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Abstract. A comparison of two nonlinear input-output models describing the relationship between
human emotion (excitement, frustration and engagement/boredom) signals and a virtual 3D face
feature (distance-between-eyes) is introduced in this paper. A method of least squares with projec-
tion to stability domain for the building of stable models with the least output prediction error is
proposed. Validation was performed with seven volunteers, and three types of inputs. The results
of the modelling showed relatively high prediction accuracy of excitement, frustration and engage-
ment/boredom signals.
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1. Introduction

Virtual environment became a part of our daily life (computer games, learning environ-
ments, social networks and their games, work tasks, online shopping, etc.). These en-
vironments affect the users in both positive and negative ways. It is important to in-
vestigate relations between virtual stimuli and human emotions when interacting with
them to prevent users from harmful effects (Calvo et al., 2015; Scherer et al., 2010).
Human state observation is an important task for this purpose. Plenty of bio-signals are
used for human state monitoring (Suprijanto et al., 2009; Zisook et al., 2013). We use
EEG-based signals because of their reliability and quick response (Graimann et al., 2011;
Hondrou and Caridakis, 2012; Sourina and Liu, 2011; Tan et al., 2010).

A linear input-output structure models for exploring dependencies between virtual
3D face features and human reaction to them were investigated in Vaškevičius et al.
(2014). Four reaction signals were used: excitement, meditation, frustration, and engage-
ment/boredom. A dynamical stimulus (virtual 3D face) was characterized by distance-
between-eyes, nose-width and chin-width. It was shown that the features of a virtual face
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Fig. 1. Input–output scheme for the experiments.

have the largest influence to human excitement, frustration and engagement signals. Then
one linear model was modified and two nonlinear models offered in Kaminskas et al.
(2014) for the modelling of previously mentioned signals as reactions to a virtual dynamic
3D face.

In this investigation we compare two Hammerstein-type nonlinear input-output struc-
ture models describing the dependencies between human emotional signals (excite-
ment, frustration and engagement) and a virtual 3D face feature (distance-between-eyes).
We show that two nonlinear models used in Kaminskas et al. (2014) are piece-wise
Hammerstein-type model cases. The data collected from experiments with three differ-
ent input types are used for model parameters’ estimation and validation.

2. Experiment Planning and Observations

A virtual 3D face with changing distance between eyes was used for input as stimulus
(shown in a monitor) and EEG-based pre-processed excitement, frustration and engage-
ment signals of a volunteer were measured as output (Fig. 1). The output signals were
recorded using Emotiv Epoc device that records EEG inputs from 14 channels (according
to international 10–20 locations): AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, AF4, Emotiv Epoc specifications).

Dynamical stimulus was formed from a changing woman’s face. One 3D face created
with Autodesc MAYA was used as a “neutral” one (Fig. 1, left). Other 3D faces were
formed by changing distance-between-eyes in an extreme manner (Figs. 2–4). The smooth
and sudden transitions between normal and extreme stages were programmed. There were
three input signals used in the experiments.

The first one – TYPE I – (Fig. 2) was formed when a signal of neutral face was equal
to 0, the signal of the largest distance-between-eyes was equal to 1.75 and the signal of the
smallest distance-between-eyes was equal to −1.75. The values in-between were changed
linearly. Time interval between the largest/smallest value and zero (normal face) was 10 s.
The features were changing continuously: from normal to large, then back to normal and
to small, then again to normal and to large and again back to normal.

The second input signal – TYPE II – (Fig. 3) was formed as sudden changes between
extreme stages. Neutral face’s signal was equal to 0, the signal of the largest distance-
between-eyes was equal to 1.25 and the signal of the smallest distance-between-eyes was
equal to −1.25. The values in-between were changed suddenly. Time interval between
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Fig. 2. Input signal TYPE I: experiment plan.

Fig. 3. Input signal TYPE II: experiment plan.

Fig. 4. Input signal TYPE III: experiment plan.

the largest/smallest value and zero (normal face) was from 3 to 20 s. The features were
changing from small to normal and then to large, then back to normal and to small, then
again to normal and to large and again back to normal.

The third input signal – TYPE III – was formed in a combined manner from previous
two (Fig. 4). At first “neutral” face was shown for 5 s, then distance-between-eyes was
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increased continuously and in 10 s the largest distance-between-eyes (Fig. 4, top left) was
reached, then 5 s of stable face was shown and after that the face came back to “normal”
in 10 s. Then “normal” face was shown for 5 s, followed by 10 s long continuous change
to the face with smallest distance-between-eyes (Fig. 4, bottom left), again 5 s of stable
face was shown and in the next 10 s the face came back to “normal”. Then everything was
repeated from the beginning using 3 s time intervals for stable face and 5 s for continuous
change. “Neutral” face’s signal has value 0, a signal of the largest distance-between-eyes
corresponds to value 3 and a signal of the smallest distance-between-eyes corresponds to
value – 3.

Values of the output signals – excitement, frustration, and engagement/boredom – var-
ied from 0 to 1. If excitement, frustration, and engagement are low, the value is close to 0
and if they are high, the value is close to 1. The signals were recorded with the sampling
period of T0 = 0.5 s.

3. Building of Hammerstein-Type Models

Dependencies between human emotion signals (excitement, frustration, and engage-
ment/boredom) as reactions to virtual 3D face feature (distance-between-eyes) changes
are described by input-output structure Hammerstein-type model (Kaminskas, 1985):

y t = W
(
z−1

)
f (xt ) + H

(
z−1

)
εt , (1)

where

W
(
z−1

)
=

B(z−1)

A(z−1)
, (2)

H
(
z−1

)
=

1

A
(
z−1

) (3)

are transfer functions of the dynamical channels of the input and the disturbance (Fig. 5),
and

f (xt ) = f0 + f1|xt | (4)

or

f (xt ) = f0 + f2x
2

t (5)

is a nonlinear characteristics of the input channel (Fig. 5),

A
(
z−1

)
= 1 +

n∑

i=1

aiz
−i , B

(
z−1

)
=

m∑

j=0

bjz
−j (6)
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Fig. 5. Hammerstein-type model structure.

are the polynomials of the transfer functions, yt is an output (excitement, frustration, or
engagement/boredom signal), xt is an input (distance-between-eyes) signal respectively
expressed as

yt = y (tT0) , xt = x (tT0) (7)

with sampling period T0, εt corresponds to white-noise signal, and z−1 is the backward
shift operator (z−1xt = xt−1). A sign | | denotes absolute value.

Equation (1) when using expressions (2)–(6) is changed to the following form:

A
(
z−1

)
yt = θ0 + B∗

(
z−1

)
f∗(xt ) + εt , (8)

where

θ0 = f0

m∑

j=0

bj , (9)

B∗

(
z−1

)
=

m∑

j=0

b∗
jz

−j , (10)

b∗
j = f1bj , j = 0,1, . . . ,m (11)

or

b∗
j = f2bj , j = 0,1, . . . ,m, (12)

f∗(xt ) = |xt | (13)

or

f∗ (xt) = x2

t . (14)

Equations (8)–(14) are equivalent to the nonlinear model equations used in Kamin-
skas et al. (2014) when |f0| > 0 and f1 = f2 = 1. So these models are a piece-wise
Hammerstein-type model case. Parameters (coefficients of the polynomials), orders (de-
grees m and n of the polynomials), and constant θ0 of the models (8)–(14) are unknown.
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They have to be estimated according to the observations obtained during the experiments
with the volunteers.

Equation (8) can be expressed in the following form:

yt = θ0 +

m∑

j=0

b∗
jf∗(xt−j ) −

n∑

i=1

aiyt−i + εt . (15)

It is not difficult to see that (15) can be expressed as the linear regression equation:

yt = dT
t c + εt , (16)

where

dT
t =

[
1, f∗(xt ), f∗(xt−1), . . . , f∗(xt−m), −yt−1, . . . , −yt−n

]
, (17)

and

cT =
[
θ0, b∗

0
, b∗

1
, . . . , b∗

m, a1, a2, . . . , an

]
, (18)

T is a vector transpose sign.
For the estimation of unknown parameter vector c we use a method of least squares

with projection to the stability domain (Kaminskas, 1982). Least squares estimates:

ĉ = Q−1q, (19)

where Q and q are expressed as follows:

Q =

M∑

t=1

dtd
T
t , q =

M∑

t=1

ytdt (20)

and M is a number of observation values that are used to build a model.
After calculating the estimates of model parameters, stability condition of a model is

verified (Kaminskas, 1982). It means that the roots

zA
i : ÂM(z) = 0, i = 1,2, . . . , n (21)

of the following polynomial

ÂM(z) = znÂM

(
z−1

)
= zn +

n∑

i=1

âM
i zn−i (22)

have to be in the stability domain, i.e. in the unit disk

∣∣zA
i

∣∣ < 1, i = 1,2, . . . , n, (23)

where âM
i are the least squares estimates of polynomial A(z−1) coefficients.
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If the condition (23) is not satisfied, coefficients of polynomial ÂM(z−1) are projected

âi = γ âM
i , 0 < γ 6 1, i = 1,2, . . . , n, (24)

to the stability domain. A calculation of the projection coefficient γ was given in the
previous work Kaminskas et al. (2014) when n 6 2 (stability domain is defined by linear
equations). It is easy to calculate γ constant when n 6 3, because the stability domain is
defined by Jury (1962):

−1 < â1 < 1, if n = 1, (25)




1 + â1 + â2 > 0,

1 − â1 + â2 > 0, if n = 2,

−1 < â2 < 1,

(26)





1 + â1 + â2 + â3 > 0,

1 − â1 + â2 − â3 > 0, if n = 3.

1 + â1â3 − â2 − â2

3
> 0,

−1 < â3 < 1,

(27)

Then using (24) in (25)–(27), we get:

γ = min
{
1, γ

(1)
1

}
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γ
(3)
4

is a smaller solution (from all real positive solutions) of a quadratic equation

(
âM

1
âM

3
−

(
âM

3

)2)
γ 2 − âM

2
γ + 1 = 0. (38)

Positive constant γ0 ∈ [0.001,0.01].
Estimates of the model orders – m̂ and n̂ – are defined from the following conditions

(Kaminskas, 1982):

n̂ = min{ñ}, m̂ = min{m̃}, (39)

where m̃ and ñ are polynomial (6) degrees when the following inequalities are correct:

∣∣∣∣
σε[m,n + 1] − σε[m,n]

σε[m,n]

∣∣∣∣ 6 δ, n = 1,2, . . . , (40)

∣∣∣∣
σε[m + 1, n] − σε[m,n]

σε[m,n]

∣∣∣∣ 6 δ, m = 1,2, . . . , n, (41)

where

σε[m,n] =

√√√√ 1

N

N∑

t=1

ε̂2
t [m,n] (42)

is one-step-ahead output prediction error standard deviation,

ε̂t [m,n] = yt − ŷt |t−1[m,n] (43)

is one-step-ahead output prediction error,

ŷt |t−1[m,n] = θ̂0 + z
[
1 − Â

(
z−1

)]
yt−1 + B̂∗

(
z−1

)
f∗(xt) (44)

is one-step-ahead output prediction (Kaminskas, 1982), z is the forward shift operator
(zyt = yt+1), and δ > 0 is a chosen constant value. Usually in identification practice δ ∈

[0.01–0.1], which corresponds to a relative variation of prediction error standard deviation
from 1% to 10%.

Coefficient estimates of polynomial B(z−1) transfer function and nonlinear character-
istics f (xt ) of Hammerstein-type models (1)–(6) are connected with coefficient estimates
of models (8)–(14) in the following way:

b̂j =
Kw

K∗
w

b̂∗
j , j = 0,1, . . . , m̂, (45)

f̂0 =
KH

KW

θ̂0, (46)

f̂1 =
K∗

W

KW

, (47)
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f̂2 =
K∗

W

KW
, (48)

where

KW =

∑m
j=0

bj

1 +
∑n

i=1
ai

(49)

is a gain of a transfer function (2),

K∗
W =

∑m̂
j=0

b̂∗
j

1 +
∑n̂

i=1
âi

(50)

is a gain of model (8) transfer function

W∗

(
z−1

)
=

B̂∗(z
−1)

Â(z−1)
, (51)

KH =
1

1 +
∑n̂

i=1
âi

(52)

is a gain of a transfer function (3).
From (45)–(48) follows that the reconstruction of primary model parameter estimates

requires a priori selection of gain KW of Hammerstein-type model input channel transfer
function. It is generally accepted that:

KW =

{
1, if K∗

W > 0,

−1, if K∗
W < 0.

(53)

In this case, from (47)–(48) follows that estimates of the coefficients f1 and f2 of (4)
and (5) will be positive (functions f (xt ) are symmetrically increasing with respect to the
origin).

4. Validation of Models

Validation of the models (1)–(6) was performed for each of 7 volunteers (males and
females). Each model is selected from nine possible models (when n = 1,2,3, and
m = 0,1,2,3) using the rules (39)–(41) when δ = 0.05. The analysis of data showed that
relations between distance-between-eyes input and excitement output signal can be mod-
elled when model order is m̂ = 0, n̂ = 1, frustration output signal can be modelled when
model order is m̂ = 0, n̂ = 2, and engagement/boredom output signal can be modelled
when model order is m̂ = 0, n̂ = 3. These estimates are obtained when relative variation
of prediction error standard deviation is 5%. According to data analysis results, one-step-
ahead prediction of output signals for every model can be performed using the following
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expressions (Kaminskas, 1985):

ŷt+1|t = z
[
1 − Â

(
z−1

)]
yt + B̂

(
z−1

)
f̂ (xt+1)

=

m̂∑

j=0

b̂j f̂ (xt+1−j ) −

n̂∑

i=1

âiyt+1−i, (54)

f̂ (xt ) = f̂0 + f̂1|xt | (55)

or

f̂ (xt ) = f̂0 + f̂2x
2

t . (56)

Prediction accuracies were evaluated using the following measures:

– prediction error standard deviation

σε =

√√√√ 1

N

N−1∑

t=0

(yt+1 − ŷt+1|t)2, (57)

– relative prediction error standard deviation

σ̃ε =

√√√√ 1

N

N−1∑

t=0

(
yt+1 − ŷt+1|t

yt+1

)2

, (58)

– and average absolute relative prediction error

|ε̄| =
1

N

N−1∑

t=0

∣∣∣∣
yt+1 − ŷt+1|t

yt+1

∣∣∣∣ × 100%. (59)

One-step-ahead predictions (54)–(56) were performed using the observation data that
were used to parameter estimation (M = 124 in TYPE III stimulus case and M = 80 in
TYPE I/II stimuli cases, in (20)) and the additional ones that were not used to parameter
estimation (in total N = 200 in TYPE III stimulus case and N = 110 in TYPE I/II stimuli
case, in (57)–(59)). Prediction accuracy measures are provided in Tables 1–3.

Figures 6–7 show examples of one-step-ahead prediction results when using models
(1)–(6) for two volunteers. Thick solid line denotes an observed signal, thick dotted line
denotes predicted signal and thin solid line denotes prediction error at every time moment.
Vertical line denotes M position as model parameters were estimated in the interval from
0 to M (equal to 80 when input TYPE I is used). As sampling period T0 = 0.5 s, M is
40 s.

Examples of parameter estimates of the models (54)–(56) are given in Tables 4–5.
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Table 1
Prediction accuracy measures for input TYPE I.

Vol. no. Output f (xt ) = f0 + f1|xt | f (xt ) = f0 + f2x2
t

σε σ̃ε , % |ε̄|, % σε σ̃ε , % |ε̄|, %

(1) female Excitement 0.024 10.1 8.2 0.023 10.0 8.3

Frustration 0.011 2.5 1.7 0.011 2.5 1.7

Engagement 0.008 0.8 0.6 0.008 0.8 0.6

(2) male Excitement 0.057 13.9 10.6 0.051 11.5 8.7

Frustration 0.021 4.2 3.2 0.021 4.2 3.2

Engagement 0.006 1.0 0.7 0.006 1.0 0.7

(3) male Excitement 0.053 17.0 12.5 0.046 15.5 11.1

Frustration 0.014 5.0 3.5 0.014 5.0 3.5

Engagement 0.009 2.4 1.5 0.009 2.4 1.5

Table 2
Prediction accuracy measures for input TYPE II.

Vol. no. Output f (xt ) = f0 + f1|xt | f (xt ) = f0 + f2x2
t

σε σ̃ε , % |ε̄|, % σε σ̃ε , % |ε̄|, %

(1) female Excitement 0.024 9.1 7.2 0.024 9.1 7.2

Frustration 0.011 2.5 1.9 0.011 2.5 1.9

Engagement 0.014 1.7 1.3 0.014 1.7 1.3

(2) male Excitement 0.060 17.9 13.4 0.060 18.9 14.2

Frustration 0.024 7.1 5.2 0.024 7.1 5.2

Engagement 0.010 2.0 1.5 0.010 2.0 1.5

(3) male Excitement 0.066 10.2 7.9 0.066 10.0 7.8

Frustration 0.11 2.8 2.3 0.11 2.8 2.3

Engagement 0.008 2.1 1.5 0.008 2.1 1.5

Table 3
Prediction accuracy measures for input TYPE III.

Vol. no. Output f (xt ) = f0 + f1|xt | f (xt ) = f0 + f2x2
t

σε σ̃ε , % |ε̄|, % σε σ̃ε , % |ε̄|, %

(4) female Excitement 0.038 12.6 9.1 0.038 12.6 9.1

Frustration 0.019 3.5 2.6 0.019 3.5 2.6

Engagement 0.008 1.5 1.1 0.008 1.6 1.1

(5) male Excitement 0.031 12.4 7.7 0.030 12.1 7.6

Frustration 0.007 2.2 1.6 0.007 2.2 1.5

Engagement 0.008 1.8 1.1 0.008 1.8 1.1

(6) female Excitement 0.018 9.0 5.7 0.018 9.0 5.7

Frustration 0.017 3.4 2.7 0.017 3.4 2.7

Engagement 0.006 0.8 0.6 0.006 0.8 0.6

(7) male Excitement 0.025 10.3 7.1 0.025 10.3 7.1

Frustration 0.016 3.9 2.8 0.016 3.9 2.8

Engagement 0.004 0.7 0.5 0.004 0.7 0.5
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Fig. 6. One-step-ahead prediction results when using models (1)–(6) for volunteer no. 1 input TYPE I. Thick
solid line denotes an observed signal, thick dotted line – predicted signal and thin solid line – prediction error.

Fig. 7. One-step-ahead prediction results when using models (1)–(6) for volunteer no. 3 input TYPE I. Thick
solid line denotes an observed signal, thick dotted line – predicted signal and thin solid line – prediction error.

Engagement/boredomsignal was predicted with the least average absolute relative pre-
diction error (less than 1.5%). Frustration signal was predicted with less than 5.2% aver-
age absolute relative prediction error. Excitement signal was predicted with the largest
prediction error, but less than 14.2%. These models are more accurate than previously
investigated linear models (Vaškevičius et al., 2014). Average values of this prediction
accuracy measure calculated from the results of ten experiments do not exceed 1% for
engagement, 3% for frustration and 9% for excitement signal.
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Table 4
Estimated parameters for excitement signal prediction using first order model m̂ = 0, n̂ = 1 for input TYPE I.

Volunteer no. 1 (female) Volunteer no. 2 (male)

f (xt ): f0 + f1|xt | f0 + f2x2
t f (xt ): f0 + f1|xt | f0 + f2x2

t

b̂0 0.154 0.155 b̂0 −0.041 −0.041

â1 −0.846 −0.845 â1 −0.959 −0.959

f̂0 0.172 0.190 f̂0 −0.445 −0.651

f̂1 0.047 – f̂1 0.142 –
f̂2 – 0.023 f̂2 – 0.248

Table 5
Estimated parameters for excitement signal prediction using first order model m̂ = 0, n̂ = 1 for input TYPE III.

Volunteer no. 6 (female) Volunteer no. 7 (male)

f (xt ): f0 + f1|xt | f0 + f2x2
t f (xt ): f0 + f1|xt | f0 + f2x2

t

b̂0 −0.090 −0.090 b̂0 −0.110 −0.110

â1 −0.910 −0.910 â1 −0.890 −0.890

f̂0 −0.103 −0.102 f̂0 −0.275 −0.266

f̂1 0.007 – f̂1 0.038 –
f̂2 – 0.003 f̂2 – 0.014

5. Conclusions

Two Hammerstein-typemodels (when non-linearity of the input channel do not go through
the origin) were proposed to describe the dependencies between human emotional sig-
nals (excitement, frustration, and engagement/boredom) and 3D face feature (distance-
between-eyes).

It is shown that using least squares method with projection to the stability domain al-
lows building stable Hammerstein-type models for one-step-ahead predictions of excite-
ment, frustration, and engagement/boredom signals with the smallest prediction errors.

The validation results with data collection from seven volunteers and three types of
experiment plan show that excitement can be predicted on average with less than 9%, frus-
tration – with less than 3% and engagement/boredom– with less than 1% average absolute
relative prediction error. According to the prediction accuracies, two models (1)–(3), (4),
(6) and (1)–(3), (5), (6) with different nonlinear characteristics (respectively absolute, and
quadratic) of the input channel are similar.
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Netiesinių Hameršteino tipo modelių lyginimas identifikuojant
žmogaus reakciją į virtualius trimačio veido stimulus

Vytautas KAMINSKAS, Aušra VIDUGIRIENĖ

Šiame straipsnyje pateikiamas dviejų netiesinių įėjimas-išėjimas tipo modelių, kurie aprašo sąry-
šius tarp žmogaus emocinių signalų (susijaudinimo, susierzinimo ir susidomėjimo / nuobodulio) ir
virtualaus trimačio veido su besikeičiančiu atstumu tarp akių, lyginimas. Stabiliems modeliams su
mažiausia išėjimo prognozės paklaida sudaryti pasiūlytas mažiausių kvadratų metodas su projekcija
į stabilumo sritį. Validavimas buvo atliktas su septyniais savanoriais ir trimis įėjimo signalo tipais.
Modeliavimo rezultatai parodė santykinai aukštus susijaudinimo, susierzinimo ir susidomėjimo /
nuobodulio signalų prognozių tikslumus.


