69775 28939 257455 558375 237931
LEBC 2751 7183 5311 21887 63679 46607 174847 532751 382927
LEBM 2751 7167 7287 21887 64591 58271 174847 552799 462999
LEBN 2751 6847 2111 21887 57983 19071 174847 468223 164863

MTREE 2751 6099 1919 21887 52263 16255 174847 422407 127359

Table 2
Number of grid points covered in the 3-simplex refinement.

k = 3 k = 4 k = 5

(grid = 165) (grid = 969) (grid = 6,545)

L2 L1 L∞ L2 L1 L∞ L2 L1 L∞

LEB1 163 163 165 969 915 967 5983 5823 6477
LEBC 165 157 157 969 913 829 6545 6049 5029
LEBM 165 157 112 969 881 571 6545 5593 3455
LEBN 165 157 165 969 873 969 6545 5737 6545

MTREE 165 153 165 969 855 969 6545 5517 6545

Table 3
Euclidean norm. n = 3, ǫ = 1

32
(k = 5).

NLE LEB1 LEBC LEBM LEBN

Nle Nle1 NleG1 Nle NleC NleGC Nle NleM NleGM Nle NleN NleGN

1 217986 217986 75252 124996 124996 32768 124996 124996 32768 124996 124996 32768
2 23192 23192 17224 0 0 0 0 0 0 0 0 0
3 80430 80430 120 149550 99450 0 149550 99450 0 149550 99450 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 6378 6378 0 6 6 0 6 6 0 6 6 0

Sum 543928 543928 110060 573682 423382 32768 573682 423382 32768 573682 423382 32768
Amb 0.60 0.60 0.32 0.78 0.70 0.00 0.78 0.70 0.00 0.78 0.70 0.00

a varying accuracy ǫ. It is interesting to observe that LEBC , LEBM and LEBN achieve the
smallest binary tree size in 2-norm bisection. For the other norms, LEBN is the heuristic
that gets closest to the minimum. However, none of the heuristics generates a minimum
size tree. Considering the minimum size tree, the size for the 2-normand ∞-norm contains
less nodes (simplices) than the minimum size 1-norm tree.

Table 2 shows the number of covered grid points. LEBC , LEBM , LEBN and the small-
est binary tree cover the grid completely in the 2-norm cases. Interestingly, the heuristics
of the 1-norm do not cover the grid. The LEBN heuristic and minimum size tree for the
∞-norm is covering the grid.

The uniqueness of the selection criteria is measured in Tables 3, 4 and 5 for the 2-norm,
1-norm and ∞-norm, respectively.

They indicate the number of longest edges satisfying the criteria, i.e. the size of
the arg max set. Nle indicates the number of longest edges in simplices with NLE
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Table 4
1-norm. n = 3, ǫ = 1

32
(k = 5).

NLE LEB1 LEBC LEBM LEBN

Nle Nle1 NleG1 Nle NleC NleGC Nle NleM NleGM Nle NleN NleGN

1 310862 310862 229924 296304 296304 224072 330744 330744 260624 224040 224040 188848
2 278328 278328 158488 295104 177480 136504 277568 175328 154872 225200 138880 81008
3 237546 237546 127064 184968 115480 77552 172656 85512 72472 300960 188368 109184
4 83696 83696 33076 75152 32472 31288 68112 26148 24368 98576 32816 14592
5 29000 29000 13288 35930 16626 9352 32730 24890 23752 30850 6170 1744
6 14658 14658 4840 7590 5062 5056 12870 6014 5616 2694 2694 320

Sum 2147888 2147888 1155876 1967214 1241094 931984 1917166 1203062 1037712 2142038 1245182 747424
Amb 0.86 0.86 0.80 0.85 0.76 0.76 0.83 0.73 0.75 0.90 0.82 0.75

Table 5
∞-norm. n = 3, ǫ = 1

32
(k = 5).

NLE LEB1 LEBC LEBM LEBN

Nle Nle1 NleG1 Nle NleC NleGC Nle NleM NleGM Nle NleN NleGN

1 68898 68898 12992 235624 235624 117168 344944 344944 209678 34712 34712 2560
2 83588 83588 13592 171616 104416 42888 174560 98922 56866 51680 49696 1920
3 144564 144564 29030 113484 53140 17760 74490 30558 13268 96348 65204 10496
4 163912 163912 36158 54368 21480 3248 16744 5484 2988 83712 47040 3840
5 146210 146210 27118 46570 21586 1512 7940 1690 196 226650 45330 12096
6 52986 52986 9192 4566 2870 0 1026 686 0 35622 35622 4352

Sum 2374380 2374380 462640 1397026 814946 276776 1030366 668964 376146 2108946 958258 139840
Amb 0.97 0.97 0.97 0.83 0.71 0.58 0.67 0.48 0.44 0.98 0.96 0.98

longest edges. Nlea indicates how many of them satisfy the a criterion, i.e. Nlea =
| arg maxLE LEBa(LE)| in simplices with NLE longest edges. NleGa measures how many
of them have their middle point on a grid point. The sum row indicates the total number
of possible choices for a longest edge where the Amb row then measures the ambiguity
as the number of cases where one can select more than one longest edge.

One can observe that the uniqueness of the heuristic selection rule is far larger for the
2-norm. Adding the side criterion to select that edge that has a midpoint on a grid point has
a big effect. It reduces the ambiguity to zero, i.e. there is a unique longest edge to choose
from. In the 1-norm and ∞-norm there is hardly any effect of adding this side selection
criterion.

6.2. 4-Simplex

Table 6 reports the number of generated simplices by the rules and the smallest size of
a binary tree for a 4-Simplex for a varying accuracy ǫ. Interestingly enough, none of the
heuristics in the 2-norm generates a minimum size tree. The best heuristic appears to be
LEBM for this norm. For the 1-norm bisection the LEBC and LEBN heuristics provide
the smallest trees, but do not reach the smallest possible. In the ∞-norm, LEBN is the
heuristic seems to be the most effective. This shows more clearly that the best heuristic
depends on the norm used in the bisection process.

Table 7 measures the covering of the grid points for a 4-simplex. For the first time
in the experiments, we can observe that the iterative bisection process in the Euclidean
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Table 6
Number of simplices in a 4-simplex refinement, ǫ = 1

2k .

k = 2 k = 3 k = 4

L2 L1 L∞ L2 L1 L∞ L2 L1 L∞

LEB1 6391 18175 4419 100319 358479 80891 1557991 6097639 1415219
LEBC 4319 14559 8327 71735 299271 170939 1192311 5523847 3024375
LEBM 4311 20775 12343 71495 399455 217999 1188887 6864703 3583011
LEBN 5743 15247 3663 90047 303599 64343 1402047 5341039 1121911

MTREE 3639 8311 1271 55623 1 1 883215 1 1

1The exact number is unknown up to 16 May 2016, where an algorithm has been running on an Intel® Xeon®

E5 2650 for 124 days.

Table 7
Number of grid points covered in the 4-simplex refinement.

k = 2 k = 3 k = 4

(grid = 70) (grid = 495) (grid = 4 845)

L2 L1 L∞ L2 L1 L∞ L2 L1 L∞

LEB1 70 70 70 485 485 495 4525 4455 4829
LEBC 70 58 70 491 381 480 4705 3717 4168
LEBM 70 52 64 491 301 392 4705 2815 3172
LEBN 70 70 70 487 463 483 4613 4021 4429

MTREE 70 66 70 491 1 1 4728 1 1

1The exact number is unknown up to 16 May 2016, where an algorithm has been running on an Intel® Xeon®

E5 2650 for 124 days.

Table 8
Euclidean norm. n = 4, ǫ = 1

8
(k = 3).

NLE LEB1 LEBC LEBM LEBN

Nle Nle1 NleG1 Nle NleC NleGC Nle NleM NleGM Nle NleN NleGN

1 75542 75542 18150 45464 45464 7796 45212 45212 7704 64688 64688 15224
2 32528 32528 7764 29096 18756 4060 29120 17696 3420 32032 19248 2400
3 17322 17322 1680 20448 9100 1320 20400 8596 972 14196 5068 720
4 7544 7544 1840 14928 5688 376 14944 5688 372 13888 3576 136
5 1460 1460 556 3340 684 4 3360 672 4 3000 600 0
6 2124 2124 120 1788 894 8 1812 906 8 2508 1238 0
7 994 994 254 1456 560 12 1484 564 12 840 328 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0
10 650 650 0 10 10 0 10 10 0 10 10 0

Sum 256242 256242 51356 262432 145832 21532 262588 141988 19100 262920 145516 22728
Amb 0.71 0.71 0.65 0.83 0.69 0.64 0.83 0.68 0.60 0.75 0.56 0.33

norm does not necessarily generate all points on an equidistant grid where the accuracy
ǫ with a power of .5. Like in the lower dimensional case, the final set of sample points
in the 1-norm are of course 2ǫ apart, but do not completely coincide with a grid with the
same mesh size. Surprisingly, for k = 2, the ∞-norm is covering the grid with the LEBN

heuristic and the minimum size tree. This is an interesting result, because the size of the
tree is much smaller than in the other norms.

Tables 8, 9 and 10 measure the uniqueness of the selection criteria for the 4-simplex.
First of all notice that the number of the longest edges can be much larger. In the 2-norm,
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Table 9
1-norm. n = 4, ǫ = 1

8
(k = 3).

NLE LEB1 LEBC LEBM LEBN

Nle Nle1 NleG1 Nle NleC NleGC Nle NleM NleGM Nle NleN NleGN

1 204182 204182 143908 158780 158780 99164 268376 268376 186260 176192 176192 133200
2 155900 155900 89906 139248 77724 44304 173240 98536 69060 127216 75640 47112
3 107760 107760 52918 112656 43872 23544 91824 36488 23796 92520 36232 13992
4 87144 87144 32212 77920 23604 11352 36416 11412 7580 73120 25256 10648
5 49910 49910 16404 45260 11556 4096 16920 4524 2612 41120 9024 936
6 30672 30672 8998 20256 5188 1592 5784 1272 732 25536 7232 2472
7 18172 18172 4268 7336 1440 400 1904 352 140 12992 2080 192
8 3664 3664 802 2176 548 272 864 164 72 2656 344 0
9 3870 3870 652 774 230 60 162 34 0 90 30 0

10 630 630 0 10 10 0 10 10 0 10 10 0

Sum 1819066 1819066 789490 1510586 645802 339360 1177094 654994 445096 1472582 643386 332848
Amb 0.89 0.89 0.82 0.89 0.75 0.71 0.77 0.59 0.58 0.88 0.73 0.60

Table 10
∞-norm. n = 4, ǫ = 1

8
(k = 3).

NLE LEB1 LEBC LEBM LEBN

Nle Nle1 NleG1 Nle NleC NleGC Nle NleM NleGM Nle NleN NleGN

1 22604 22604 2932 77476 77476 32312 136986 136986 71552 21640 21640 5336
2 25572 25572 2496 83024 48820 16998 92944 51564 22108 23920 17272 3868
3 24360 24360 4148 68520 28596 8666 56286 21330 8590 23484 10536 1952
4 40464 40464 7786 57464 19914 5622 38456 11554 4788 33056 15060 2504
5 34430 34430 7294 37640 9508 1608 21280 4844 1196 24160 5252 984
6 58008 58008 8506 20064 4584 630 7848 1638 540 26928 9828 1480
7 29904 29904 4366 15750 3402 112 2968 620 68 16436 2596 384
8 26704 26704 3174 7696 1684 28 1264 240 6 10624 3580 732
9 20430 20430 1290 5670 1698 6 162 36 0 14274 4758 660

10 8310 8310 308 310 82 0 10 10 0 690 690 12

Sum 1518812 1518812 209662 1213472 468992 127676 831490 391052 170434 889934 329794 57348
Amb 0.99 0.99 0.99 0.94 0.83 0.75 0.84 0.65 0.58 0.98 0.93 0.91

now the additional criterion of being on a grid point reduces the ambiguity of the heuristic,
but does not make the choice unique.

7. Conclusions

This paper studied how simplex evaluation and grid generation in iterative longest edge
bisection of the unit simplex are influenced by the chosen norm. Several characteristics are
investigated, namely the size of the smallest tree, the cover of the grid and the effectiveness
of heuristics and rules to choose the LE to be bisected and the ambiguity of used criteria.

Three norms are compared, namely the Euclidean, 1-norm and ∞-norm. Focusing on
the minimum size tree that can be generated given a certain accuracy ǫ, we can conclude
that the minimum 1-norm tree is bigger than that of the other norms. The Euclidean and
∞-norm generate a smaller binary tree. Interesting is that for the 5-dimensional case,
the infinity norm may provide a much smaller search tree. With respect to the ambiguity,
in a higher dimension, the ambiguity of the criteria becomes higher, i.e. there are more
longest edges to choose from. For the 3-simplex, the choice becomes unique in Euclidean
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norm if we force the mid-point of the edge to be bisected to be a grid point. The 1-norm
and ∞-norm have more longest edges than the Euclidean norm. This means that in the
bisection process there are more longest edges to choose from.

This paper shows that the bisection process that is thought to sample all points on a
grid with a mesh size that is an integer power of 0.5 and over-sample it, may not for all
choices of the longest edge cover all grid points.
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Apie vienetinio simplekso dalijimą taikant įvairias atstumų normas

Jose M.G.SALMERÓN, Leocadio G. CASADO, Eligius M.T. HENDRIX

Iteratyvus ilgiausios kraštinės dalijimas pradedant vienetiniu simpleksu generuoja binarinį medį,
kurio forma priklauso nuo dalijimui pasirinktos ilgiausios kraštinės. Globaliajame optimizavime
įvairių atstumų normų taikymas gali būti naudingas rėžiams skaičiuoti. Šiame straipsnyje nagrinė-
jamas klausimas apie tai, kaip dalijimo procesu sugeneruoto binarinio medžio dydis priklauso nuo
euristiškai parenkamos ilgiausios kraštinės, kai taikomos įvairios atstumų normos. Mūsų dėmesio
centre – mažiausias medžio dydis, kaip parinkimo kriterijai gali sumažinti medžio dydį lyginant
su pirmos kraštinės parinkimu, ar numatomas tinklas yra padengiamas, kiek parinkimo kriterijai
yra unikalūs. Tikslūs skaičiai yra pateikti vienetiniams simpleksams keturmatėje ir penkiamatėje
erdvėje.


