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Abstract. A new heuristic algorithm for solution of bi-objective discrete competitive facility lo-
cation problems is developed and experimentally investigated by solving different instances of a
facility location problem for firm expansion. The proposed algorithm is based on ranking of can-
didate locations for the new facilities, where rank values are dynamically adjusted with respect to
behaviour of the algorithm. Results of the experimental investigation show that the proposed al-
gorithm is suitable for the latter facility location problems and provides good results in sense of
accuracy of the approximation of the true Pareto front.
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1. Introduction

Facility location deals with determination of the optimal locations for the facilities pro-
viding goods or services in a given geographical area. There are a lot of factors which
must be taken into account when considering a certain location for establishing a facility,
such as customers behaviour when choosing to buy a service; the market environment,
which includes other firms already in the market (the competitors); the restrictions for the
new locations, which includes minimum distance from the living areas in order to avoid
negative to the citizens possibly caused by the new facility, etc. However, the most im-
portant factor, from the point of view of the solution of the problem, is the objective (or
a set of them) of the location of the new facilities, which covers various aspects such as
maximization of the market share of the firm establishing the new facilities, minimization
of the cost for establishment, maintenance of or communication with the new facility as
well as minimization of the undesirable effect caused by the new facility. These criteria
can be considered separately or several criteria can be considered at once, thus solving
a multi-objective facility location problem.
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There are a lot of models of facility location problems proposed in the literature, e.g.
in Friesz (1998), Plastria (2001), ReVelle et al. (2008), which differ in various properties
including the above ones. According to the market environment, the problem of facility
location taking into account the competition for the market with other firms already carry-
ing out a commercial activity in the region of interest, are known as Competitive Facility

Location Problems (CFLPs). Depending on the location space, the CFLP can be formu-
lated as continuous, in which new facilities can be located everywhere in the given area
(or with some restrictions), and a discrete one, where locations for the new facilities are
chosen from a predefined set of candidate location.

We will consider that one of the firms already in the market is planning to expand its
market share by establishing a set of new facilities taking into account the competition
with other firms in the market and the following two objectives: (1) maximization of the
market share of the new facilities and (2) minimization of the undesirable effect in the
sense of lost market share to the preexisting facilities of the same firm (cannibalization
effect). In Pelegrin et al. (2012, 2014), this effect is integrated in the objective function as
a cost to be paid by the expanding firm to the cannibalized facilities, and the bi-objective
model is reduced to a single discrete optimization problem. In this paper, we will study this
model as a bi-objective discrete competitive facility location problem for firm expansion,
and it will be solved by using multi-objective optimization techniques. For the simplicity
of writing, we will call the latter CFLP by Competitive Facility Location Problem for Firm
Expansion, denoted by CFLP/FE hereinafter.

The remainder of the paper is organized as follows: Sections 2 and 3 describe the rele-
vant CFLP/FE and principles of multi-objective optimization used to tackle the problem,
respectively; Section 4 describes our proposed algorithm for CFLP/FE, and Section 5 is
devoted for description of the experimental investigation of the proposed algorithm and
discussion of the results obtained; finally, conclusions are formulated in Section 6.

2. Competitive Facility Location Problem for Firm Expansion

Consider a geographical region where customers are spatially spitted into a set I of de-
mand points. Two firms A and B have sets FA and FB of nA and nB preexisting facili-
ties, respectively, already providing a service or goods to the customers in I and com-
peting with each other for the market share. The customers at a single demand point
behave depending on the predefined rules – the model of customers behaviour. In this
research we will focus on the binary model for customers behaviour, where all cus-
tomers from a single demand points patronize the most attractive facility (Hakimi, 1995;
Suárez-Vega et al., 2004, 2007), assuming that the attractiveness of the facility is based
on a distance between a demand point and the facility – smaller distance leads to more
attractive facility.

Firm A is interested to expand its market share by establishing a set X of d new facil-
ities. On the one hand, firm A is interested to increase the total market share by attracting
customers from the competitors, but, on the other hand, the expanding firm does not want
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to negatively affect the market share of its own preexisting facilities by redirecting their
customers to the newly established facilities. It is especially important, when the expand-
ing firm has different owners, as it occurs in franchise systems. Thus, firm A faces a bi-
objective optimization problem to determine optimal locations for d new facilities with
respect to (1) maximization of the market share of the new facilities and (2) minimization
of the loss of market share of its own preexisting facilities (also known as the effect of
cannibalism).

Locations for the new facilities can be selected from the discrete set

L = {l1, l2, . . . , lm} (1)

of candidate locations. Thus, the solutions of the problem is a subset

X = {x1, x2, . . . , xd} (2)

of L, where d is the number of the facilities expected to locate. Depending on whether
a single or multiple facilities can be located in a single candidate location, the subset X is
of repetitive or non-repetitive elements.

Let’s denote by M(X) the market share obtained by the set X of new facilities, and
by C(X) the cannibalized market share. Such an undesirable effect is called cannibalism,
which was studied for the first time in franchise systems in Ghosh and Craig (1991). Then
the CFLP/FE mathematically can be described as







max
X∈D

M(X),

min
X∈D

C(X),
(3)

where the search space D describes all possible subsets X ⊂ L of the size d .

3. Multi-Objective Optimization

Due to conflicting objectives, usually it is impossible to find a single solution of the prob-
lem (3), which would be the best by both objectives. Moreover, the comparison of two
solutions by a single objective is meaningless as the best solution by one objective can
be worse by another one. In multi-objective optimization, two solutions X1 and X2 can
be compared to each other by the dominance relation; it is said that solution X1 domi-
nates X2 if

(1) solution X1 is not worse than X2 by all objectives and
(2) solution X1 is strictly better than X2 by at least one objective.

The relation is denoted by X1 ≻ X2, and X1 is called dominator of X2. The solution X,
which has no dominators in a set D′ ⊂ D is called non-dominated in the set D′, and the
solution which has no dominators in the whole search area D is called Pareto-optimal.
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The set of Pareto-optimal solutions is called the Pareto set, and the corresponding set of
objective values of Pareto-optimal solutions is called the Pareto front.

Determination of the true Pareto set usually is computationally- and time-consuming
task. Therefore, approximation methods for an approximate determination of Pareto-
optimal solutions are popular for the solution of practical problems. A well-known class
of such methods suitable for discrete multi-objective optimization is evolutionary algo-
rithms, e.g. NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al., 2001), VEGA (Schaffer,
1985), etc. Evolutionary algorithms have a wide area of applicability as they do not re-
quire specific knowledge on the problem being solved – the only requirement is to have a
possibility to evaluate objective values for any feasible solution.

Various evolutionary algorithms have been applied to solve various multi-objective
optimization problems in facility location. For example, Redondo et al. (2012) proposed
a general multi-objective optimization heuristic algorithm, suitable to continuous multi-
objective optimization problems; Huapu and Jifeng (2009) utilized SPEA to solve a multi-
objective bi-level programming model to optimize the location problem of distribution
centres, where the upper level consists of two objectives: minimization of cost of con-
struction and distance between distribution centre and customers, whereas the lower level
minimizes the transportation cost; Villegas et al. (2006) utilized NSGA-II to solve a bi-
objective facility location problem by minimizing operational cost of Colombian Coffee
supply network and maximizing the demand; Liao and Hsieh (2009) used NSGA-II to op-
timize the location for distribution centres with respect to two objectives: maximization of
customers service and minimization of the total cost; Medaglia et al. (2009) utilized hy-
brid NSGA-II and mixed-integer programming approach to solve bi-objective obnoxious
facility location problem related to the hospital waste management network.

The following section describes our proposed algorithm for solution of discrete multi-
objective facility location problem, which is applied for CFLP/FE, described above.

4. Multi-Objective Random Search with Ranking

The proposed algorithm, called Multi-Objective Random Search with Ranking (MO-
RSR) is based on generation of new solutions by applying modification to the non-
dominated solutions found so far by the same algorithm or found by another algorithm
and given to MO-RSR as input parameters. The modification is performed by chang-
ing the elements (the locations) of a non-dominated solution to another ones, randomly
selected from the set of candidate locations L. It is assumed that each candidate loca-
tion li ∈ L has its own probability πi to be selected, which is proportional to the rank ri

of li .
For the simplicity we will denote by r(L) the (set of) ranks of all candidate locations

in set L, where L can be changed to any entity indicating a set or a subset of locations.
The notation r(L) = 1 refers to the setting of all ranks in r(L) to one or other given value
instead of one. Similarly, the notations r(L) + 1 and r(L) − 1 refer to increment and
reduction of all ranks r(L) by one or other given value instead of one.
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Fig. 1. Scheme of MO-RSR algorithm.

The MO-RSR algorithm, illustrated by scheme in Fig. 1, begins with an initial set A of
non-dominated solutions. A new solution Xn is generated by applying changes to the ele-
ments of reference solution Xr randomly selected from A. Each element of Xr is changed
with predefined probability 1/d to the element l, randomly selected from the set indicating
all possible candidate locations without those already forming Xr and Xn. The element
xn
i ∈ Xn can be mathematically expressed by

xn
i =

{

l ∈ L′, if ξi < 1

d
;

xn
i , otherwise,

(4)

where l is selected at random from L′ = L \ (Xr ∪ Xn), ξi ∈ [0,1] is an uniform random
number, and i = 1,2, . . . , d . Thus, a probabilistic selection of elements to be a changed
leads to a change of averagely one element per generation. See Lančinskas et al. (2013)
for detailed description and advantages of the latter approach.

Each candidate location li ∈ L has an appropriate probability πi to be selected, which
is evaluated in proportion to the rank ri of the corresponding candidate facility.

At the beginning of the algorithm, all candidate locations have unity rank values:
r(L) = 1. Next, the rank of a particular candidate location is dynamically adjusted de-
pending on the successes and failures when including the location to form a new solution.
In particular, if the newly generated solution Xn is non-dominated in A, then the ranks of
all candidate locations forming Xn are increased by one:

r(Xn) = r(Xn) + 1. (5)

Thus, the candidate locations in Xn are assumed to be more promising as they form a
non-dominated solution, and will have larger probability to be included when forming a
new solution in the future.
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Additionally, if Xn dominates a solution from A, then the ranks of candidate locations
which form a dominated solution, but do not form its dominator Xn are reduced by one.
Let’s denote by Ad ⊂ A a set of solutions from A, which are dominated by Xn. Then for
all solutions X ∈ Ad

r
(

X \ Xn
)

= r
(

X \ Xn
)

− 1. (6)

Thus, the latter candidate locations are assumed to be less promising and will have lower
probability to be selected when generating a new solution in the future.

In order to avoid negative and non-proportional large ranks, they are arranged so that
the minimum worst rank value would be equal to one. The latter arrangement is performed
by the following expression:

r(L) =











r(L) − min r(L) + 1, if min r(L) > 1;

r(L) + min r(L) + 1, if min r(L) < 1;

r(L), otherwise.

(7)

Once a non-dominated solution Xn is generated, the population A is updated by in-
cluding Xn and removing all the solutions dominated by Xn. The updated population can
be mathematically described by

A =
(

A \ Ad
)

∪
{

Xn
}

. (8)

The ranks of candidate locations are the basis when evaluating the probability to select
a particular candidate location when forming a new solution; larger rank value of a candi-
date location leads to a larger probability to select the latter location. The probability πi

to select the candidate location li is evaluated by

πi =
ri

∑|L|

j=1
rj

. (9)

Such an iterative process of generation of new solutions and their fitness evaluation is
continued until the stopping criteria, usually based on the number of function evaluations,
is satisfied.

5. Experimental Investigation

The performance of the proposed MO-RSR algorithm has been experimentally investi-
gated and compared with the performance of NSGA-II applied for the same CFLP/FE.
Three instances of the problem have been solved:

• to select 5 locations for the new facilities from the set of 500 candidate locations;
• to select 5 locations for the new facilities from the set of 1000 candidate locations;
• to select 10 locations for the new facilities from the set of 1000 candidate locations.
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Table 1
Indices of demand points, where preexisting facilities of firms A and B are located.

Firm Indices of the demand points

A 9 15 17 1 4 14 2 16 18 20
B 6 11 13 5 12 8 10 7 3 19

In the first two cases the optimization problem has 5 variables but different search space,
whereas in the third instance the number of problem variable has been increased to 10.

Real data of 6090 demand points in Spain with geographical coordinates and popula-
tions has been used, assuming that firms A and B have 10 preexisting facilities per each,
located at random in 20 largest demand points. See Table 1 for the indices of demand
points, where preexisting facilities of firms A and B are located.

A predefined number of 10 000 function evaluations has been devoted for each approx-
imation of the Pareto front. Due to stochastic nature of the algorithms under investigation,
each experiment has been run for 100 times, using different, randomly generated, initial
solutions (a set of them for NSGA-II).

The NSGA-II has been implemented and adapted for CFLP/FE using the same strate-
gies for crossover and mutations as in Genetic Algorithm, specially adopted for CFLP for
an entering firm in Lančinskas et al. (2015). After a series of experiments with differ-
ent parameters of NSGA-II, the following set of parameters has been chosen for further
investigation:

• population size: 100;
• probability for crossover: 0.6;
• probability for mutation: 1/d .

5.1. Metric of Performance

The measurement of performance of the proposed algorithm is based on Hyper-Volume
(HV) metric (Zhou et al., 2006). The HV evaluates quality of the obtained approximation
of the Pareto set by measuring the area made by the members of the approximation and
the given reference point.

For the evaluation of results, obtained by the algorithm under investigation, we use
a modified version of HV metric – the Rational HV (RHV), which additionally includes
the results obtained by Pure Random Search (PRS) assuming them as the worst case re-
sults. RHV, concept which is illustrated in Fig. 2, measures how an algorithm under in-
vestigation performs better than PRS in the sense of HV, and it is evaluated by

RHVA =
HVA − HVPRS

HVPRS

, (10)

where HVA and HVPRS is the HV values of Pareto front approximations, obtained by the
algorithm under investigation and PRS, respectively.

For the reasons of uniformity, approximations of the Pareto front are scaled to the
unity hyper-cube [0,1]m (with respect to extreme points in the true Pareto front), and the
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Fig. 3. Ranks of the candidate locations after 1000, 5000, and 10 000 function evaluations with candidate loca-
tions from Pareto set indicated.

corresponding vertex of the box is then chosen as the reference point for evaluation of HV;
here m is the number of optimization problem objectives. Since we deal with 2 objectives
one of which is subject to maximization while another one to minimization, the obtained
approximations are scaled to the square [0,1]2 and the point (0,1) is considered as the
reference point.

5.2. Results and Discussion

As it was mentioned in Section 4, all rank values of the candidate location are equal to
the one at the beginning of the algorithm. Later on, the rank values are updated according
to the results obtained. Figure 3 illustrates the change of the rank values according to the
number of function evaluations performed. The horizontal axis stands for the indices of
elements in the set formed of candidate locations with the rank values larger than 1 after
10 000 function evaluations (126 at all), which is sorted by the rank values in descending
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order. The circle-marked graph illustrates the final rank values of the candidate locations,
where filled circles indicate optimal candidate locations forminga non-dominatedsolution
in the obtained approximation of the Pareto set (optimal candidate locations hereinafter).

It can be seen from figure that all optimal candidate locations have a rank value larger
than 1, and only 6 of them have a rank value lower than 5. The triangle-markedgraph shows
that noticeably higher ranks of the optimal candidate locations appear even in the early
stage of the algorithm – after 1000 function evaluations. However, some of the optimal
candidate locations still have zero ranks, but after 5000 function evaluations their ranks
obtain values corresponding to their quality.

There also exists a correlation between the rank value of an optimal candidate location
and its appearance in the Pareto set approximation and in the true Pareto set – the candidate
locations with larger rank values in the final stage of the algorithm statistically form more
non-dominated solutions in the same Pareto set.

The average values of the RHV metric with respect to the number of function evalua-
tions performed are illustrated in Fig. 4. Different plots correspond to different instances
of the problem being solved by two algorithms: NSGA-II and the proposed MO-RSR.
The results show significant advantage of MO-RSR against the well known NSGA-II in-
dependent on the instance of the problem investigated as well as on the number of function
evaluations.

The results presented in Figs. 3 and 4 show that the ranking of candidate locations
leads to the extraction of the most promising candidate locations, which is useful when
determining the probability to select a certain candidate location to form a new solution
in MO-RSR (whereas all candidate locations have the same probability to be selected
in NSGA-II) herewith leading to a better accuracy of approximation of the Pareto front
within the same number of function evaluations.
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Fig. 5. Selected approximations of the true Pareto fronts, obtained by different algorithms, in the context of the
true Pareto front.

The selected approximations of the Pareto front, obtained by PRS, NSGA-II, and MO-
RSR are illustrated in Fig. 5 in the context of the true Pareto front. The illustrated results
show that most of the Pareto-optimal solutions are determined by MO-RSR for the sim-
plest case of the relevant CFLP/FE. The similar conclusion can be also made for the second
instance – selection of locations for 5 new facilities from the set of 1000 candidate loca-
tions. However, only a few of Pareto-optimal solutions are determined by MO-RSR for the
problem to select locations for 10 new facilities from the set of 1000 candidate locations,
but, as it was in previous cases, there is notable advantage of MO-RSR against NSGA-II
in the sense of accuracy of the approximation.

6. Conclusions

The new heuristic algorithm MO-RSR for the solution of bi-objective discrete compet-
itive facility location problems has been developed and experimentally investigated by
solving different instances of the facility location problem for firm expansion. The results
of the experimental investigation of the proposed algorithm showed significant advantage
of MO-RSR against the well known NSGA-II independent on the instance of the problem
investigated as well as on the number of function evaluations. Analysis of the selected
approximations of the Pareto front showed that MO-RSR is able to determine almost all
Pareto-optimal solutions for the problem of selection of locations for 5 new facilities from
the set of 500 candidate locations. Although it is complicated for MO-RSR to find lo-
cations for 10 new facilities having a set of 1000 candidate locations, the algorithm still
shows notably better performance in the sense of accuracy of the approximation, than
NSGA-II, which is considered as a good algorithm for such kind of optimization prob-
lems.
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Konkuruojančių objektų vietos parinkimo diskrečiųjų uždavinių
rinkoje besiplečiančioms įmonėms sprendimas

Algirdas LANČINSKAS, Pascual FERNÁNDEZ, Blas PELEGRÍN, Julius ŽILINSKAS

Straipsnyje siūlomas naujas euristinis algoritmas dviejų kriterijų konkuruojančių objektų vietų pa-
rinkimo uždaviniams spręsti. Algoritmo, grįsto potencialių vietų naujiems objektams rangavimu,

efektyvumas vertinamas sprendžiant įvairius konkuruojančių objektų vietų parinkimo uždavinius,

aktualius besiplečiančiai rinkoje jau esančiai įmonei. Eksperimentinio tyrimo rezultatai parodė, kad

siūlomas optimizavimo algoritmas efektyviai sprendžia minėtus uždavinius, vertinant pagal Pareto

fronto aproksimacijos tikslumą.


